

FCC&IC Radio Test Report

FCC ID: 2ABZ2-A2005

IC: 12739A-A2005

This report concerns (check one): ⊠Original Grant □Class II Change

Project No. : 1506C242 Equipment : Mobile Phone Model Name : ONE A2005

Applicant: OnePlus Technology (Shenzhen) Co., Ltd.

Address: 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road,

Shenzhen, China

Date of Receipt : Jun. 13, 2015

Date of Test : Jun. 13, 2015 ~ Jul. 03, 2015

Issued Date : Jul. 06, 2015 **Tested by** : BTL Inc.

Testing Engineer : Yavid Mao

(David Mao)

Technical Manager :

(Leo Hung)

Authorized Signatory : ______

(Steven Lu)

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

TEL: +86-769-8318-3000FAX: +86-769-8319-6000

Report No.: BTL-FICP-16-1506C242 Page 1 of 71

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: BTL-FICP-16-1506C242 Page 2 of 71

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. CERTIFICATION	7
2 . SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	9
2.2 MEASUREMENT UNCERTAINTY	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	11
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	ED 12
3.4 DESCRIPTION OF SUPPORT UNITS	12
4 . TEST RESULT	13
4.1 RADIATEDRF OUTPUT POWER MEASUREMENT	13
4.1.1 LIMIT 4.1.2 MEASURING INSTRUMENTS AND SETTING	13
4.1.2 MEASURING INSTRUMENTS AND SETTING 4.1.3 TEST PROCEDURE	13 13
EIRP/ERP:	13
4.1.4 TESTSETUP LAYOUT 4.1.5 TESTDEVIATION	14 14
4.1.6 EUT OPERATIONDURING TEST	14
4.1.7 EUT TEST CONDITIONS	14
4.1.8 TEST RESULTS	14
4.2 99% OCCUPIED BANDWIDTH MEASUREMENT 4.2.1 LIMIT	15 15
4.2.2 MEASURING INSTRUMENTS AND SETTING	15
4.2.3 TEST PROCEDURE	15
4.2.4 TESTSETUP LAYOUT 4.2.5 TESTDEVIATION	15 15
4.2.6 EUT OPERATIONDURING TEST	15
4.2.7 EUT TEST CONDITIONS 4.2.8 TEST RESULTS	15 16
4.2.6 TEST RESULTS 4.3 SPURIOUS EMISSIONS AT ANTENNA TERMINALS MEASUREMENT	17
4.3.1 LIMIT	17
4.3.2 MEASURING INSTRUMENTS AND SETTING	17
4.3.3 TEST PROCEDURES 4.3.4 TESTSETUP LAYOUT	17 17
4.3.5 TESTDEVIATION	17
4.3.6 EUT OPERATIONDURING TEST	17

Report No.: BTL-FICP-16-1506C242 Page 3 of 71

Table of Contents	Page
4.3.7 EUT TEST CONDITIONS	18
4.3.8 TEST RESULTS	18
4.4 SPURIOUS RADIATED EMISSIONS MEASUREMENT	19
4.4.1 LIMIT	19
4.4.2 MEASURING INSTRUMENTS AND SETTING	19
4.4.3 TEST PROCEDURES 4.4.4 TESTSETUP LAYOUT	19 20
4.4.5 TESTDEVIATION	20
4.4.6 EUT OPERATIONDURING TEST	20
4.4.7 EUT TEST CONDITIONS	20
4.4.8 TEST RESULTS	20
4.5 BAND EDGE MEASUREMENT	21
4.5.1 LIMIT	21
4.5.2 MEASURING INSTRUMENTS AND SETTING 4.5.3 TEST PROCEDURES	21 21
4.5.4 TESTSETUP LAYOUT	21
4.5.5 TESTDEVIATION	21
4.5.6 EUT OPERATIONDURING TEST	21
4.5.7 EUT TEST CONDITIONS	21
4.5.8 TEST RESULTS	22
4.6 FREQUENCY STABILITY MEASUREMENT	23
4.6.1 LIMIT 4.6.2 MEASURING INSTRUMENTS AND SETTING	23 23
4.6.3 TEST PROCEDURES	23
4.6.4 TESTSETUP LAYOUT	23
4.6.5 TESTDEVIATION	23
4.6.6 EUT OPERATIONDURING TEST	23
4.6.7 EUT TEST CONDITIONS 4.6.8 TEST RESULTS	24 24
4.0.6 TEST RESOLTS 4.7 PEAK TO AVERAGE RATIO	24 25
4.7.1 LIMIT	25 25
4.7.2 TEST PROCEDURES	25
4.7.3 TESTSETUP LAYOUT	25
4.7.4 TESTDEVIATION	25
4.7.5 EUT OPERATIONDURING TEST	25
4.7.6 EUT TEST CONDITIONS 4.7.7 TEST RESULTS	25 25
5. LIST OF MEASUREMENT EQUIPMENTS	26
ATTACHMENTA -RADIATED RF OUTPUT POWER	32
ATTACHMENT B - 99% OCCUPIED BANDWIDTH	35
ATTACHMENT B - 99% OCCUPIED BANDWIDTH ATTACHMENT C - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	35 44
AT IACTIMENT C- OF UNIOUS EMISSIONS AT ANTENNA TERMINALS	

Report No.: BTL-FICP-16-1506C242

Table of Contents	Page
ATTACHMENTD - SPURIOUS RADIATED EMISSION	46
ATTACHMENTE - BAND EDGE	55
ATTACHMENTF - FREQUENCY STABILITY	60
ATTACHMENTG - PEAK TO AVERAGE RATIO	63

Report No.: BTL-FICP-16-1506C242 Page 5 of 71

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICP-16-1506C242	Original Issue.	Jul. 06, 2015

Report No.: BTL-FICP-16-1506C242 Page 6 of 71

1. CERTIFICATION

Equipment : Mobile Phone

Brand Name: ONEPLUS

Model Name: ONE A2005

Applicant : OnePlus Technology (Shenzhen) Co., Ltd. Manufacturer : OnePlus Technology (Shenzhen) Co., Ltd.

Address : 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China

Factory: OnePlus Technology (Shenzhen) Co., Ltd.

Address : 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China

Date of Test : Jun. 13, 2015 ~ Jul. 03, 2015 Test Sample : ENGINEERING SAMPLE Standard(s) : 47 CFR FCC Part 27

47 CFR FCC Part 2 & ANSI/TIA-603-C-2004

RSS-130 Issue 1 October 2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICP-16-1506C242) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test result included in this report is only for the LTE BAND XVII approval part of the product.

Report No.: BTL-FICP-16-1506C242 Page 7 of 71

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 27(H) & Part 2/ RSS-130 Issue 1					
Standard(s) Section		Test Item	Judgment	Remark	
2.1047(d)	IC 4.1	Modulation Characteristics	PASS		
2.1046(a) 27.50(d)(4)	4.4	Radiated RF Output	PASS		
2.1049(h) 27.53(h)	4.3(b)	99% Occupied Bandwidth	PASS		
2.1051 27.53(h)	4.6	Spurious Emissions at Antenna Terminal	PASS		
2.1053 27.53(h)	4.6.2	Spurious Radiated Emissions	PASS		
27.53(h)	4.6.1	Band Edge Emissions	PASS		
2.1055 27.54	4.3	Frequency Stability	PASS		
2.1046(d) 27.50(d)(5)	4.4	Peak to Average Ratio	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in thistest report

Report No.: BTL-FICP-16-1506C242 Page 8 of 71

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's test firm number for FCC: 319330 BTL's test firm number for IC: 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement \mathbf{y} ± \mathbf{U} , where expanded uncertainty \mathbf{U} is based on astandard uncertainty multiplied by a coverage factor of \mathbf{k} = $\mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}\%$ \circ

A. Radiated Measurement:

Test Site	Method	hod Measurement Frequency Range		U,(dB	Note
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.78	
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	4.10	
(3m)	CIOPK	200MHz ~ 1,000MHz	Н	4.06	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Report No.: BTL-FICP-16-1506C242 Page 9 of 71

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone		
Brand Name	I ONEPLUS		
Model Name	ONE A2005		
Model Difference	N/A		
Decident Decident	Operation Frequency	LTE Band XVII: TX:704MHz~716MHz RX:734MHz~746MHz	
Product Description	Modulation Type QPSK;16QAM		
	Bandwidth	1.4M/3M/5M/10M	
	EIRP Output Power	19.83dBm	
	#1 DC Voltage supplied	·	
		ONEPLUS / YJ1100	
PowerSource	2) Brand / Model:	ONEPLUS / AY0520	
	#2 Supplied from battery.		
	Model: BLP597		
	#1 1) I/P: 100-240V~ 50	-60Hz 0.4A O/P: DC 5V 2A	
Power Rating	2) I/P: 100-240V~ 50-60Hz 0.3A O/P: DC 5V 2A		
	#2 DC 3.8V 3200mAh/3	300mAh (min/typ)	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Table for Filed Antenna @LTE Band XVII

Ant.		Manufacture	Model Name	Antenna Type	Connector	Gain (dBi)
	1	N/A	N/A	Internal	N/A	-3.88

Report No.: BTL-FICP-16-1506C242 Page 10 of 71

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Items	Worst TX Mode	Channel
Radiated RF Output	QPSK/16QAM	Lowest/Middle/Highest
Spurious Radiated Emissions	QPSK	Middle
Band Edge Emissions	QPSK/16QAM	Lowest/Highest
Frequency Stability	QPSK	Middle
99% Occupied Bandwidth	QPSK/16QAM	Lowest/Middle/Highest
Spurious Emissions at Antenna	QPSK	Lowest/Middle/Highest
Terminal	QF3N	Lowest/Middle/Highest
Peak to Average Ratio	QPSK/16QAM	Middle

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.
- (3) Both adapter and battery are evaluated, operated the battery is the worst and recorded as below test data

Report No.: BTL-FICP-16-1506C242 Page 11 of 71

Note

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED EUT 3.4 DESCRIPTION OF SUPPORT UNITS The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. Mfr/Brand FCC ID Item Equipment Model/Type No. Series No.

-	-	-	-	-	-	
Iten	Shielded Type	Ferrite Core	Length		Note	

Item	Shielded Type	Ferrite Core	Length	Note
-	-		-	-

Report No.: BTL-FICP-16-1506C242 Page 12 of 71

4. TEST RESULT

4.1 RADIATEDRF OUTPUT POWER MEASUREMENT

4.1.1 LIMIT

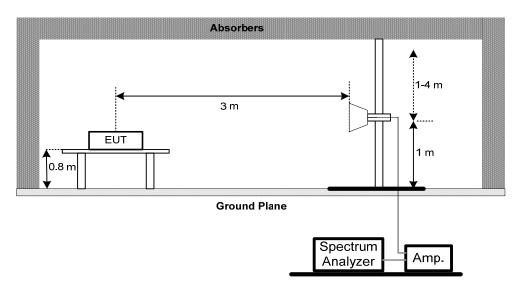
The Radiated Peak Output Power shall be according to the specific rule Part 27.50(c)(9)& 27.50(d)(4)&27.50(h)(2)& RSS-130 section 4.1 that "Mobile/Portable station are limited to 1 watts e.i.r.p." and 27.50(c)(9)&27.50(d)(4)&27.50(h)(2) RSS-130 section 4.1 specifed that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage.

4.1.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Center Frequency	Low / middle / high channels
Span Frequency	10MHz
RB / VB	3MHz / 3MHz for Peak

4.1.3 TEST PROCEDURE


EIRP/ERP:

- 1. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM, GPRS & EDGE, 5MHz for WCDMA & CDMA, and 10MHz for LTE mode.
- 2. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 3. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- 4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of Integral, E.R.P power=E.I.P.R power-2.15dBi.

Report No.: BTL-FICP-16-1506C242 Page 13 of 71

4.1.4 TESTSETUP LAYOUT EIRP Power Measurement

4.1.5 TESTDEVIATION

There is no deviation with the original standard.

4.1.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.1.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage:DC 3.8V

4.1.8 TEST RESULTS

Please refer to the Attachment A.

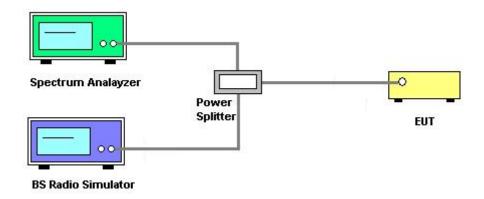
Report No.: BTL-FICP-16-1506C242 Page 14 of 71

4.2 99% OCCUPIED BANDWIDTH MEASUREMENT

4.2.1 LIMIT

According to FCC 27.53(h) specified that emission bandwidth is defined as thewidth of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.2.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) ofthe signal
RB	30 kHz
VB	100 kHz
Trace	Max Hold

4.2.3 TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Used measurement function of spectrum to measure the 99% occupied bandwidth...

4.2.4 TESTSETUP LAYOUT

4.2.5 TESTDEVIATION

There is no deviation with the original standard.

4.2.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.2.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

Report No.: BTL-FICP-16-1506C242 Page 15 of 71

4.2.8 TEST RESULTS				
Please refer to the Attachment B.				

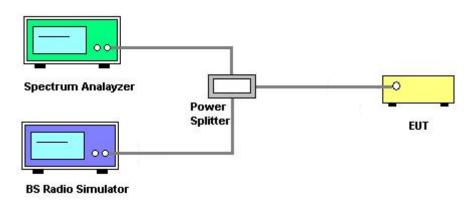
Report No.: BTL-FICP-16-1506C242 Page 16 of 71

4.3 SPURIOUS EMISSIONS AT ANTENNA TERMINALS MEASUREMENT

4.3.1 LIMIT

In the FCC 27.53(h)& RSS-130 section 4.6, on any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. The limit translates in the relevant power range (1 to 0.001W). At 1W(Power Control Level 0) the specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.

4.3.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Start Frequency	30MHz
Stop Frequency	10th carrier harmonic
RB / VB	1 MHz / 1MHz for Peak

4.3.3 TEST PROCEDURES

- 1. The EUT was set up for the maximum peak power with QPSK link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, Lowest, Middle, Highest (low, middle and high operational frequency range.)
- 2. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 4.5dB in the transmitted path track.
- 3. When the spectrum scanned from 9kHz to 3GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB/VB 1MHz.
- 4. When the spectrum scanned from 3GHz to 10GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB/VB 1MHz.

4.3.4 TESTSETUP LAYOUT

4.3.5 TESTDEVIATION

There is no deviation with the original standard.

4.3.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

Report No.: BTL-FICP-16-1506C242 Page 17 of 71

4.3.7 EUT TEST CONDITIONS Temperature: 25°C Relative Humidity: 55% Test Voltage:DC 3.8V 4.3.8 TEST RESULTS Please refer to the Attachment C.

Report No.: BTL-FICP-16-1506C242 Page 18 of 71

4.4 SPURIOUS RADIATED EMISSIONS MEASUREMENT

4.4.1 LIMIT

In the FCC 27.53(h) & RSS-130 section 4.6.2, On any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. The limit translates in the relevant power range (1 to 0.001W). At 1W(Power Control Level 0) the specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.At 0.001W(Power Control Level 15) the specified minimum attenuation becomes 13dB and the emission of limit equal to -13dBm.So the limit of emission is the same absolute specified line.

4.4.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	10th carrier harmonic
Detector	Positive Peak
Span	100 MHz
Sweep Time	1s
RB / VB	1 MHz / 1MHz
Attenuation	Positive Peak

4.4.3 TEST PROCEDURES

- 1. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- 3. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- 4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

Report No.: BTL-FICP-16-1506C242 Page 19 of 71

4.4.4 TESTSETUP LAYOUT

This test setup layout is the same as that shown in **section 4.1.3.**

4.4.5 TESTDEVIATION

There is no deviation with the original standard.

4.4.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.4.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

4.4.8 TEST RESULTS

Please refer to the Attachment D.

Report No.: BTL-FICP-16-1506C242 Page 20 of 71

4.5 BAND EDGE MEASUREMENT

4.5.1 LIMIT

According to FCC 27.53(h) & RSS-130 section 4.6.1 specified that power of any emission outside of the authorized operating frequency rangesmust be attenuated below the transmitting power (P) by a factor of at least 43 +10 log(P) dB . In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. Then we measure that the bandwidth is about 300kHz and the resolution bandwidth is 3kHz.

4.5.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	5 MHz
RB / VB	10 kHz /30 kHz
Trace	Sample
Sweep Time	Auto

4.5.3 TEST PROCEDURES

- 1. The EUT was set up for the maximum peak power with QPSK link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, Lowest and Highest(low and high operational frequency range.)
- 2. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The splitter loss and cable loss are the worst loss 4dB in the transmitted path track.
- 3. The center frequency of spectrum is the band edge frequency and span is 5 MHz. RB of the spectrum is 10kHz and VB of the spectrum is 30KHz.
- 4. Record the Sample trace plot into the test report.

4.5.4 TESTSETUP LAYOUT

This test setup layout is the same as that shown in section 4.2.4.

4.5.5 TESTDEVIATION

There is no deviation with the original standard.

4.5.6EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.5.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

Report No.: BTL-FICP-16-1506C242 Page 21 of 71

4.5.8 TEST RESULTS Please refer to the Attachment E.
Please refer to the Attachment E.

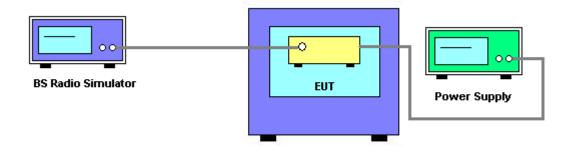
Report No.: BTL-FICP-16-1506C242 Page 22 of 71

4.6 FREQUENCY STABILITY MEASUREMENT

4.6.1 LIMIT

According to the FCC part 27.54& RSS-130 section 4.3 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 0.1 ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C~50°C.

4.6.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the BS Simulator.

Spectrum Parameters	Setting
Frequency Error	The maximum of transmit frequency error

4.6.3 TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the BS Simulator.
- 2. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.
- 3. BS simulator used the frequency error function and measured the peak frequency error. Power must be removed when changingfrom one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
 - The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
- 4. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.1 Volts to 4.3 Volts. Each step shall be record the frequency error rate.
- 5. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- 6. Reduced operating temperature range of -10° ~ +45° C as defined in Operational description and declared in User Manual.

4.6.4 TESTSETUP LAYOUT

4.6.5 TESTDEVIATION

There is no deviation with the original standard.

4.6.6 EUT OPERATIONDURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

Report No.: BTL-FICP-16-1506C242 Page 23 of 71

4.6.7 EUT TEST CONDITIONS Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V 4.6.8 TEST RESULTS Please refer to the Attachment F.

Report No.: BTL-FICP-16-1506C242 Page 24 of 71

4.7 PEAK TO AVERAGE RATIO

4.7.1 LIMIT

In the FCC 27.50) & &RSS-130 section 4.4

Peak transmit power shall be measured over any interval of continuous transmission using instrumen-tation calibrated in terms of rms-equivalent voltage.

The measurement results shall be properly adjusted for any instrument limitations, such as detector re-sponse times, limited resolution bandwidth capability when compared to the emission bandwidth, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

To measure transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission shall not exceed 13 dB.

4.7.2 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;

4.7.3 TESTSETUP LAYOUT

Please refer to section 3.4 in this report.

4.7.4 TESTDEVIATION

There is no deviation with the original standard.

4.7.5 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.7.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage:DC 3.8V

4.7.7 TEST RESULTS

Please refer to the Attachment G.

Report No.: BTL-FICP-16-1506C242 Page 25 of 71

5. LIST OF MEASUREMENT EQUIPMENTS

	Radiated Emission & ERP or EIRP Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 28, 2016		
2	Amplifier	HP	8447D	2944A09673	Nov. 17, 2015		
3	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015		
4	Test Cable	emci	LMR-400(30MH z-1GHz)	C-01	Jun. 28, 2016		
5	Controller	СТ	SC100	N/A	N/A		
6	Antenna	ETS	3115	00075789	Mar. 28, 2016		
7	Amplifier	Agilent	8449B	3008A02274	Nov. 02, 2015		
8	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015		
9	Test Cable	emci	EMC104-SM-S M-10000(1GHz -26.5GHz)	C-68	Jun. 28, 2016		
10	Controller	СТ	SC100	N/A	N/A		
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Mar. 28, 2016		
12	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 28, 2016		
13	Double Ridged Guide Antenna	ETS-LINDGREN	3115	00075846	Mar. 28, 2016		
14	Antenna	SCHWARZBECK	VULB 9160	9160-3231	Mar. 28, 2016		
15	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	Nov. 02, 2015		
16	Signal Generator	R&S	SMR40	100504	Mar. 28, 2016		
17	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

Report No.: BTL-FICP-16-1506C242 Page 26 of 71

	Antenna Conducted Spurious Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016		
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016		
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016		
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015		
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015		

	Band Edge Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016		
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016		
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016		
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015		
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015		

	99% Occupied Bandwidth Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016		
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016		
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016		
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015		
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015		

Report No.: BTL-FICP-16-1506C242 Page 27 of 71

	Frequency Stability Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	wideband radio communication tester	R&S	CMW500	152372	Jan.30,2016		
2	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016		
3	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015		
4	Const Temp. & Hu midity Chamber	GIANT FORCE	ITH-1200-40- CP-AR	IAA1210-003	Aug. 01, 2015		
5	DC power supply	GW Instek	GPC-30300N	EK880675	Oct.12, 2015		

	Peak to Average Ratio								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016				
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016				
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016				
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015				
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015				

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

Report No.: BTL-FICP-16-1506C242 Page 28 of 71

6. EUT TEST PHOTO

Radiated Measurement Photos

9KHz to 30MHz

Report No.: BTL-FICP-16-1506C242 Page 29 of 71

Radiated Measurement Photos

30MHz to 1000MHz

Report No.: BTL-FICP-16-1506C242 Page 30 of 71

Radiated Measurement Photos

Above 1000MHz

Report No.: BTL-FICP-16-1506C242 Page 31 of 71

ATTACHMENTA -RADIATED RF OUTPUT POWER					

Report No.: BTL-FICP-16-1506C242 Page 32 of 71

Test Mode:	TX Mode

LTE Band XVII				Radia	ted Powe	Max.	_	
BW	Modulation	RB Size	V/H	Lowest	Middle	Highest	Limit Result (dBm)	
5M	QPSK	1RB	Н	19.72	19.39	19.03	33	Complies
10M	QF3N	1RB	Н	19.11	19.42	18.93	33	Complies
5M	16-QAM	25RB	Н	19.63	19.83	19.46	33	Complies
10M		25RB	Н	19.16	19.69	19.36	33	Complies

Report No.: BTL-FICP-16-1506C242 Page 33 of 71

Test Mode: TX Mode

Bandwidth	Modulation	RB	Conducted Power		
Danawiani		size	Lowest	Middle	Highest
		1	23.40	23.31	23.36
		1	23.45	23.50	23.60
		1	23.44	23.30	23.28
	QPSK	12	22.18	22.05	22.09
		12	22.15		22.12
		12	22.10	22.16	22.22
5MHz		25	22.16	22.12	22.19
SWITZ		1	22.98	22.25	22.66
		1	22.90	22.52	22.80
		1	22.94	22.44	22.70
	16-QAM	12	21.44	21.23	21.26
		12	21.39	21.21	21.25
		12	21.32	21.24	21.35
		25	21.27	21.04	21.20

Pandwidth	Modulation	RB	Conducted Power		
Bandwidth	Wodulation	size	Lowest	Middle	Highest
		1	23.78	23.01	23.30
		1	23.50	23.09	22.98
		1	23.51	22.90	23.03
	QPSK	-	22.20	22.16	
		25	22.27	22.19	22.15
		25	22.26	22.20	22.15
10MHz		50	22.10	22.20	22.19
TOWINZ		1	22.70	21.96	22.40
		1	22.75	21.80	22.18
		1	22.42	21.83	22.40
	16-QAM	25	21.23	21.26	21.20
		25	21.25	21.24	21.22
		25	21.12	21.24	21.22
		50	21.16	21.22	21.18

REMARKS:

- 1. Radiated Output Power(dBm)=Raw Value(dBm) + Correction Factor(dB) +Ant Gain(dBi)
- 2. Correction Factor(dB) = Power SplitterLoss(dB) + Cable Loss(dB)
- 3. The antenna gain is -3.88dBi
- 4. Tests have been conducted for both vertical and horizontal plane and the worst case was found in horizontal plane and the results were selected and recorded in the report

Report No.: BTL-FICP-16-1506C242 Page 34 of 71

ATTACHMENT B - 99% OCCUPIED BANDWIDTH

Report No.: BTL-FICP-16-1506C242 Page 35 of 71

Test Mode: TX Mode ConfigurationQPSK-5M/25RB							
Channel	99% OBW (MHz)	Result					
Lowest	4.503	4.864	Complies				
Middle	4.515	4.872	Complies				
Highest	4.511	4.889	Complies				

99% Occupied Bandwidth channel Lowest

Report No.: BTL-FICP-16-1506C242 Page 36 of 71

Page 37 of 71

99% Occupied Bandwidth channel Middle

99% Occupied Bandwidth channel Highest

Report No.: BTL-FICP-16-1506C242

Test Mode: TX Mode ConfigurationQPSK-10M/50RB								
Channel 99% OBW (MHz) -26dBc Bandwidth Result								
Lowest	9.000	9.609	Complies					
Middle	8.994	9.605	Complies					
Highest	8.971	9.587	Complies					

99% Occupied Bandwidth channel Lowest


Report No.: BTL-FICP-16-1506C242 Page 38 of 71

99% Occupied Bandwidth channel Middle

99% Occupied Bandwidth channel Highest

Report No.: BTL-FICP-16-1506C242

Test Mode: TX Mode Configuration16-QAM-5M/25RB								
Channel 99% OBW (MHz) -26dBc Bandwidth Result								
Lowest	4.493	4.862	Complies					
Middle	4.502	4.827	Complies					
Highest	4.502	4.866	Complies					

99% Occupied Bandwidth channel Lowest

99% Occupied Bandwidth channel Middle

99% Occupied Bandwidth channel Highest

Report No.: BTL-FICP-16-1506C242

Test Mode: TX Mode Configuration16-QAM-10M/50RB									
Channel	99% OBW (MHz) -26dBc Bandwidth Result								
Lowest	8.970	9.568	Complies						
Middle	8.994	9.550	Complies						
Highest	8.974	9.558	Complies						

99% Occupied Bandwidth channel Lowest

Report No.: BTL-FICP-16-1506C242 Page 42 of 71

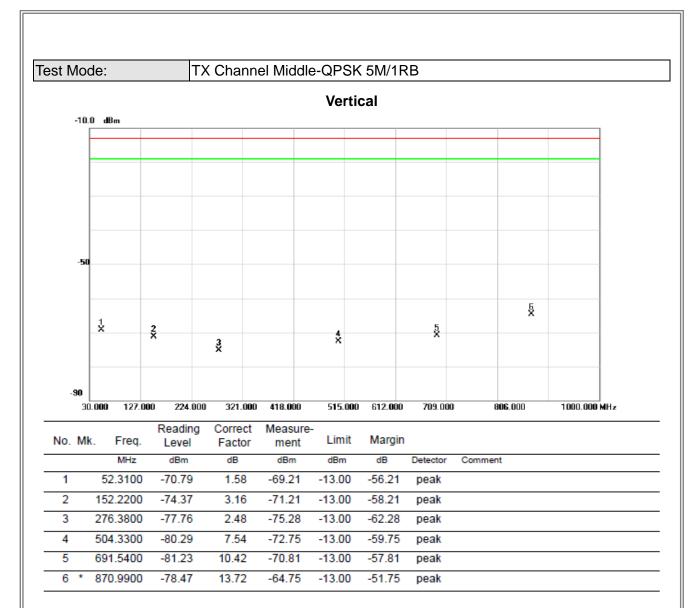
99% Occupied Bandwidth channel Middle

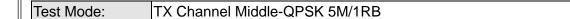
99% Occupied Bandwidth channel Highest

ATTACHMENT C - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

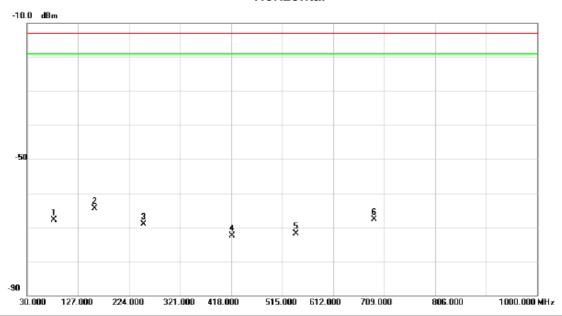
Report No.: BTL-FICP-16-1506C242 Page 44 of 71

Conducted Spurious of Configuration-QPSK-10M/1RB

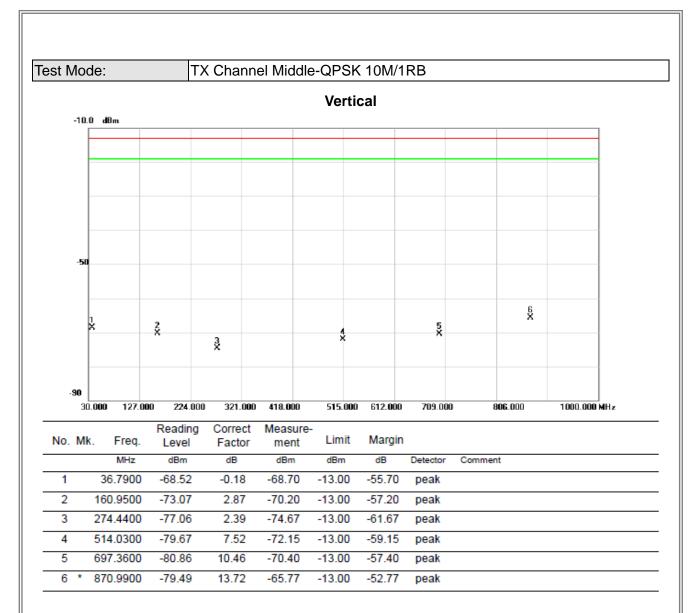

Report No.: BTL-FICP-16-1506C242 Page 45 of 71


ATTACHMENTD - SPURIOUS RADIATED EMISSION

Report No.: BTL-FICP-16-1506C242 Page 46 of 71



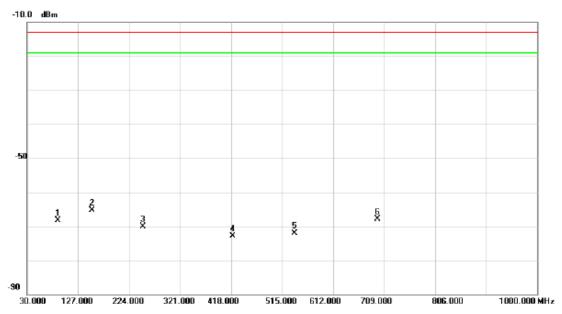
Horizontal



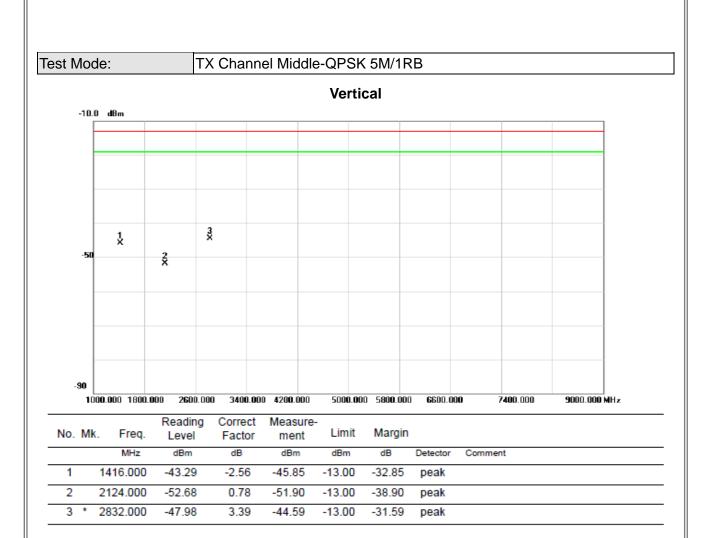
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1		81.4100	-60.40	-7.53	-67.93	-13.00	-54.93	peak	
2	*	159.0100	-67.38	2.90	-64.48	-13.00	-51.48	peak	
3		252.1300	-71.05	1.88	-69.17	-13.00	-56.17	peak	
4		419.9400	-79.33	6.88	-72.45	-13.00	-59.45	peak	
5		541.1900	-79.98	8.09	-71.89	-13.00	-58.89	peak	
6		690.5700	-81.08	13.34	-67.74	-13.00	-54.74	peak	

Report No.: BTL-FICP-16-1506C242 Page 48 of 71

Page 49 of 71

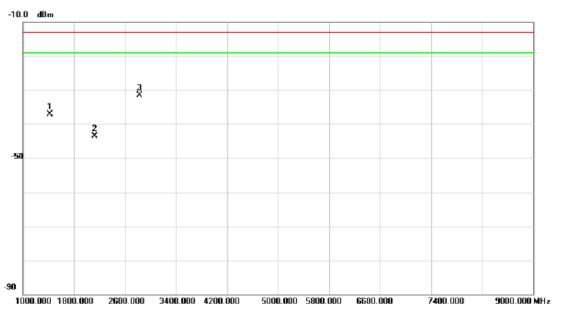


Report No.: BTL-FICP-16-1506C242

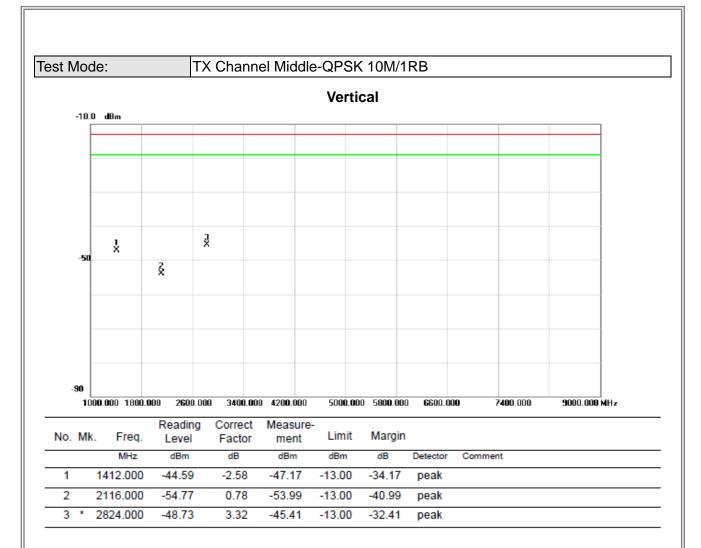

Horizontal

MHz dBm dB dBm dBm dB Detector Comment 1 89.1700 -61.45 -6.88 -68.33 -13.00 -55.33 peak 2 * 153.1900 -68.96 3.76 -65.20 -13.00 -52.20 peak 3 250.1900 -71.98 1.87 -70.11 -13.00 -57.11 peak 4 420.9100 -79.70 6.78 -72.92 -13.00 -59.92 peak 5 538.2800 -80.11 8.09 -72.02 -13.00 -59.02 peak 6 696.3900 -81.62 13.73 -67.89 -13.00 -54.89 peak		No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
2 * 153.1900 -68.96	-			MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
3 250.1900 -71.98 1.87 -70.11 -13.00 -57.11 peak 4 420.9100 -79.70 6.78 -72.92 -13.00 -59.92 peak 5 538.2800 -80.11 8.09 -72.02 -13.00 -59.02 peak		1		89.1700	-61.45	-6.88	-68.33	-13.00	-55.33	peak	
4 420.9100 -79.70 6.78 -72.92 -13.00 -59.92 peak 5 538.2800 -80.11 8.09 -72.02 -13.00 -59.02 peak	-	2	*	153.1900	-68.96	3.76	-65.20	-13.00	-52.20	peak	
5 538.2800 -80.11 8.09 -72.02 -13.00 -59.02 peak		3		250.1900	-71.98	1.87	-70.11	-13.00	-57.11	peak	
	-	4		420.9100	-79.70	6.78	-72.92	-13.00	-59.92	peak	
6 696.3900 -81.62 13.73 -67.89 -13.00 -54.89 peak	-	5		538.2800	-80.11	8.09	-72.02	-13.00	-59.02	peak	
		6		696.3900	-81.62	13.73	-67.89	-13.00	-54.89	peak	

Report No.: BTL-FICP-16-1506C242 Page 50 of 71

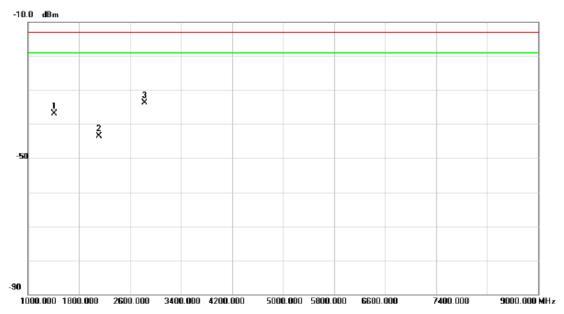


Report No.: BTL-FICP-16-1506C242 Page 51 of 71


Horizontal

No.	Mk	. Freq.		Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1		1416.000	-38.94	1.82	-37.12	-13.00	-24.12	peak	
2		2124.000	-46.07	2.64	-43.43	-13.00	-30.43	peak	
3	*	2832.000	-37.91	6.43	-31.48	-13.00	-18.48	peak	

Report No.: BTL-FICP-16-1506C242 Page 52 of 71



Horizontal

No.	Mk	. Freq.		Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1		1412.000	-38.74	1.76	-36.98	-13.00	-23.98	peak	
2		2116.000	-46.17	2.63	-43.54	-13.00	-30.54	peak	
3	*	2824.000	-40.09	6.34	-33.75	-13.00	-20.75	peak	

Report No.: BTL-FICP-16-1506C242 Page 54 of 71

ATTACHMENTE - BAND EDGE

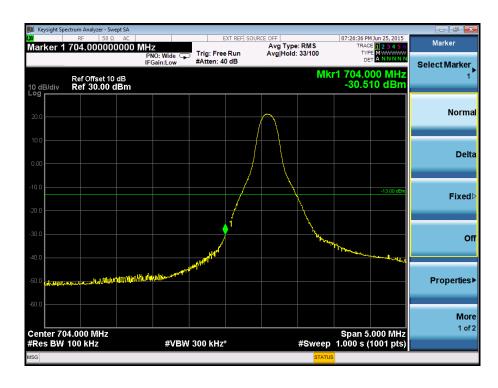
Report No.: BTL-FICP-16-1506C242 Page 55 of 71

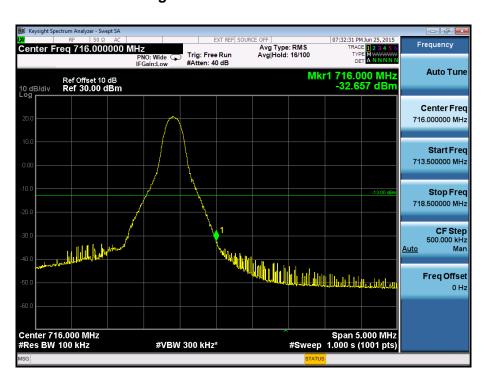
Band Edge on Configuration QPSK-5M / 1RB Channel Lowest-CONDUCTED MODE

Band Edge on Configuration QPSK-5M / 1RB Channel Highest-CONDUCTED MODE

Report No.: BTL-FICP-16-1506C242 Page 56 of 71

Band Edge on Configuration QPSK-5M / 25RB Channel Lowest-CONDUCTED MODE


Band Edge on Configuration QPSK-5M / 25RB Channel Highest-CONDUCTED MODE


Report No.: BTL-FICP-16-1506C242 Page 57 of 71

Band Edge on Configuration QPSK-10M / 1RB Channel Lowest-CONDUCTED MODE

Band Edge on Configuration QPSK-10M / 1RB Channel Highest-CONDUCTED MODE

Report No.: BTL-FICP-16-1506C242 Page 58 of 71

Band Edge on Configuration QPSK-10M / 50RB Channel Lowest-CONDUCTED MODE

Band Edge on Configuration QPSK-10M / 50RB Channel Highest-CONDUCTED MODE

Report No.: BTL-FICP-16-1506C242 Page 59 of 71

ATTACHMENTF - FREQUENCY STABILITY

Report No.: BTL-FICP-16-1506C242 Page 60 of 71

Test Mode:	QPSKChannel Middle 5M/1RB 0 offset
TOST WIOGO.	QI ONOHAIIICI WIIddie SW/ ITAB O Oliset

Voltage vs. Frequency Stabi ility

Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	-1.67	0.002352113	2.5
0	1.05	0.001478873	2.5
10	-2.54	0.003577465	2.5
20	-3.67	0.005169014	2.5
30	1.65	0.002323944	2.5
40	2.56	0.003605634	2.5
45	1.98	0.002788732	2.5
Max. Deviation (ppm)	4.12	0.005802817	2.5

Voltage vs. Frequency Stability

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	-2.94	0.004140845	2.5
3.5	2.53	0.00356338	2.5
4.35	-1.88	0.002647887	2.5
Max. Deviation (ppm)	2.94	0.004140845	2.5

Report No.: BTL-FICP-16-1506C242 Page 61 of 71

Test Mode:	QPSKChannel Middle 10M/1RB 0 offset

Voltage vs. Frequency Stabi ility

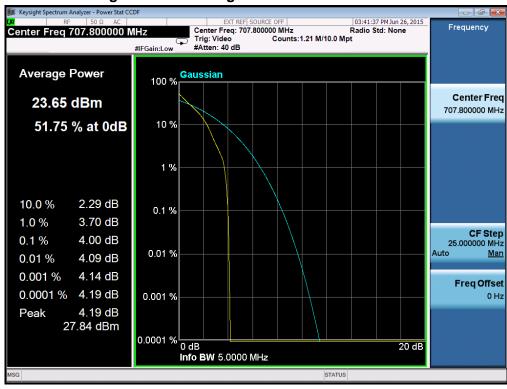
Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	-1.53	0.00215493	2.5
0	1.04	0.001464789	2.5
10	-4.13	0.005816901	2.5
20	-1.54	0.002169014	2.5
30	1.05	0.001478873	2.5
40	-3.66	0.00515493	2.5
45	-2.24	0.00315493	2.5
Max. Deviation (ppm)	2.67	0.005816901	2.5

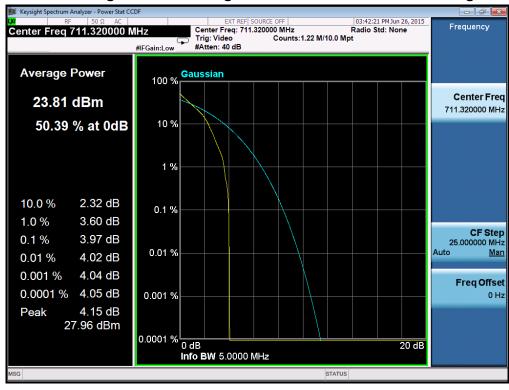
Voltage vs. Frequency Stability

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	3.57	0.005028169	2.5
3.5	1.28	0.001802817	2.5
4.35	-3.29	0.004633803	2.5
Max. Deviation (ppm)	3.57	0.005028169	2.5

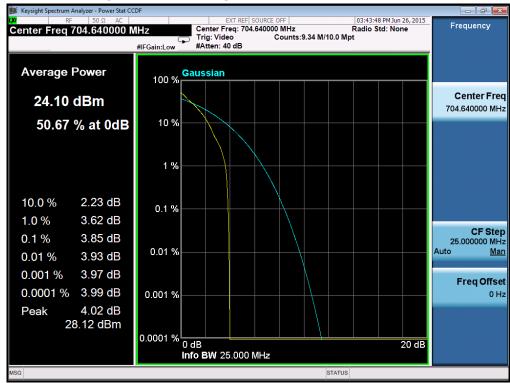
Report No.: BTL-FICP-16-1506C242 Page 62 of 71

ATTACHMENTG - PEAK TO AVERAGE RATIO

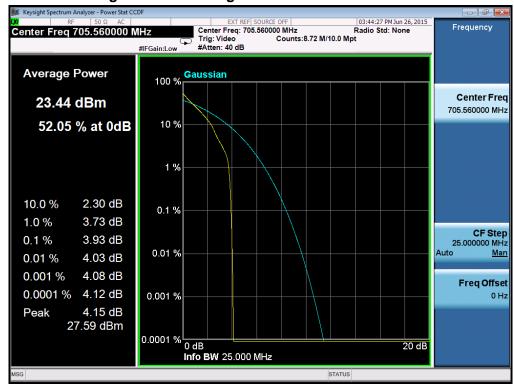

Report No.: BTL-FICP-16-1506C242 Page 63 of 71

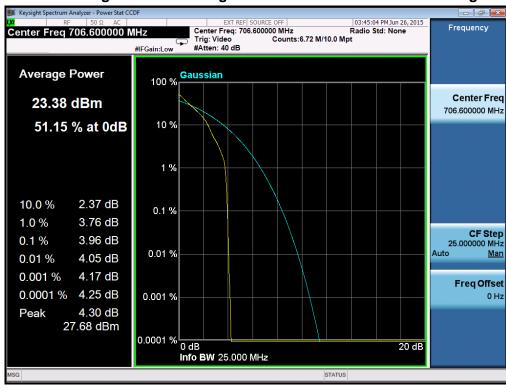

Peak to Average Ratio of Configuration-QPSK-5M/1RB channel Middle

Report No.: BTL-FICP-16-1506C242 Page 64 of 71

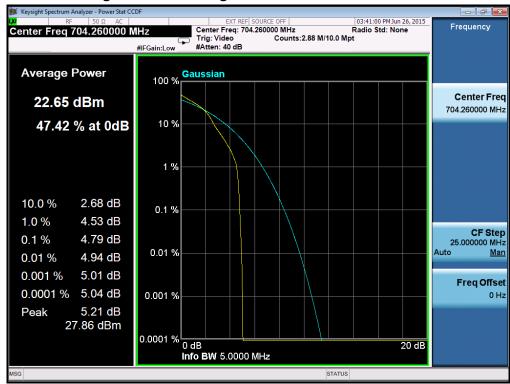


Peak to Average Ratio of Configuration-QPSK-5M/1RB channel Highest

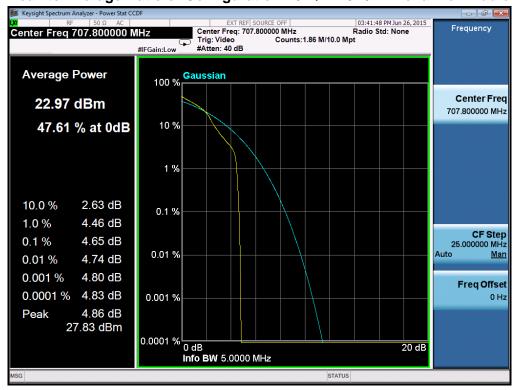


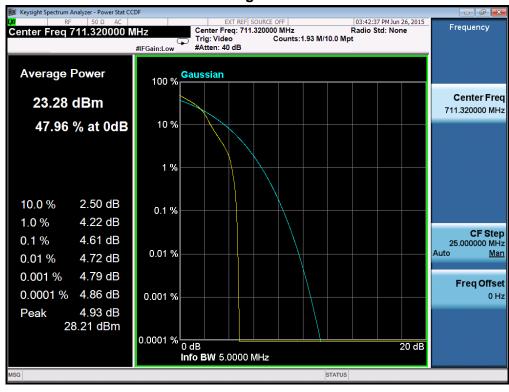

Peak to Average Ratio of Configuration-QPSK-10M/1RB channel Middle

Report No.: BTL-FICP-16-1506C242 Page 66 of 71

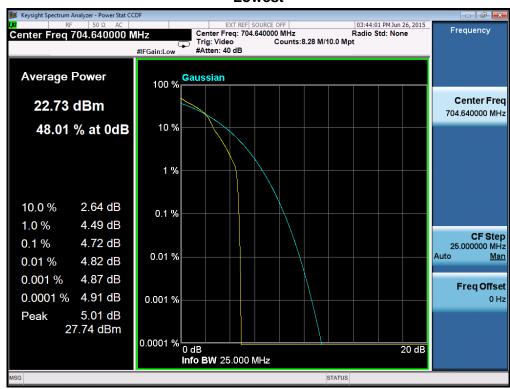


Peak to Average Ratio of Configuration-QPSK-10M/1RB channel Highest



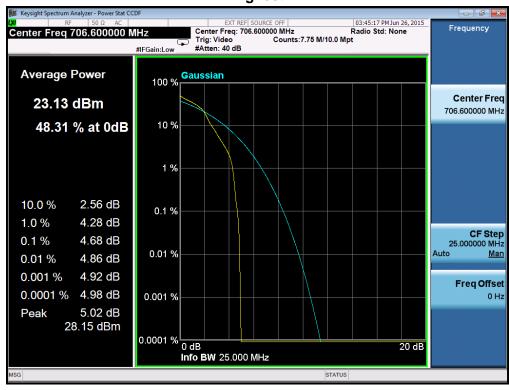

Peak to Average Ratio of Configuration-16-QAM-5M/1RB channel Middle

Report No.: BTL-FICP-16-1506C242 Page 68 of 71



Peak to Average Ratio of Configuration-16-QAM-5M/1RB channel Highest

Peak to Average Ratio of Configuration-16-QAM-10M/1RB channel Lowest


Peak to Average Ratio of Configuration-16-QAM-10M/1RB channel

Report No.: BTL-FICP-16-1506C242 Page 70 of 71

Peak to Average Ratio of Configuration-16-QAM-10M/1RB channel Highest

