

FCC PART 15C TEST REPORT No. I16N00975-BLE

for

OnePlus Technology(Shenzhen) Co., Ltd.

Mobile Phone

Model Name: ONEPLUS A3000

With

Hardware Version: 28

Software Version: oxygen 3.5.1

FCC ID: 2ABZ2-A3000

Issued Date: Nov. 14th, 2016

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT. No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191. <u>Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504</u>

Email:<u>cttl_terminals@catr.cn</u>, website:<u>www.chinattl.com</u>

REPORT HISTORY

Report Number Revision		Description	Issue Date	
I16N00975-BLE	Rev.0	1st edition	2016-11-14	

CONTENTS

1.	TES	ST LABORATORY	5
1	.1.	TESTING LOCATION	5
1	.2.	Testing Environment	5
1	.3.	PROJECT DATA	5
1	.4.	SIGNATURE	5
2.	CL	IENT INFORMATION	6
2	2.1	Applicant Information	6
2	2.2.	MANUFACTURER INFORMATION	6
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3	1	AROUT FUT	7
3	3.2	INTERNAL IDENTIFICATION OF EUT	7
3	. <u>.</u> .	INTERNAL IDENTIFICATION OF AE	7
4.	RE	FERENCE DOCUMENTS	8
	. 1		0
4	+.1. 1.2	DOCUMENTS SUPPLIED BY APPLICANT	0
4	F.∠.	REFERENCE DOCUMENTS FOR TESTING	0
5.	TES	ST RESULTS	9
5	5.1.	SUMMARY OF TEST RESULTS	9
5	5.2.	STATEMENTS	9
5	5.3.	TERMS USED IN THE RESULT TABLE	9
5	5.4.	LABORATORY ENVIRONMENT	. 10
6.	TES	ST FACILITIES UTILIZED	.11
AN	NEX	A: MEASUREMENT RESULTS FOR RECEIVER	. 12
A	4.0 Ai	NTENNA REQUIREMENT	. 12
A	4.1 TF	RANSMITTER SPURIOUS EMISSION	. 13
A	\ .1.1 <i>'</i>	TRANSMITTER SPURIOUS EMISSION - RADIATED	. 13
A	A.2 A0	C POWERLINE CONDUCTED EMISSION	. 17
AN	NEX	B: TEST FIGURE LIST	. 23
F	FIG. 1	RADIATED SPURIOUS EMISSION (GFSK, CH0, 1 GHz ~18 GHz)	. 23
F	FIG. 2	RADIATED SPURIOUS EMISSION (CH19, 9 KHz-30 MHz)	. 23
F	FIG. 3	RADIATED SPURIOUS EMISSION (CH19, 30 MHz-1 GHz)	. 24
F	FIG. 4	RADIATED SPURIOUS EMISSION (CH19, 1 GHz-18 GHz)	. 24
F	FIG. 5	RADIATED SPURIOUS EMISSION (CH39, 1 GHz-18 GHz)	. 25
F	FIG. 6	RADIATED EMISSION POWER (GFSK, CH0, 2380GHz~2450GHz)	. 25
F	FIG. 7	RADIATED EMISSION POWER (GFSK, CH39, 2450GHZ~2500GHZ)	. 26
F	FIG. 8	RADIATED EMISSION: 18 GHz – 26.5 GHz	. 26
F	FIG. 9	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)	. 27
F	Fig. 10	AC POWER LINE CONDUCTED EMISSION (IDLE, AE1) ©Copyright. All rights reserved by C7	. 28 TL.

No. I16N00975-BLE Page 4 of 39

FIG. 11	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)	
FIG. 12	AC POWER LINE CONDUCTED EMISSION (IDLE, AE1)	
FIG. 13	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE2)	
Fig. 14	AC POWER LINE CONDUCTED EMISSION (IDLE, AE2)	
FIG. 15	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE2)	
FIG. 16	AC POWER LINE CONDUCTED EMISSION (IDLE, AE2)	
FIG. 17	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE3)	
FIG. 18	AC POWER LINE CONDUCTED EMISSION (IDLE, AE3)	
FIG. 19	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE3)	
FIG. 20	AC POWER LINE CONDUCTED EMISSION (IDLE, AE3)	
ANNEX C	C: PERSONS INVOLVED IN THIS TESTING	

No. I16N00975-BLE Page 5 of 39

1. Test Laboratory

1.1. Testing Location

Location: CTTL(South Branch)

Address: TCL International E city No. 1001 Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong, China 518000

1.2. Testing Environment

Normal Temperature:	15-35° ℃
Extreme Temperature:	-20/+55℃
Relative Humidity:	20-75%

1.3. Project data

Testing Sta	rt Date:	2016-04-06
Testing End	d Date:	2016-11-01

1.4. Signature

An Ran (Prepared this test report)

Tang Weisheng (Reviewed this test report)

Zhang Bojun (Approvedthis test report)

2. Client Information

2.1. Applicant Information

Company Name:	OnePlus Technology(Shenzhen) Co., Ltd.
Address:	18/F, Tower C, Tai Ran Building,No.8 Tai Ran Road, Shenzhen, China
City:	Shenzhen
Postal Code:	1
Country:	China
Telephone:	0755 61898696 EXT 7023
Fax:	1

2.2. Manufacturer Information

Company Name:	OnePlus Technology(Shenzhen) Co., Ltd.
Address:	18/F, Tower C, Tai Ran Building,No.8 Tai Ran Road, Shenzhen, China
City:	Shenzhen
Postal Code:	1
Country:	China
Telephone:	0755 61898696 EXT 7023
Fax:	1

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1.<u>About EUT</u>

Description	Mobile Phone
Model Name	ONEPLUS A3000
Market Name	/
Frequency Band	2402MHz~2480MHz
Type of Modulation	GFSK
Number of Channels	40
FCC ID	2ABZ2-A3000
*Note: Photographs of EUT are s	hown in ANNEX A of this test report.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	860046030164299	28	oxygen 3.5.1	2016-04-06
*EUT ID: is used	to identify the test sample ir	the lab internally	у.	

3.3. Internal Identification of AE

AE ID*	Description	Туре	SN	
AE1	Power Supply Unit	HK0504	HC1608500001	
AE2	Power Supply Unit	DC0504A5	H11619000004	
AE3	Power Supply Unit	DC0504B5GB	LCYYWWWSSSSSS	
*AE ID: is used to identify the test sample in the lab internally.				

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title						Version
FCC Part15	FCC CFR 4	FCC CFR 47, Part 15, Subpart C:					Nov,2015
	15.205 Res	stricted ba	ands of op	peratio	on;		
	15.209 Rad	diated em	nission lim	its, ge	eneral req	uirements;	
	15.247 O	peration	within	the	bands	902–928MHz,	
	2400–2483	5.5 MHz, a	and 5725-	-5850	MHz.		
ANSI C63.10	American N	ational	Standard	for	Testing	Unlicensed	lup 2012
	Wireless Devi	ces					Juli,2013

5. Test Results

5.1. Summary of Test Results

No	Test cases	Standard Sub-clause	Verdict
0.	Antenna Requirement	15.203	Р
1.	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
2.	AC Powerline Conducted Emission	15.107, 15.207	Р

See **ANNEX B and ANNEX C** for details.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2

5.3. Terms used in the result table

Terms used in Verdict column			
Р	Pass		
NA	Not Available		
F	Fail		

Abbreviations

7 10010 110110	
AC	Alternating Current
AFH	Adaptive Frequency Hopping
BW	Band Width
E.I.R.P.	equivalent isotropical radiated power
ISM	Industrial, Scientific and Medical
R&TTE	Radio and Telecommunications Terminal Equipment
RF	Radio Frequency
Тх	Transmitter

5.4. Laboratory Environment

Ground system resistance

Semi-anechoic chamber	did not exceed following limits along the EMC testing
	and hot exceed tone wing white along the Enre teeting

Temperature	Min. = 15 °C, Max. = 30 °C			
Relative humidity	Min. = 35 %, Max. = 60 %			
Shielding effectiveness	0.014MHz - 1MHz, >60dB;			
	1MHz - 1000MHz, >90dB.			
Electrical insulation	> 2 MΩ			
Ground system resistance	< 4Ω			
Normalised site attenuation (NSA)	< \pm 4dB, 3m/10m distance,from 30 to 1000 MHz			
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz			
Shielded room did not exceed follow	ving limits along the EMC testing:			
Temperature	Min. = 15 °C, Max. = 30 °C			
Relative humidity	Min. = 35 %, Max. = 60 %			
Shielding effectiveness	0.014MHz - 1MHz, >60dB;			
	1MHz - 1000MHz, >90dB.			
Electrical insulation	> 2 MΩ			

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C		
Relative humidity	Min. = 35 %, Max. = 60 %		
Shielding effectiveness	0.014MHz - 1MHz, >60dB;		
	1MHz - 1000MHz, >90dB.		
Electrical insulation	> 2 MΩ		
Ground system resistance	< 4Ω		
Voltage Standing Wave Ratio	\leq 6dB, from 1 to 18 GHz,3m distance		
(VSWR)			

<4Ω

6. Test Facilities Utilized

Radiated emission test system

No	Equipment	Model	Serial	Monufacturar	Calibration	Calibration
NO.	Equipment	woder	Number	Wanulacturer	Due date	Period
1	Chamber	FACT5-2.0	4166	ETS-Lindgren	2018-05-13	3 years
2	Test Receiver	ESCI	100701	Rohde & Schwarz	2017-08-09	1 year
3	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2017-01-20	3 years
4	Horn Antenna	3117	00066585	ETS-Lindgren	2019-03-05	3 years
5	Spectrum Analyser	FSP40	100378	Rohde & Schwarz	2016-12-18	1 year
6	Loop Antenna	HLA6120	35779	TESEQ	2019-05-10	3 years
7	Test Receiver	ESCI	100702	Rohde & Schwarz	2017-06-26	1 year
8	LISN	ESH2-Z5	100196	Rohde & Schwarz	2017-01-12	1 year

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren.

ANNEX A: MEASUREMENT RESULTS FOR RECEIVER

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section. The manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection
	systems and some field disturbance sensors, or to other intentional radiators
	which, in accordance with §15.31(d), must be measured at the installation site.
	However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is -3.5 dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Transmitter Spurious Emission

A.1.1 Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength(u)//m)	Measurement		
(MHz)		distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)	
(MHz)			
30-1000	120kHz/300kHz	5	
1000-4000	1MHz/3MHz	15	
4000-18000	1MHz/3MHz	40	
18000-26500	1MHz/3MHz	20	

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

GFSK	0	1 GHz ~18 GHz	Fig.1	Р
		9 kHz ~30 MHz	Fig.2	Р
	10	30 MHz ~1 GHz	Fig.3	Р
	19	1 GHz ~18 GHz Fig.4		Р
	39	1 GHz ~18 GHz	Fig.5	Р
	Power(CH0)	2.38 GHz ~ 2.45 GHz	Fig.6	Р
	Power(CH39)	2.45 GHz ~ 2.5 GHz	Fig.7	Р
/	All channels	18 GHz~ 26.5 GHz	Fig.8	Р

GFSK CH0 (1-18GHz)

Frequency (MHz)	MaxPeak- ClearWrite (dBµV/m)	Polarizati on	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
13981.500	56.1	V	10.8	17.9	74.0	
15065.000	56.2	V	12.1	17.8	74.0	
15611.500	58.2	Н	12.5	15.8	74.0	
16241.500	58.4	Н	13.2	15.6	74.0	
16798.500	59.0	Н	13.9	15.0	74.0	
17326.000	58.9	Н	14.0	15.1	74.0	

Frequency (MHz)	Average- ClearWrite (dBµV/m)	Polarizati on	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
14546.000	43.8	Н	11.9	10.2	54.0	
15154.500	44.8	Н	12.1	9.2	54.0	
15675.000	46.4	Н	12.6	7.6	54.0	
16208.000	47.0	Н	13.1	7.0	54.0	
16785.000	47.5	V	13.9	6.5	54.0	
17315.500 000	47.2	Н	13.9	6.8	54.0	

GFSK CH19 (1-18GHz)

Frequency (MHz)	MaxPeak- ClearWrite (dBµV/m)	Polarizati on	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
14462.000	56.0	Н	11.7	18.0	74.0	
14624.000	56.4	V	11.9	17.6	74.0	
15803.500	59.0	V	12.8	15.0	74.0	
16218.000	58.8	Н	13.1	15.2	74.0	
16780.500	59.4	Н	13.9	14.6	74.0	
17406.000	58.8	V	14.0	15.2	74.0	

Frequency (MHz)	Average- ClearWrite (dBµV/m)	Polarizati on	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
14132.500	43.9	Н	11.2	10.1	54.0	
15159.500	44.8	Н	12.1	9.2	54.0	
15676.500	46.4	V	12.6	7.6	54.0	
16215.500	47.0	Н	13.1	7.0	54.0	
16785.500	47.8	Н	13.9	6.2	54.0	
17349.000 000	47.1	V	14.0	6.9	54.0	

GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak- ClearWrite (dBµV/m)	Polarizati on	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
14511.000	56.8	V	11.8	17.2	74.0	
14616.000	56.9	Н	11.9	17.1	74.0	
15774.000	58.3	V	12.8	15.7	74.0	
16180.000	59.1	Н	13.1	14.9	74.0	
16854.000	58.9	V	13.9	15.1	74.0	
17404.500	59.0	V	14.0	15.0	74.0	

Frequency (MHz)	Average- ClearWrite (dBµV/m)	Polarizati on	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
14538.500	44.2	V	11.9	9.8	54.0	
15159.000	45.1	V	12.1	8.9	54.0	
15687.000	46.5	V	12.6	7.5	54.0	
16205.500	47.1	Н	13.1	6.9	54.0	
16768.000	47.5	V	13.9	6.5	54.0	
17299.500 000	47.1	V	13.9	6.9	54.0	

See ANNEX C for test graphs.

Conclusion: Pass

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

A.2 AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE1

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBμV)	Traffic	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.9	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE1

Frequency range	Average-peak	Result (dBµV)	Conclusion		
(MHz)	Limit (dBµV)	Traffic	Conclusion		
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.9	Р		
5 to 30	50				
NOTE: The limit decreases linearly with the logarithm of the frequency in the range					
0.15 MHz to 0.5 MH	łz.				

BLE (Quasi-peak Limit)-AE1

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	ldle	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.10	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE1

Frequency range	Average-peak	Result (dBμV)	Conclusion			
(MHz)	Limit (dBµV)	ldle	Conclusion			
0.15 to 0.5	56 to 46					
0.5 to 5	46	Fig.10	Р			
5 to 30	50					
NOTE: The limit decreases linearly with the logarithm of the frequency in the range						
0.15 MHz to 0.5 MH	0.15 MHz to 0.5 MHz.					

Voltage (V)	Frequency (Hz)
240	60

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE1

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	Traffic	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.11	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE1

Frequency range	Average-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBμV)	Traffic	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.11	Р	
5 to 30	50			
NOTE: The limit decreases linearly with the logarithm of the frequency in the range				
0.15 MHz to 0.5 MHz.				

BLE (Quasi-peak Limit)-AE1

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	ldle	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.12	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE1

Frequency range	Average-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBμV)	ldle	Conclusion
0.15 to 0.5	56 to 46		
0.5 to 5	46	Fig.12	Р
5 to 30	50		

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE2

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	Traffic	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.13	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE2

Frequency range	Average-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBμV)	Traffic	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.13	Р	
5 to 30	50			
NOTE: The limit decreases linearly with the logarithm of the frequency in the range				
0.15 MHz to 0.5 MHz.				

BLE (Quasi-peak Limit)-AE2

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	ldle	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.14	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE2

Frequency range	Average-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	ldle	
0.15 to 0.5	56 to 46		
0.5 to 5	46	Fig.14	Р
5 to 30	50		

Voltage (V)	Frequency (Hz)
240	60

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE2

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	Traffic	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.15	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE2

Frequency range	Average-peak	Result (dBµV)	Conclusion	
(MHz)	Limit (dBμV)	Traffic	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.15	Р	
5 to 30	50			
NOTE: The limit decreases linearly with the logarithm of the frequency in the range				
0.15 MHz to 0.5 MHz.				

BLE (Quasi-peak Limit)-AE2

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBµV)	ldle	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.16	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE2

Frequency range	Average-peak	Result (dBµV)	Conclusion	
(MHZ)	Limit (αΒμν)	Idle		
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.16	Р	
5 to 30	50			

Voltage (V)	Frequency (Hz)	
120	60	

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE3

Frequency range	Quasi-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBµV)	Traffic	Conclusion	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.17	Р	
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE3

Frequency range	Average-peak	Result (dBμV)	Conclusion		
(MHz)	Limit (dBμV)	Traffic	Conclusion		
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.17	Р		
5 to 30	50				
NOTE: The limit decreases linearly with the logarithm of the frequency in the range					
0.15 MHz to 0.5 MHz.					

BLE (Quasi-peak Limit)-AE3

Frequency range	Quasi-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBµV)	ldle	Conclusion	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.18	Р	
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE3

Frequency range	Average-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBµV)	ldle		
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.18	Р	
5 to 30	50			

Voltage (V)	Frequency (Hz)	
240	60	

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE3

Frequency range	Quasi-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBµV)	Traffic	Conclusion	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.19	Р	
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE3

Frequency range	Average-peak	Result (dBµV)	Conclusion		
(MHz)	Limit (dBμV)	Traffic			
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.19	Р		
5 to 30	50				
NOTE: The limit decreases linearly with the logarithm of the frequency in the range					
0.15 MHz to 0.5 MHz.					

BLE (Quasi-peak Limit)-AE3

Frequency range	Quasi-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBµV)	ldle	Conclusion	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.20	Р	
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE3

Frequency range	Average-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBμV)	ldle	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.20	Р	
5 to 30	50			
2.13.00				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See ANNEX C for test graphs.

Conclusion: Pass

ANNEX B: TEST FIGURE LIST

Fig. 2 Radiated Spurious Emission (Ch19, 9 kHz-30 MHz)

FCC-RE1-30MHz-1GHz

Fig. 3 Radiated Spurious Emission (Ch19, 30 MHz-1 GHz)

Fig. 4 Radiated Spurious Emission (Ch19, 1 GHz-18 GHz)

FCC-RE2-1-18GHz

Fig. 5 Radiated Spurious Emission (Ch39, 1 GHz-18 GHz)

FCC-RE2-Power-2.38GHz-2.43GHz

Fig. 6 Radiated Emission Power (GFSK, Ch0, 2380GHz~2450GHz)

FCC-RE2-Power-2.45GHz-2.50GHz

Fig. 8 Radiated emission: 18 GHz – 26.5 GHz

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.198000	42.4	GND	L1	9.8	21.3	63.7
0.298000	40.7	GND	Ν	9.6	19.6	60.3
0.414000	40.2	GND	L1	9.8	17.4	57.6
0.570000	41.1	GND	L1	9.8	14.9	56.0
1.382000	34.3	GND	L1	9.8	21.7	56.0
1.954000	31.6	GND	L1	9.8	24.4	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.298000	30.8	GND	L1	9.8	19.5	50.3
0.422000	30.7	GND	L1	9.8	16.7	47.4
0.566000	32.1	GND	L1	9.8	13.9	46.0
0.698000	25.8	GND	L1	9.8	20.2	46.0
1.306000	27.6	GND	L1	9.8	18.4	46.0
2.062000	24.2	GND	L1	9.8	21.8	46.0

No. I16N00975-BLE Page 28 of 39

ESH2-Z5 Scan-FCC

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.206000	41.1	GND	Ν	9.6	22.3	63.4
0.298000	40.4	GND	Ν	9.6	19.9	60.3
0.410000	38.6	GND	Ν	9.7	19.1	57.6
0.566000	36.7	GND	Ν	9.7	19.3	56.0
0.678000	30.9	GND	L1	9.8	25.1	56.0
1.290000	31.4	GND	L1	9.8	24.6	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.298000	28.1	GND	L1	9.8	22.2	50.3
0.422000	27.9	GND	L1	9.8	19.5	47.4
0.566000	28.8	GND	L1	9.8	17.2	46.0
0.706000	22.2	GND	L1	9.8	23.8	46.0
1.306000	23.9	GND	L1	9.8	22.1	46.0
2.078000	20.8	GND	L1	9.8	25.2	46.0

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.206000	42.8	GND	L1	9.8	20.6	63.4
0.298000	42.1	GND	L1	9.8	18.2	60.3
0.426000	39.5	GND	L1	9.8	17.8	57.3
0.566000	41.0	GND	L1	9.8	15.0	56.0
0.690000	34.5	GND	L1	9.8	21.5	56.0
1.242000	34.1	GND	L1	9.8	21.9	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.298000	30.7	GND	L1	9.8	19.6	50.3
0.398000	30.6	GND	L1	9.8	17.3	47.9
0.574000	31.6	GND	L1	9.8	14.4	46.0
0.690000	26.1	GND	L1	9.8	19.9	46.0
1.306000	27.6	GND	L1	9.8	18.4	46.0
2.062000	24.5	GND	L1	9.8	21.5	46.0

No. I16N00975-BLE Page 30 of 39

ESH2-Z5 Scan-FCC

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.206000	41.7	GND	L1	9.8	21.6	63.4
0.298000	41.1	GND	L1	9.8	19.2	60.3
0.398000	38.6	GND	N	9.6	19.3	57.9
0.414000	39.0	GND	Ν	9.7	18.5	57.6
0.566000	36.9	GND	Ν	9.7	19.1	56.0
1.282000	31.8	GND	L1	9.8	24.2	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.298000	28.4	GND	L1	9.8	21.9	50.3
0.414000	28.3	GND	L1	9.8	19.3	47.6
0.566000	28.8	GND	L1	9.8	17.2	46.0
0.690000	22.9	GND	L1	9.8	23.1	46.0
1.018000	22.2	GND	L1	9.8	23.8	46.0
1.218000	23.7	GND	L1	9.8	22.3	46.0

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	48.0	GND	Ν	9.6	18.0	66.0
0.202000	50.2	GND	L1	9.8	13.3	63.5
0.234000	45.8	GND	L1	9.8	16.5	62.3
0.302000	45.7	GND	L1	9.8	14.5	60.2
0.326000	40.5	GND	L1	9.8	19.1	59.6
1.574000	37.2	GND	L1	9.8	18.8	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.198000	37.1	GND	L1	9.8	16.6	53.7
0.302000	29.6	GND	L1	9.8	20.6	50.2
0.550000	26.2	GND	L1	9.8	19.8	46.0
0.642000	25.2	GND	L1	9.8	20.8	46.0
1.062000	26.3	GND	L1	9.8	19.7	46.0
2.054000	26.3	GND	L1	9.8	19.7	46.0

No. I16N00975-BLE Page 32 of 39

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.198000	50.0	GND	Ν	9.6	13.7	63.7
0.290000	45.5	GND	Ν	9.6	15.0	60.5
0.590000	39.5	GND	L1	9.8	16.5	56.0
1.106000	39.9	GND	L1	9.8	16.1	56.0
1.554000	40.6	GND	L1	9.8	15.4	56.0
2.026000	39.3	GND	L1	9.8	16.7	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.198000	37.4	GND	L1	9.8	16.3	53.7
0.298000	31.9	GND	L1	9.8	18.4	50.3
0.574000	28.0	GND	L1	9.8	18.0	46.0
1.150000	28.9	GND	L1	9.8	17.1	46.0
1.554000	29.1	GND	L1	9.8	16.9	46.0
2.014000	29.0	GND	L1	9.8	17.0	46.0

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	51.9	GND	L1	9.7	14.1	66.0
0.202000	53.6	GND	L1	9.8	9.9	63.5
0.254000	44.4	GND	L1	9.8	17.2	61.6
0.294000	48.4	GND	L1	9.8	12.0	60.4
0.562000	37.3	GND	L1	9.8	18.7	56.0
0.610000	35.1	GND	L1	9.8	20.9	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.150000	37.8	GND	L1	9.7	18.2	56.0
0.202000	37.1	GND	L1	9.8	16.4	53.5
0.242000	32.5	GND	L1	9.8	19.5	52.0
0.302000	32.3	GND	L1	9.8	17.8	50.2
0.554000	27.0	GND	L1	9.8	19.0	46.0
0.610000	21.4	GND	L1	9.8	24.6	46.0

No. I16N00975-BLE Page 34 of 39

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.198000	50.3	GND	Ν	9.6	13.4	63.7
0.302000	45.1	GND	Ν	9.6	15.1	60.2
0.582000	39.4	GND	L1	9.8	16.6	56.0
1.094000	39.7	GND	L1	9.8	16.3	56.0
1.566000	40.6	GND	L1	9.8	15.4	56.0
2.006000	39.3	GND	L1	9.8	16.7	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.198000	37.5	GND	L1	9.8	16.2	53.7
0.298000	32.3	GND	L1	9.8	18.0	50.3
0.558000	28.3	GND	L1	9.8	17.7	46.0
1.150000	29.1	GND	L1	9.8	16.9	46.0
1.606000	29.0	GND	L1	9.8	17.0	46.0
2.018000	28.6	GND	L1	9.8	17.4	46.0

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.250000	41.3	GND	Ν	9.6	20.4	61.8
0.586000	37.3	GND	Ν	9.6	18.7	56.0
0.594000	38.6	GND	Ν	9.6	17.4	56.0
0.642000	33.2	GND	Ν	9.6	22.8	56.0
0.670000	36.8	GND	Ν	9.5	19.2	56.0
0.798000	31.0	GND	L1	9.8	25.0	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.198000	26.2	GND	L1	9.8	27.5	53.7
0.242000	25.7	GND	Ν	9.6	26.3	52.0
0.290000	23.6	GND	L1	9.8	26.9	50.5
0.330000	16.8	GND	L1	9.8	32.7	49.5
0.614000	16.1	GND	L1	9.8	29.9	46.0
0.798000	12.9	GND	L1	9.8	33.1	46.0

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.198000	44.7	GND	Ν	9.6	19.0	63.7
0.238000	40.8	GND	Ν	9.6	21.4	62.2
0.290000	41.5	GND	N	9.6	19.0	60.5
0.390000	36.2	GND	N	9.6	21.9	58.1
0.586000	33.3	GND	L1	9.8	22.7	56.0
0.646000	34.9	GND	L1	9.8	21.1	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.198000	27.7	GND	Ν	9.6	26.0	53.7
0.234000	25.5	GND	L1	9.8	26.8	52.3
0.298000	23.5	GND	Ν	9.6	26.8	50.3
0.594000	24.2	GND	L1	9.8	21.8	46.0
0.642000	24.0	GND	L1	9.8	22.0	46.0
1.102000	19.5	GND	L1	9.8	26.5	46.0

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.194000	45.3	GND	Ν	9.6	18.5	63.9
0.202000	42.5	GND	Ν	9.6	21.1	63.5
0.286000	42.1	GND	N	9.6	18.6	60.6
0.294000	41.8	GND	N	9.6	18.6	60.4
0.330000	38.0	GND	Ν	9.6	21.5	59.5
0.598000	35.1	GND	L1	9.8	20.9	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.194000	30.3	GND	L1	9.8	23.6	53.9
0.294000	24.4	GND	Ν	9.6	26.0	50.4
0.330000	21.0	GND	Ν	9.6	28.5	49.5
0.598000	23.4	GND	L1	9.8	22.6	46.0
1.534000	19.8	GND	L1	9.8	26.2	46.0
2.094000	20.5	GND	L1	9.8	25.5	46.0

No. I16N00975-BLE Page 38 of 39

ESH2-Z5 Scan-FCC

MEASUREMENT RESULT: "QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.198000	44.5	GND	Ν	9.6	19.2	63.7
0.290000	41.5	GND	Ν	9.6	19.0	60.5
0.390000	36.2	GND	Ν	9.6	21.9	58.1
0.554000	30.0	GND	L1	9.8	26.0	56.0
0.630000	34.1	GND	L1	9.8	21.9	56.0
0.754000	30.2	GND	L1	9.8	25.8	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
0.194000	29.5	GND	L1	9.8	24.4	53.9
0.246000	23.7	GND	Ν	9.6	28.2	51.9
0.294000	26.2	GND	L1	9.8	24.2	50.4
0.554000	19.7	GND	L1	9.8	26.3	46.0
0.630000	22.5	GND	L1	9.8	23.5	46.0
0.702000	20.0	GND	L1	9.8	26.0	46.0

ANNEX C: Persons involved in this testing

Test Name	Tester
Transmitter Spurious Emission - Radiated	An Ran, Tang Weisheng
AC Powerline Conducted Emission	An Ran, Tang Weisheng

END OF REPORT