	IC:12739A-A2005
his report conce	erns (check one): ⊠Original Grant ⊡Class II Change
,	: 1506C242 : Mobile Phone : ONE A2005 : OnePlus Technology (Shenzhen) Co., Ltd. : 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China
Date of Test	: Jun. 13, 2015 : Jun. 13, 2015 ~ Jul. 03, 2015 : Jul. 06, 2015 : BTL Inc.
Testing Enginee	(David Mao)
Technical Manaç	ger : (Leo Hung)
Authorized Sign	atory : <u>Second</u> (Steven Lu)

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. CERTIFICATION	7
2 . SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	9
2.2 MEASUREMENT UNCERTAINTY	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	11
3.3 BLOCKDIGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED	12
3.4 DESCRIPTION OF SUPPORT UNITS	12
4. TEST RESULT	13
4.1 RADIATEDRF OUTPUT POWER MEASUREMENT 4.1.1 LIMIT	13 13
4.1.2 MEASURING INSTRUMENTS AND SETTING	13
4.1.3 TEST PROCEDURE	13
EIRP/ERP: 4.1.4 TESTSETUP LAYOUT	13 14
4.1.5 TESTDEVIATION	14
4.1.6 EUT OPERATIONDURING TEST 4.1.7 EUT TEST CONDITIONS	14 14
4.1.8 TEST RESULTS	14
4.2 99% OCCUPIED BANDWIDTH MEASUREMENT	15
	15
4.2.2 MEASURING INSTRUMENTS AND SETTING 4.2.3 TEST PROCEDURE	15 15
4.2.4 TESTSETUP LAYOUT	15
4.2.5 TESTDEVIATION	15
4.2.6 EUT OPERATIONDURING TEST	15
4.2.7 EUT TEST CONDITIONS 4.2.8 TEST RESULTS	15 16
4.3 SPURIOUS EMISSIONS AT ANTENNA TERMINALS MEASUREMENT	17
4.3.1 LIMIT	17
4.3.2 MEASURING INSTRUMENTS AND SETTING	17
4.3.3 TEST PROCEDURES 4.3.4 TESTSETUP LAYOUT	17 17
4.3.5 TESTDEVIATION	17
4.3.6 EUT OPERATIONDURING TEST	17

3TL

Table of Contents	Page
4.3.7 EUT TEST CONDITIONS 4.3.8 TEST RESULTS	18 18
 4.4 SPURIOUS RADIATED EMISSIONS MEASUREMENT 4.4.1 LIMIT 4.4.2 MEASURING INSTRUMENTS AND SETTING 4.4.3 TEST PROCEDURES 4.4.4 TESTSETUP LAYOUT 4.4.5 TESTDEVIATION 4.4.6 EUT OPERATIONDURING TEST 4.4.7 EUT TEST CONDITIONS 4.4.8 TEST RESULTS 	19 19 19 19 20 20 20 20 20 20
4.5 BAND EDGE MEASUREMENT 4.5.1 LIMIT 4.5.2 MEASURING INSTRUMENTS AND SETTING 4.5.3 TEST PROCEDURES 4.5.4 TESTSETUP LAYOUT 4.5.5 TESTDEVIATION 4.5.6 EUT OPERATIONDURING TEST 4.5.7 EUT TEST CONDITIONS 4.5.8 TEST RESULTS	21 21 21 21 21 21 21 21 21 22
4.6 FREQUENCY STABILITY MEASUREMENT 4.6.1 LIMIT 4.6.2 MEASURING INSTRUMENTS AND SETTING 4.6.3 TEST PROCEDURES 4.6.4 TESTSETUP LAYOUT 4.6.5 TESTDEVIATION 4.6.6 EUT OPERATIONDURING TEST 4.6.7 EUT TEST CONDITIONS 4.6.8 TEST RESULTS	23 23 23 23 23 23 23 24 24 24 24
4.7 PEAK TO AVERAGE RATIO 4.7.1 LIMIT 4.7.2 TEST PROCEDURES 4.7.3 TESTSETUP LAYOUT 4.7.4 TESTDEVIATION 4.7.5 EUT OPERATIONDURING TEST 4.7.6 EUT TEST CONDITIONS 4.7.7 TEST RESULTS	25 25 25 25 25 25 25 25 25 25
5. LIST OF MEASUREMENT EQUIPMENTS	26
6. EUT TEST PHOTO	29
ATTACHMENTA -RADIATED RF OUTPUT POWER ATTACHMENT B - 99% OCCUPIED BANDWIDTH	32 37

Table of Contents	Page
ATTACHMENT C - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	62
ATTACHMENTD - SPURIOUS RADIATED EMISSION	69
ATTACHMENTE - BAND EDGE	94
ATTACHMENTF - FREQUENCY STABILITY	107
ATTACHMENTG - PEAK TO AVERAGE RADIO	114

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICP-12-1506C242	Original Issue.	Jul. 06, 2015
	L – –	· ·

1. CERTIFICATION

Equipment :	Mobile Phone
Brand Name:	1 ONEPLUS
Model Name :	ONE A2005
Applicant :	OnePlus Technology (Shenzhen) Co., Ltd.
Manufacturer :	OnePlus Technology (Shenzhen) Co., Ltd.
Address :	18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China
Factory :	OnePlus Technology (Shenzhen) Co., Ltd.
Address :	18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China
Date of Test :	Jun. 13, 2015 ~ Jul. 03, 2015
Test Sample :	ENGINEERING SAMPLE
Standard(s) :	47 CFR FCC Part 27
	47 CFR FCC Part 2 & ANSI/TIA-603-C-2004
	RSS-139 Issue 2 February 2009

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICP-12-1506C242) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test result included in this report is only for theLTE BAND IV approvalpart of the product.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 27 & Part 2/ RSS-139 Issue 2					
Standard(s) Section		Test Item	Judgment	Remark	
FCC	IC				
2.1047(d)	6.2	Modulation Characteristics	PASS		
2.1046(a) 27.50(d)(4)	6.4	Radiated RF Output	PASS		
2.1049(h) 27.53(h)	-	99% Occupied Bandwidth	PASS		
2.1051 27.53(h)	6.5	Spurious Emissions at Antenna Terminal	PASS		
2.1053 27.53(h)	6.5	Spurious Radiated Emissions	PASS		
27.53(h)	6.5	Band Edge Emissions	PASS		
2.1055 27.54	6.3	Frequency Stability	PASS		
2.1046(d) 27.50(d)(5)	6.4	Peak to Average Ratio	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's test firm number for FCC: 319330

BTL's test firm number for IC: 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on astandard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% \circ

A. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB	Note
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.78	
DG-CB03	CISPR	200MHz ~ 1,000MHz	MHz V 4.10		
(3m)	CISEN	200MHz ~ 1,000MHz	Н	4.06	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone			
Brand Name	1 ONEPLUS	ONE PLUS		
Model Name	ONE A2005			
Model Difference	N/A			
Product Description	Operation Frequency	LTE Band IV: TX:1710.7MHz~1754.3MHz RX:2110.7MHz~2154.3MHz		
	Modulation TypeQPSK;16QAMBandwidth1.4M/3M/5M/10M/15M/20MEIRP Output Power23.22dBm			
PowerSource	 #1 DC Voltage supplied 1) Brand / Model: 2) Brand / Model: #2 Supplied from batter Model: BLP597 	ONEPLUS /YJ1100 ONEPLUS /AY0520		
Power Rating	,	I-60Hz0.4A O/P: DC 5V 2A D-60Hz 0.3A O/P: DC 5V 2A 300mAh (min/typ)		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. Table for Filed Antenna @LTE Band IV

~~								
	Ant.	Manufacture	Model Name	Antenna Type	Connector	Gain (dBi)		
	1	N/A	N/A	Internal	N/A	-1.75		

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Items	Worst TX Mode	Channel
Radiated RF Output	QPSK/16QAM	Lowest/Middle/Highest
Spurious Radiated Emissions	QPSK	Middle
Band Edge Emissions	QPSK/16QAM	Lowest/Highest
Frequency Stability	QPSK	Middle
99% Occupied Bandwidth	QPSK/16QAM	Lowest/Middle/Highest
Spurious Emissions at Antenna	QPSK	Lowoot/Middle/Highest
Terminal	QFSK	Lowest/Middle/Highest
Peak to Average Ratio	QPSK/16QAM	Middle

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

(3) Both adapter and battery are evaluated, operated the battery is the worst and recorded as below test data

3.3 BLOCKDIGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED

	EUT		

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
-	-	-	-	-	-	

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

4. TEST RESULT

4.1 RADIATEDRF OUTPUT POWER MEASUREMENT

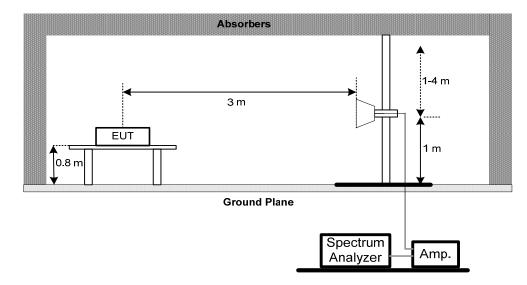
4.1.1 LIMIT

The Radiated Peak Output Power shall be according to the specific rule Part 27.50(c)(9)& 27.50(d)(4)&27.50(h)(2)& RSS-139 section 6.4 that "Mobile/Portable station are limited to 1 wattse.i.r.p." and 27.50(c)(9)&27.50(d)(4)&27.50(h)(2) RSS-139 section 6.4 specifed that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage.

4.1.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting	
Attenuation Auto		
Center Frequency Low / middle / high channels		
Span Frequency	10MHz	
RB / VB	3MHz / 3MHz for Peak	


4.1.3 TEST PROCEDURE

EIRP/ERP:

- 1. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM, GPRS & EDGE, 5MHz for WCDMA & CDMA, and 10MHz for LTE mode.
- 2. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 3. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- 4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of Integral, E.R.P power=E.I.P.R power-2.15dBi.

4.1.4 TESTSETUP LAYOUT EIRP Power Measurement

4.1.5 TESTDEVIATION

There is no deviation with the original standard.

4.1.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.1.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage:DC 3.8V

4.1.8 TEST RESULTS

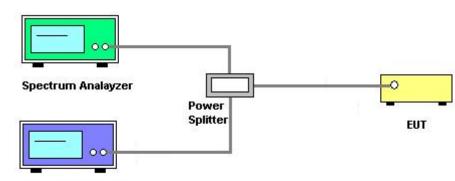
Please refer to the Attachment A.

4.2 99% OCCUPIED BANDWIDTH MEASUREMENT

4.2.1 LIMIT

According to FCC 27.53(h) specified that emission bandwidth is defined as thewidth of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.2.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	30 kHz
VB	100 kHz
Trace	Max Hold

4.2.3 TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Used measurement function of spectrum to measure the 99% occupied bandwidth..

4.2.4 TESTSETUP LAYOUT

BS Radio Simulator

4.2.5 TESTDEVIATION

There is no deviation with the original standard.

4.2.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.2.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

4.2.8 TEST RESULTS

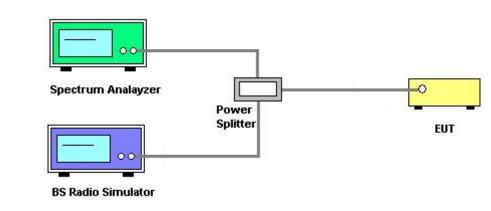
Please refer to the Attachment B.

4.3 SPURIOUS EMISSIONS AT ANTENNA TERMINALS MEASUREMENT

4.3.1 LIMIT

In the FCC 27.53(h)& RSS-139 section 6.5, on any frequency outside a licensee's frequency block within GSM spectrum, the power of anyemission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The limit translates in the relevant power range (1 to 0.001W). At 1W(Power Control Level 0) the specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.

4.3.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Start Frequency	30MHz
Stop Frequency	10th carrier harmonic
RB / VB	1 MHz / 1MHz for Peak

4.3.3 TEST PROCEDURES

- 1. The EUT was set up for the maximum peak power with QPSK link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, Lowest,Middle,Highest(low, middle and high operational frequency range.)
- 2. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 4.5dB in the transmitted path track.
- 3. When the spectrum scanned from 9kHz to 3GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB/VB 1MHz.
- 4. When the spectrum scanned from 3GHz to 10GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB/VB 1MHz.

4.3.4 TESTSETUP LAYOUT

4.3.5 TESTDEVIATION

There is no deviation with the original standard.

4.3.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.3.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage:DC 3.8V

4.3.8 TEST RESULTS

Please refer to the Attachment C.

4.4 SPURIOUS RADIATED EMISSIONS MEASUREMENT

4.4.1 LIMIT

In the FCC 27.53(h)& RSS-139 section 6.5, On any frequency outside a licensee's frequency block within GSM spectrum, the power of anyemission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The limit translates in the relevant power range (1 to 0.001W). At 1W(Power Control Level 0) the specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.At 0.001W(Power Control Level 15) the specified minimum attenuation becomes 13dB and the emission of limit equal to -13dBm.So the limit of emission is the same absolute specified line.

4.4.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	10th carrier harmonic
Detector	Positive Peak
Span	100 MHz
Sweep Time	1s
RB / VB	1 MHz / 1MHz
Attenuation	Positive Peak

4.4.3 TEST PROCEDURES

- 1. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step a. Record the power level of S.G
- 3. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- 4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.4.4 TESTSETUP LAYOUT

This test setup layout is the same as that shown in **section 4.1.3**.

4.4.5 TESTDEVIATION

There is no deviation with the original standard.

4.4.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.4.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

4.4.8 TEST RESULTS

Please refer to the Attachment D.

4.5 BAND EDGE MEASUREMENT

4.5.1 LIMIT

According to FCC 27.53(h)& RSS-139 section 6.5 specified that power of any emission outside of the authorized operating frequency rangesmust be attenuated below the transmitting power (P) by a factor of at least 43 +10 log(P) dB. In the 1 MHz bands immediatelyoutside and adjacent to the frequencyblock a resolution bandwidth of atleast one percent of the emission bandwidthof the fundamental emission of the transmitter may be employed. Then we measure that the bandwidth is about 300kHz and the resolution bandwidth is 3kHz.

4.5.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	5 MHz	
RB / VB	10 kHz /30 kHz	
Trace	Sample	
Sweep Time	Auto	

4.5.3 TEST PROCEDURES

- 1. The EUT was set up for the maximum peak power with QPSK link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, Lowest and Highest(low and high operational frequency range.)
- 2. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The splitter loss and cable loss are the worst loss 4dB in the transmitted path track.
- 3. The center frequency of spectrum is the band edge frequency and span is 5 MHz. RB of the spectrum is 10kHz and VB of the spectrum is 30KHz.
- 4. Record the Sample trace plot into the test report.

4.5.4 TESTSETUP LAYOUT

This test setup layout is the same as that shown in section 4.2.4.

4.5.5 TESTDEVIATION

There is no deviation with the original standard.

4.5.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.5.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

4.5.8 TEST RESULTS

Please refer to the Attachment E.

4.6 FREQUENCY STABILITY MEASUREMENT

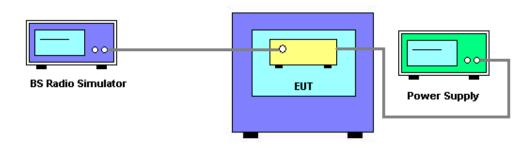
4.6.1LIMIT

According to the FCC part 27.54& RSS-139 section 6.3 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamentalemission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 0.1 ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30 $^{\circ}$ C ~50 $^{\circ}$ C.

4.6.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the BS Simulator.

Spectrum Parameters	Setting
Frequency Error	The maximum of transmit frequency error


4.6.3 TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the BS Simulator.
- 2. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.
- 3. BS simulator used the frequency error function and measured the peak frequency error. Power must be removed when changingfrom one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.

The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

- 4. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.1 Volts to 4.3 Volts. Each step shall be record the frequency error rate.
- 5. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- 6. Reduced operating temperature range of -10 $^{\circ}$ ~ +45 $^{\circ}$ C as defined in Operational description and declared in User Manual.

4.6.4 TESTSETUP LAYOUT

4.6.5 TESTDEVIATION

There is no deviation with the original standard.

4.6.6 EUT OPERATIONDURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.6.7 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.8V

4.6.8 TEST RESULTS

Please refer to the Attachment F.

4.7 PEAK TO AVERAGE RATIO

4.7.1 LIMIT

In the FCC 27.50)&&RSS-139 section 6.4

Peak transmit power shall be measured over any interval of continuous transmission using instrumen-tation calibrated in terms of rms-equivalent voltage.

The measurement results shall be properly adjusted for any instrument limitations, such as detector re-sponse times, limited resolution bandwidth capability when compared to the emission bandwidth, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

To measure transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission shall not exceed 13 dB.

4.7.2 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;

4.7.3TESTSETUP LAYOUT

Please refer to section 3.4 in this report.

4.7.4 TESTDEVIATION

There is no deviation with the original standard.

4.7.5 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.7.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage:DC 3.8V

4.7.7 TEST RESULTS

Please refer to the Attachment G.

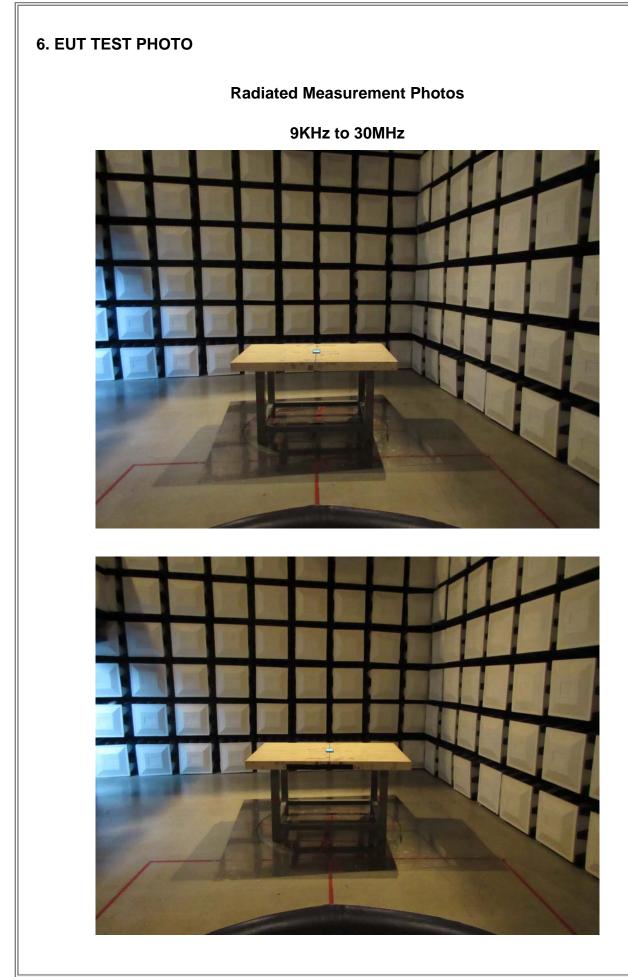
5. LIST OF MEASUREMENT EQUIPMENTS

	Radiated Emission & ERP or EIRP Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 28, 2016	
2	Amplifier	HP	8447D	2944A09673	Nov. 17, 2015	
3	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015	
4	Test Cable	emci	LMR-400(30MH z-1GHz)	C-01	Jun. 28, 2016	
5	Controller	СТ	SC100	N/A	N/A	
6	Antenna	ETS	3115	00075789	Mar. 28, 2016	
7	Amplifier	Agilent	8449B	3008A02274	Nov. 02, 2015	
8	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015	
9	Test Cable	emci	EMC104-SM-S M-10000(1GHz -26.5GHz)	C-68	Jun. 28, 2016	
10	Controller	СТ	SC100	N/A	N/A	
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Mar. 28, 2016	
12	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 28, 2016	
13	Double Ridged Guide Antenna	ETS ·LINDGREN	3115	00075846	Mar. 28, 2016	
14	Antenna	SCHWARZBECK	VULB 9160	9160-3231	Mar. 28, 2016	
15	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	Nov. 02, 2015	
16	Signal Generator	R&S	SMR40	100504	Mar. 28, 2016	
17	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	

Antenna Conducted Spurious Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016	
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016	
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016	
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015	
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015	

	Band Edge Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016		
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016		
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016		
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015		
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015		

	99% Occupied Bandwidth Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016		
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016		
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016		
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015		
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015		



	Frequency Stability Measurement									
Item	Kind of Equipment	Calibrated until								
1	wideband radio communication tester	R&S	CMW500	152372	Jan.30,2016					
2	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016					
3	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015					
4	Const Temp. & Hu midity Chamber	GIANT FORCE	ITH-1200-40- CP-AR	IAA1210-003	Aug. 01, 2015					
5	DC power supply	GW Instek	GPC-30300N	EK880675	Oct.12, 2015					

	Peak to Average Ratio								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016				
2	wideband radio communication tester	R&S	CMW500	152372	Jan. 30, 2016				
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123- S+	331000910-1	Mar. 17, 2016				
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015				
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015				

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

Radiated Measurement Photos

30MHz to 1000MHz

Report No.: BTL-FICP-12-1506C242

Radiated Measurement Photos

Above 1000MHz

Report No.: BTL-FICP-12-1506C242

Page 31 of 138

ATTACHMENTA -RADIATED RF OUTPUT POWER

Test Mode:	
------------	--

TX Mode

	LTE Band IV			Radia	ted Powe	Max.			
BW	Modulation	RB Size	V/H	Lowest	Middle	Highest	Limit (dBm)	Result	
1.4M			Н	23.04	23.17	23.22	30	Complies	
3M			Н	22.85	22.65	22.74	30	Complies	
5M	0001	400	Н	22.2	22.31	22.17	30	Complies	
10M	QPSK	- QPSK	1RB	Н	22.84	22.79	22.64	30	Complies
15M			Н	22.32	22.4	22.14	30	Complies	
20M			Н	22.08	22.24	22.16	30	Complies	
1.4M			Н	22.11	22.31	22.16	30	Complies	
3M			Н	21.32	21.41	21.28	30	Complies	
5M	40.0414	400	Н	21.24	21.26	22.19	30	Complies	
10M	16-QAM 1R	1RB	Н	21.62	21.58	21.37	30	Complies	
15M			Н	21.22	21.29	21.14	30	Complies	
20M			Н	21.39	21.78	21.62	30	Complies	

Test Mode : T	X Mode				
Denduridék	Medulation	RB	Cor	nducted Pow	er
Bandwidth	Modulation	size	Lowest	Middle	Highest
		1	23.36	23.38	23.20
		1	23.30	23.16	23.30
	QPSK	1	23.40	23.31	23.15
		3	22.14	22.04	22.05
		3	22.20	22.06	22.10
		3	22.26	22.05	22.12
1.4MHz		6	22.11	22.08	22.16
1.411172		1	22.68	22.20	22.40
		1	22.71	22.47	22.42
		1	22.59	22.31	22.40
	16-QAM	3	21.25	21.27	21.12
		3	21.30	21.34	21.16
		3	21.30	21.33	21.16
		6	21.05	21.32	21.19

Pandwidth	Modulation	RB	Con	ducted Pow	er
Bandwidth	wodulation	size	Lowest	Middle	Highest
		1	23.36	23.30	23.16
		1	23.49	23.20	23.19
		1	23.37	23.20	23.17
	QPSK	8	22.20	22.15	22.05
		8	22.20	22.27	22.11
		8	22.17	22.22	22.12
3MHz		15	22.13	22.24	22.13
SIVINZ		1	22.80	22.33	22.10
		1	22.65	22.49	22.15
		1	22.72	22.30	22.19
	16-QAM	8	21.21	21.30	21.13
		8	21.22	21.30	21.19
		8	21.17	21.29	21.18
		15	21.14	21.21	21.16

Dendwidth	Medulation	RB	B Conducted Powe			
Bandwidth	Modulation	size	Lowest	Middle	Highest	
		1	23.36	23.45	23.30	
		1	23.30	23.49	23.30	
		1	23.20	23.40	23.27	
	QPSK	12	22.20	22.40	22.20	
		12	22.18	22.28	22.06	
		12	22.13	22.25	22.05	
		25	22.10	22.24	22.02	
5MHz		1	22.81	22.50	22.33	
		1	22.70	22.51	22.31	
		1	22.71	22.43	22.30	
	16-QAM	12	21.30	21.33	21.18	
		12	21.28	21.29	21.19	
		12	21.27	21.30	21.11	
		25	21.20	21.20	21.15	

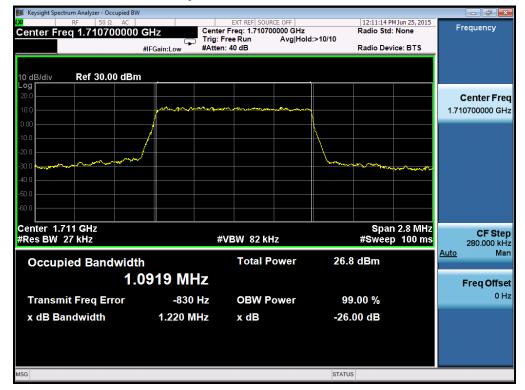
Bandwidth	Modulation	RB	Conducted Power		
Bandwidth	Modulation	size	Lowest	Middle	Highest
		1	23.61	23.56	23.34
		1	23.42	23.30	23.14
		1	23.33	23.20	23.16
	QPSK	25	22.30	22.31	22.30
		25	22.20	22.30	22.09
		25	22.10	22.25	22.07
10MHz		50	22.06	22.26	22.04
TOWINZ		1	22.77	22.88	22.55
		1	22.60	22.41	22.10
		1	22.44	22.39	22.20
	16-QAM	25	21.30	21.50	21.20
		25	21.20	21.36	21.20
		25	21.04	21.34	21.15
		50	21.09	21.30	21.13

Donducidth	Madulation	RB	Со	nducted Pow	l Power	
Bandwidth	Modulation	size	Lowest	Middle	Highest	
		1	23.86	23.77	23.80	
		1	23.70	23.50	23.15	
		1	23.47	23.25	23.50	
	QPSK	36	22.40	22.70	22.40	
		36	22.30	22.40	22.26	
		36	22.25	22.20	22.20	
15MHz		75	22.17	22.17	22.20	
		1	22.98	22.17	22.62	
		1	22.70	22.52	22.03	
		1	22.59	22.51	22.10	
	16-QAM	36	21.40	21.50	21.40	
		36	21.30	21.30	21.30	
		36	21.22	21.15	21.20	
		75	21.22	21.22	21.18	

Pandwidth	Modulation	RB	Conducted Power		
Bandwidth	Modulation	size	Lowest	Middle	Highest
		1	23.91	23.95	23.83
		1	23.30	23.27	23.22
		1	23.32	23.32	23.30
	QPSK	50	22.52	22.60	22.50
		50	22.30	22.40	22.12
		50	22.25	22.26	22.08
20MHz		100	22.34	22.25	22.30
2011112		1	22.18	22.30	22.27
		1	22.60	22.55	22.80
		1	22.73	22.60	22.79
	16-QAM	50	21.51	21.46	21.50
		50	21.30	21.38	21.30
		50	21.25	21.22	21.12
		100	21.29	21.23	21.31

REMARKS:

1. Radiated Output Power(dBm)=Raw Value(dBm) + Correction Factor(dB) + Ant Gain(dBi)

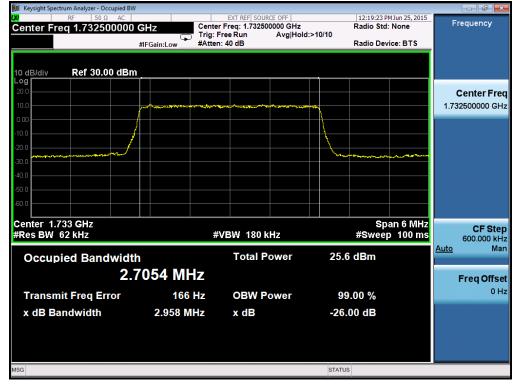

2. Correction Factor(dB) = Power SplitterLoss(dB) + Cable Loss(dB)

3. The antenna gain is -1.75dBi

4. Tests have been conducted for both vertical and horizontal plane and the worst case was found in horizontal plane and the results were selected and recorded in the report

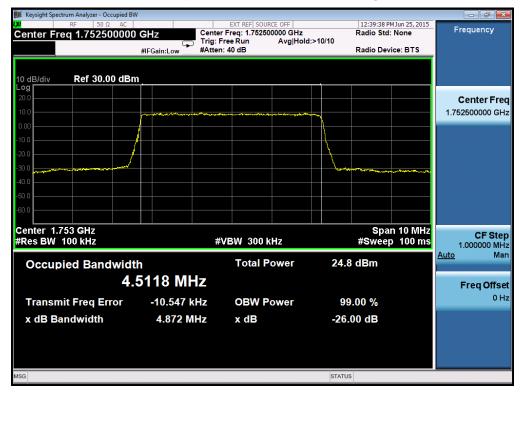
ATTACHMENT B - 99% OCCUPIED BANDWIDTH


Test Mode : TX Mode ConfigurationQPSK-1.4M/6RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	1.092	1.220	Complies
Middle	1.096	1.229	Complies
Highest	1.085	1.218	Complies



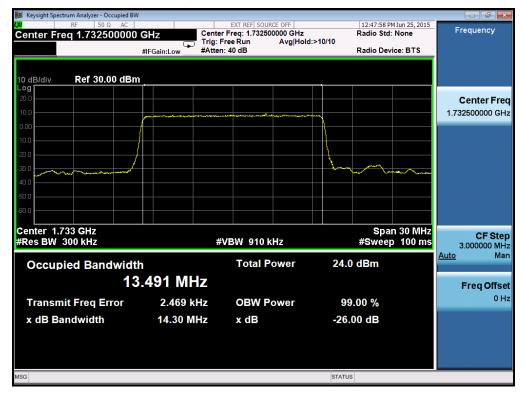
Test Mode : TX Mode ConfigurationQPSK-3M/15RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	2.713	2.952	Complies
Middle	2.705	2.958	Complies
Highest	2.708	2.963	Complies

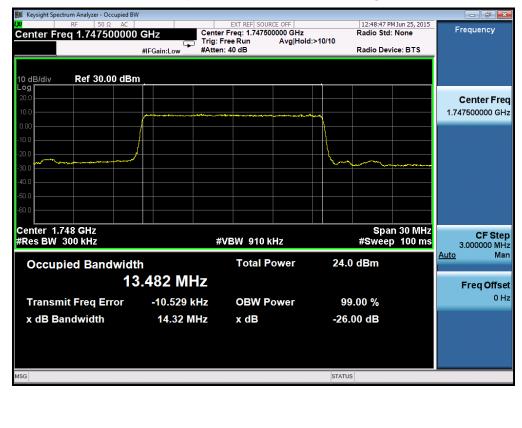




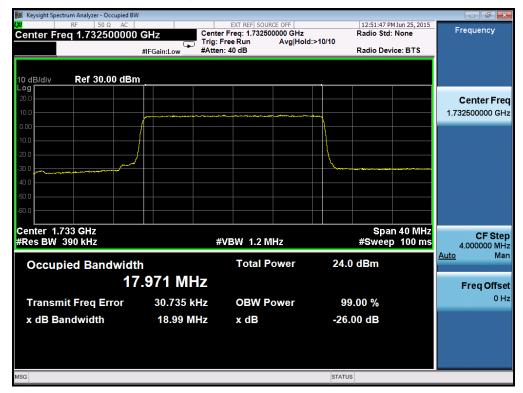
Test Mode : TX Mode ConfigurationQPSK-5M/25RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	4.499	4.867	Complies
Middle	4.511	4.868	Complies
Highest	4.512	4.872	Complies

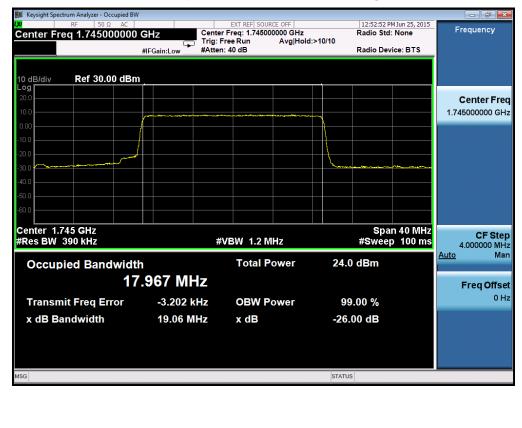
Test Mode : TX Mode ConfigurationQPSK-10M/50RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	8.994	9.575	Complies
Middle	8.993	9.600	Complies
Highest	8.912	9.576	Complies





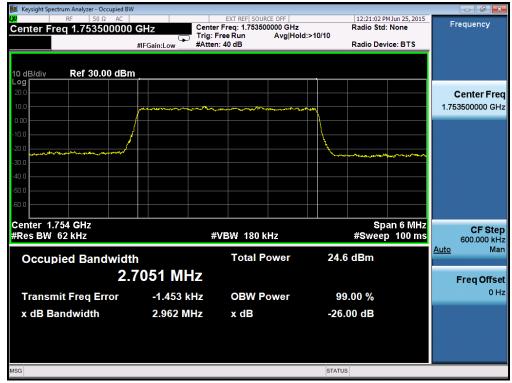

Test Mode : TX Mode ConfigurationQPSK-15M/75RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	13.488	14.280	Complies
Middle	13.491	14.300	Complies
Highest	13.482	14.320	Complies



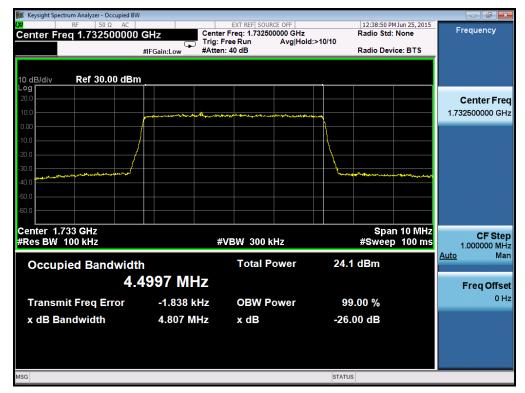


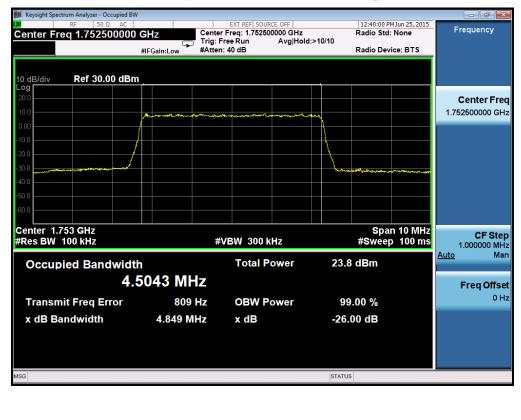
Test Mode : TX Mode ConfigurationQPSK-20M/100RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	17.959	19.020	Complies
Middle	17.971	18.990	Complies
Highest	17.967	19.060	Complies

Test Mode : TX Mode Configuration16-QAM-1.4M/6RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	1.094	1.234	Complies
Middle	1.087	1.223	Complies
Highest	1.879	1.225	Complies

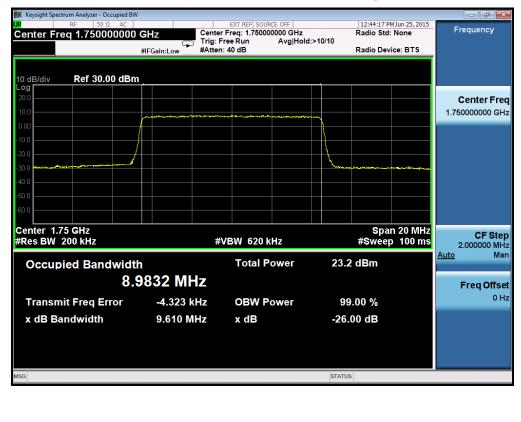


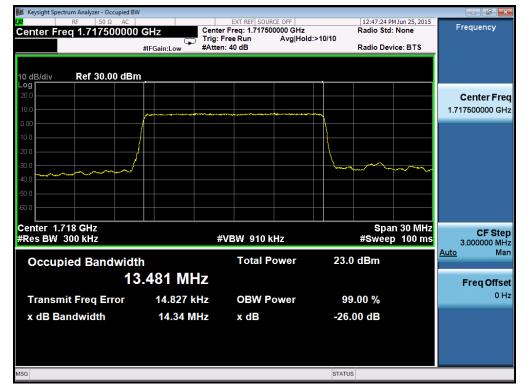
Test Mode : TX Mode Configuration16-QAM-3M/15RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	2.704	2.953	Complies
Middle	2.711	2.953	Complies
Highest	2.705	2.962	Complies

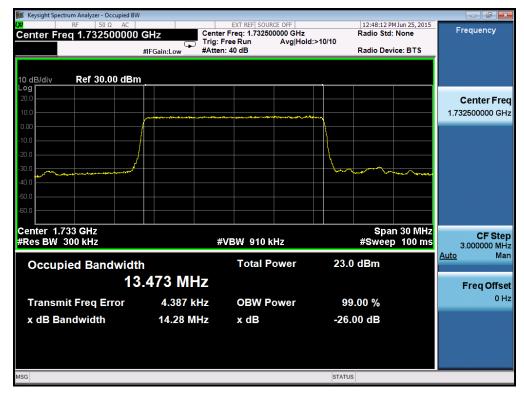


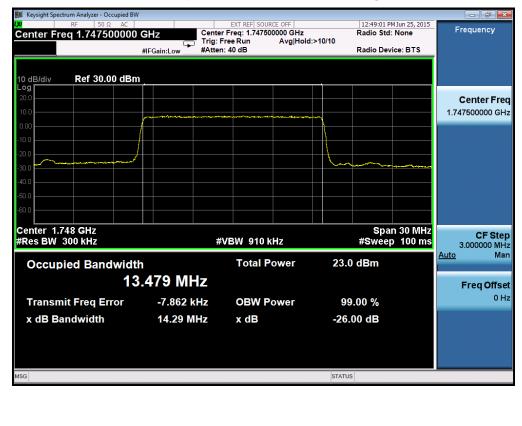


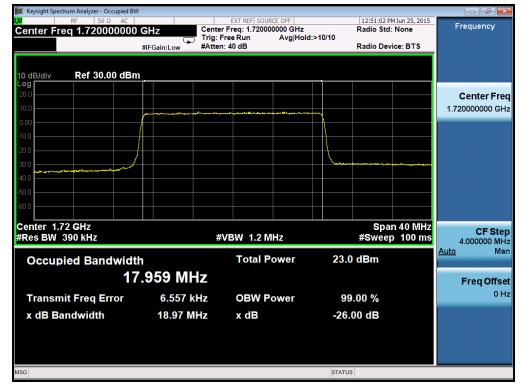
Test	Test Mode : TX Mode Configuration16-QAM-5M//25RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result	
Lowest	4.498	4.875	Complies	
Middle	4.500	4.807	Complies	
Highest	4.504	4.849	Complies	

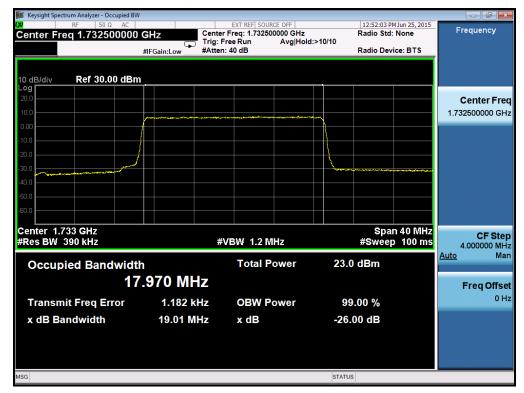



Test Mode : TX Mode Configuration16-QAM-10M/50RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	8.970	9.553	Complies
Middle	8.993	9.594	Complies
Highest	8.983	9.610	Complies






Test Mode : TX Mode Configuration16-QAM-15M/75RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	13.481	14.340	Complies
Middle	13.473	14.280	Complies
Highest	13.479	14.290	Complies



Test Mode : TX Mode Configuration16-QAM-20M/100RB			
Channel	99% OBW (MHz)	-26dBc Bandwidth	Result
Lowest	17.959	18.970	Complies
Middle	17.970	19.010	Complies
Highest	17.959	18.900	Complies

ATTACHMENT C - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

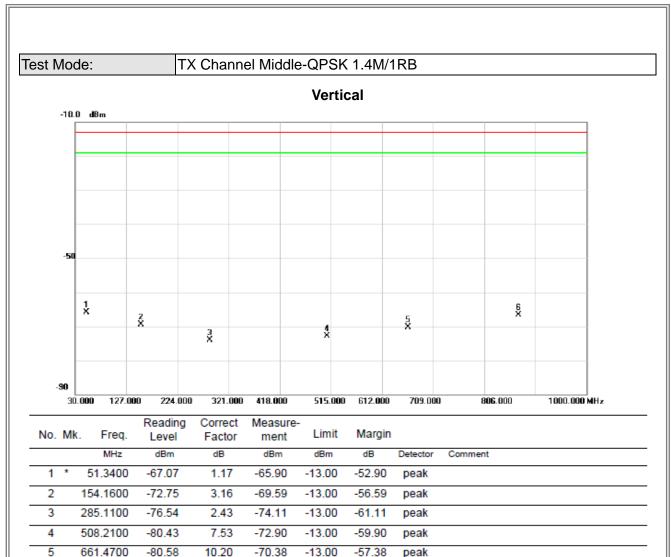
Conducted Spurious of Configuration-QPSK-1.4M/1RB channel Middle

Conducted Spurious of Configuration-QPSK-3M/1RB channel Middle

Conducted Spurious of Configuration-QPSK-5M/1RB channel Middle

Conducted Spurious of Configuration-QPSK-10M/1RB channel Middle

🔰 Agilent Spectrur	n Analyzer - Swept SA					
Marker 1 1	RF 50 Ω AC 5.21465000000			ALIGN AUTO Type: Log-Pwr Hold:>100/100	04:31:47 PM Jun 26, 2015 TRACE 1 2 3 4 5 6 TYPE M	Peak Search
	tef Offset 11 dB tef 30.00 dBm	IFGain:Low Atten: 3			kr1 15.215 GHz -28.559 dBm	Next Pea
20.0						Next Pk Rig
0.00						Next Pk Lo
20.0					-13.00 dBm	Marker De
-30.0	V. Martin Lindon and a start	ليتعر العاليم المراجع المحافظ والمراجع المحافظ والمراجع	ansihatihatikatikatikatikatika	Mrshifler/Hayadeliverk	denor the second second	Mkr⊸(
-50.0						Mkr→Refl
-60.0					Stop 18.000 GHz	М с 1 о
Res BW 1.0	0 MHz	#VBW 3.0 MHz		Sweep 4	4.93 ms (1001 pts)	


Conducted Spurious of Configuration-QPSK-15M/1RB channel Middle

Conducted Spurious of Configuration-QPSK-20M/1RB channel Middle

ATTACHMENTD - SPURIOUS RADIATED EMISSION

-13.00

-13.00

-57.38

-53.80

peak

peak

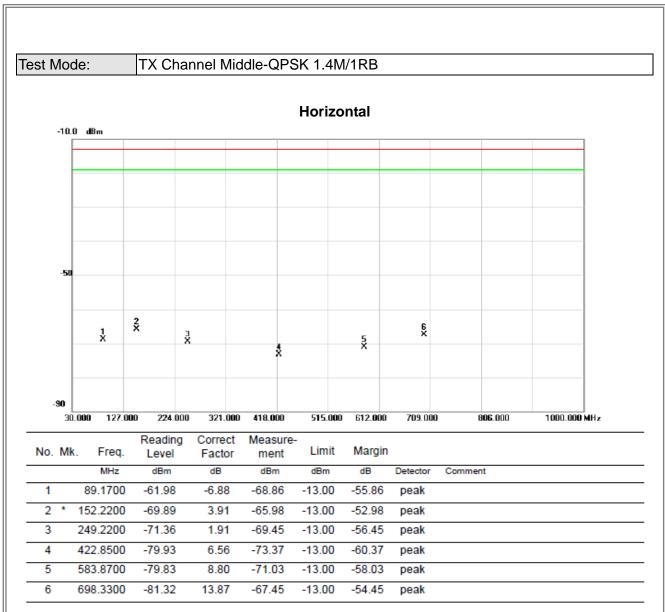
5

6

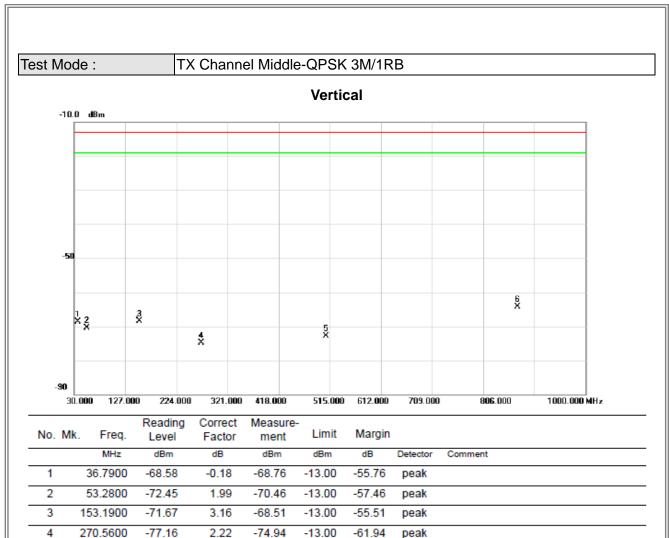
661.4700

870.9900

-80.58


-80.52

10.20


13.72

-66.80

5

6 *

507.2400

870.9900

-80.43

-78.03

7.54

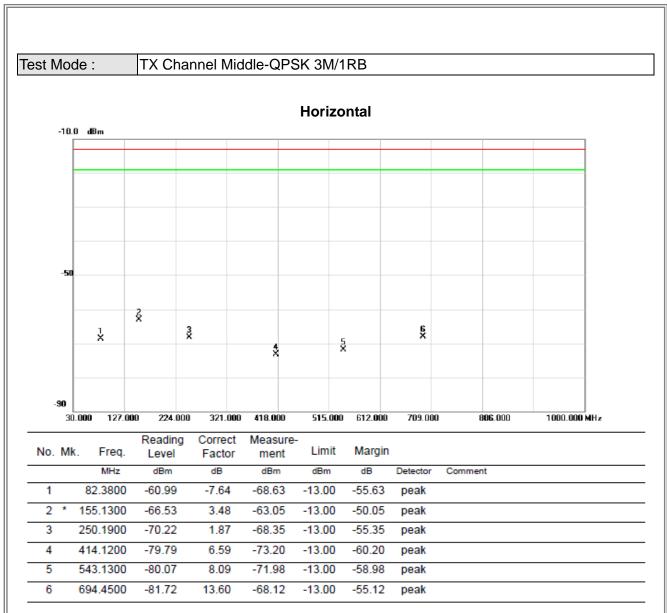
13.72

-72.89

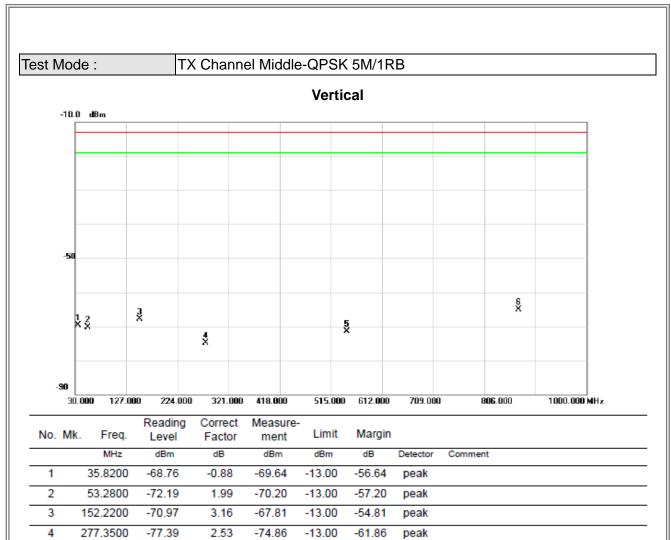
-64.31

-13.00

-13.00


-59.89

-51.31


peak

peak

-79.05

-78.86

5

6 *

545.0700

870.9900

-71.59

-65.14

-13.00

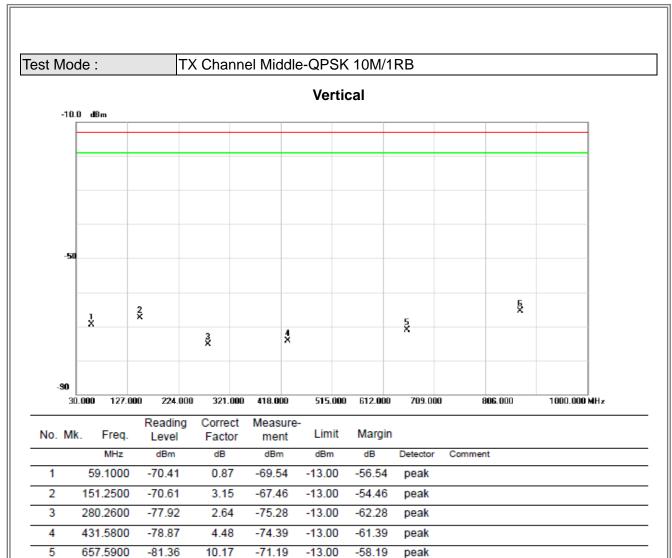
-13.00

-58.59

-52.14

peak

peak


7.46

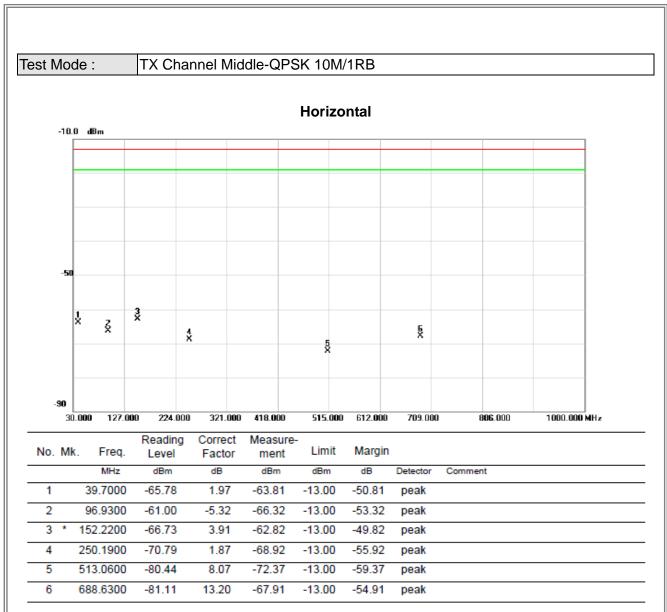
13.72

-79.12

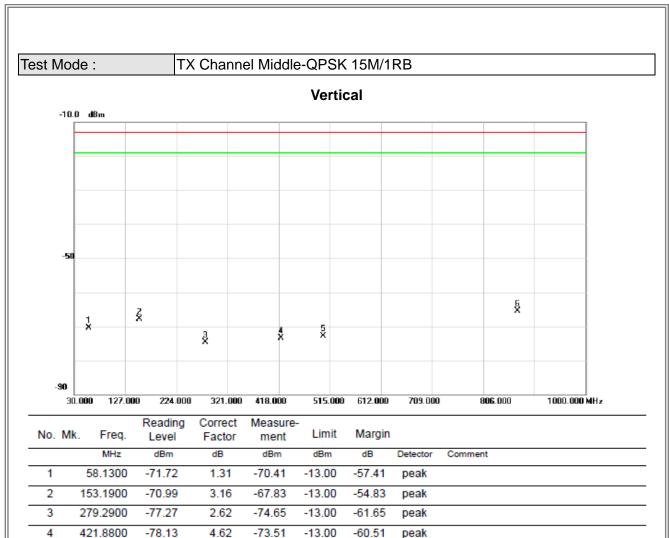
13.69

-65.43

-13.00


-52.43

peak


6 *

871.9600

7.55

13.72

-72.95

-65.60

-13.00

-13.00

-59.95

-52.60

peak

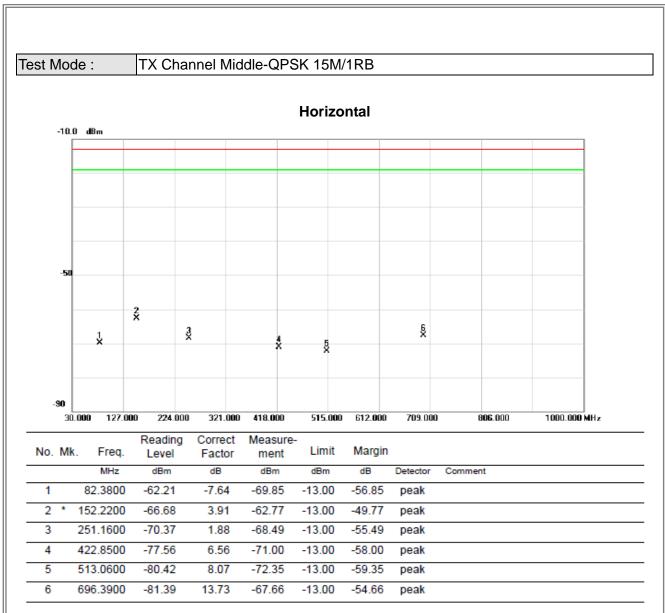
peak

peak

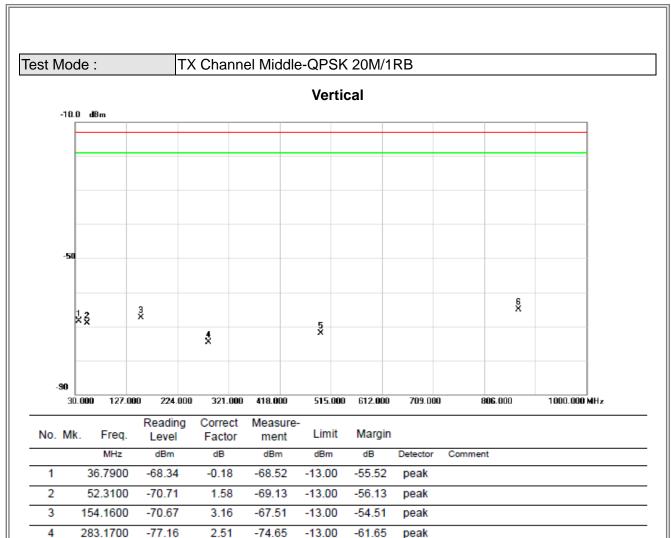
4

5

6 *


502.3900

870.9900


-80.50

-79.32

496.5700

870.9900

5

6 *

-79.39

-78.80

-72.04

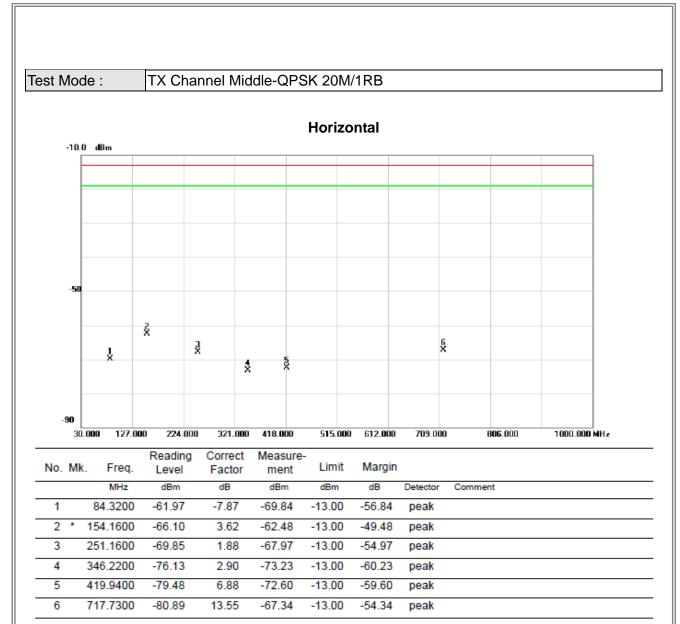
-65.08

-13.00

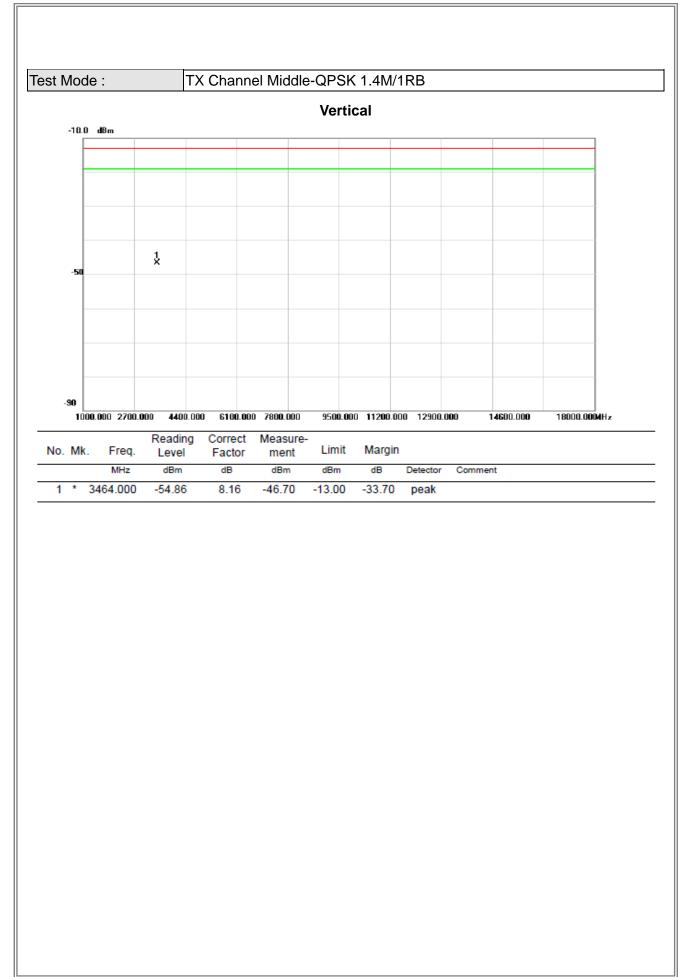
-13.00

-59.04

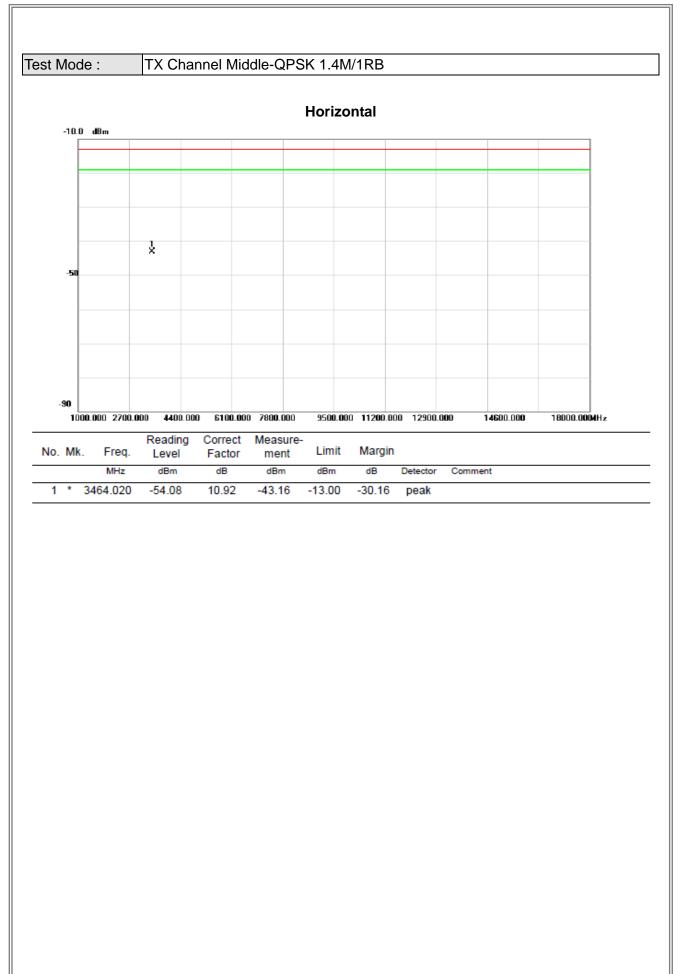
-52.08

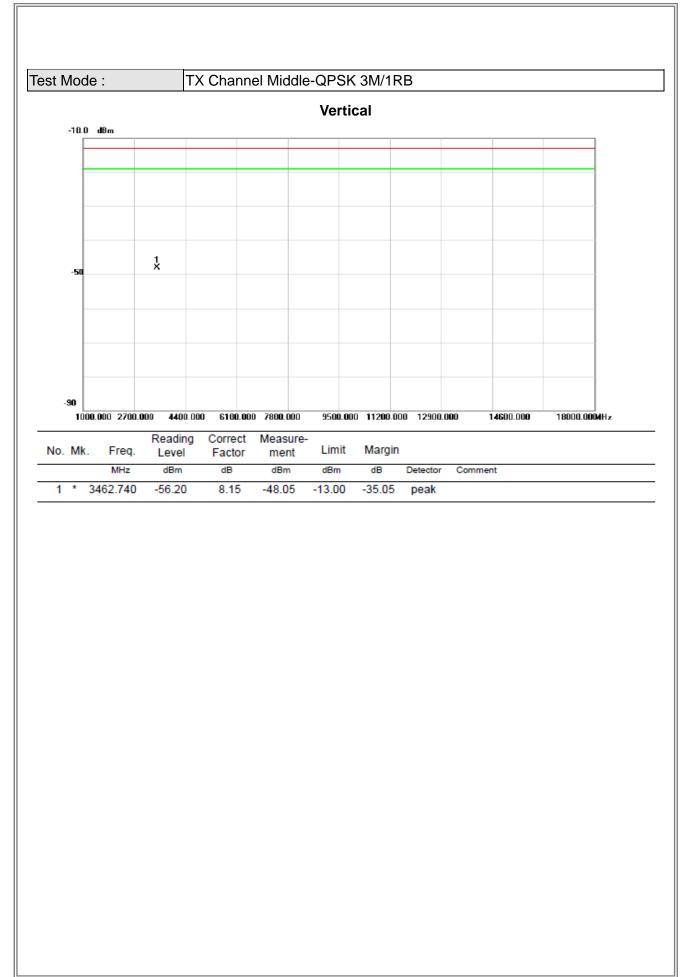

peak

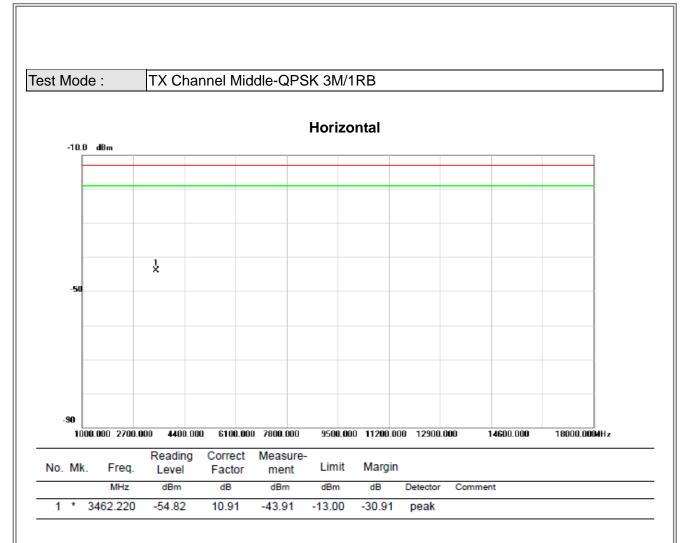
peak

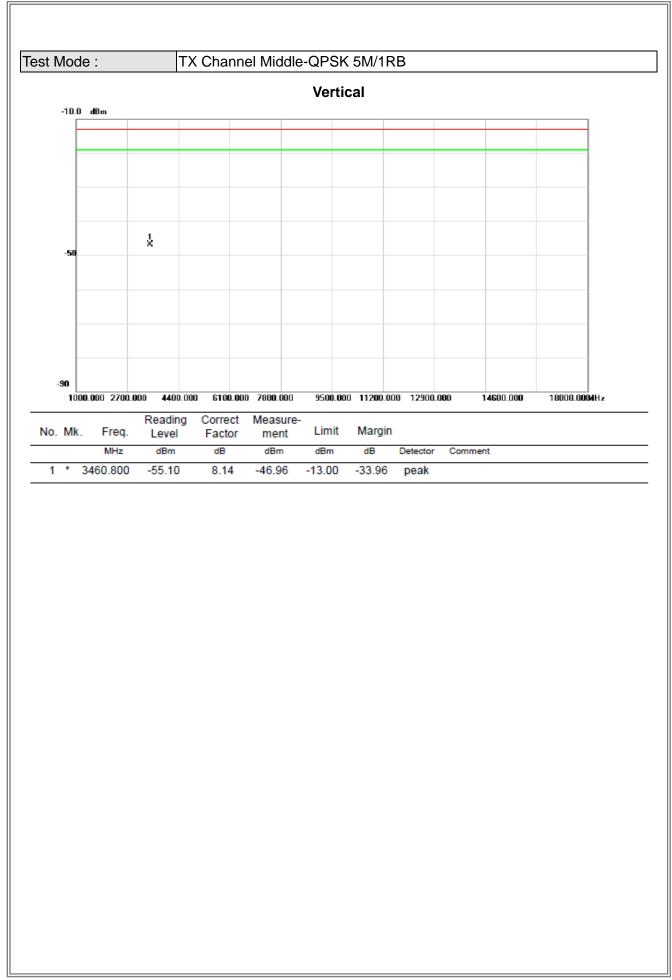

7.35

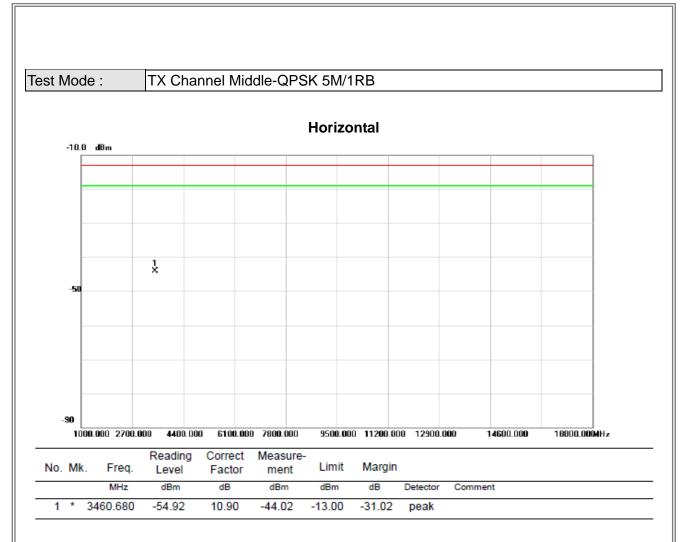
13.72

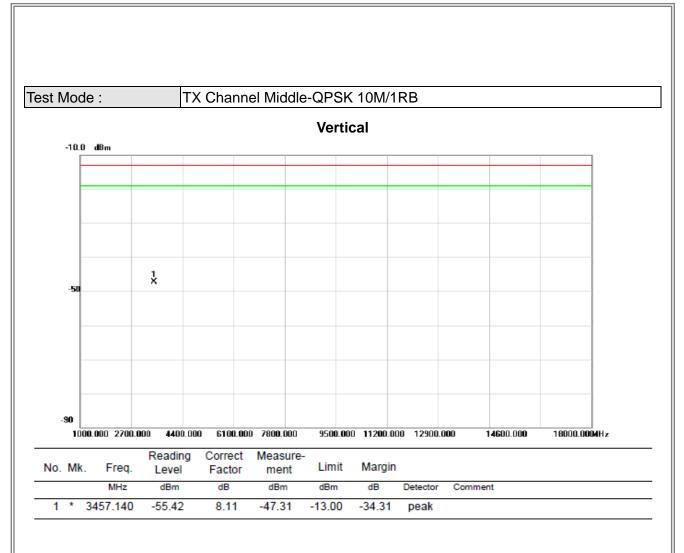


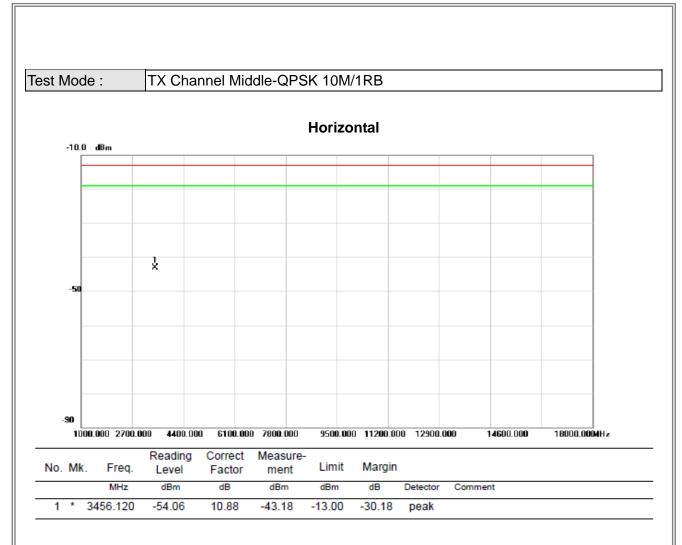


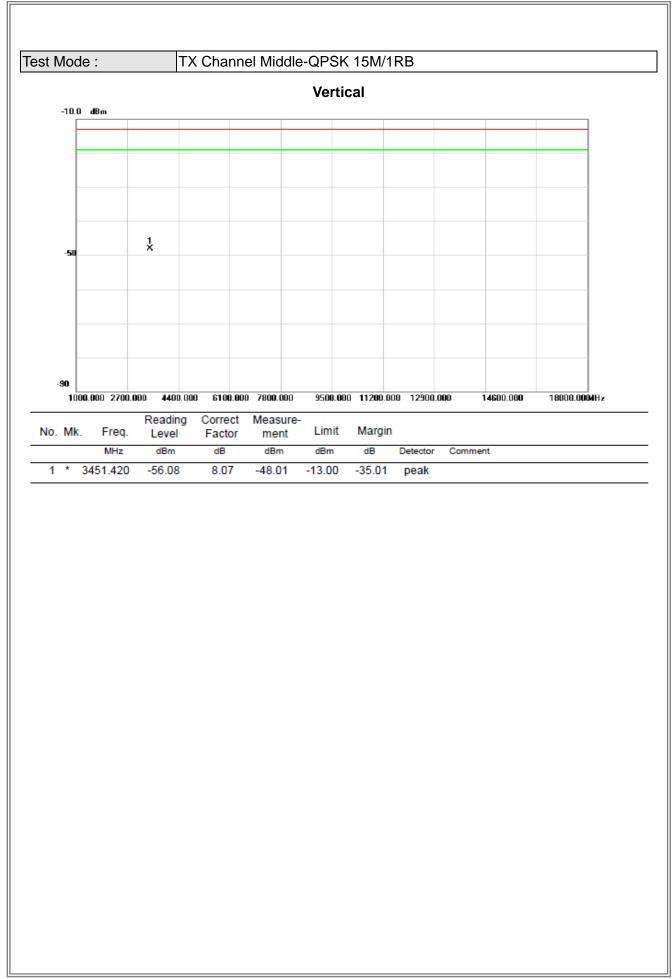


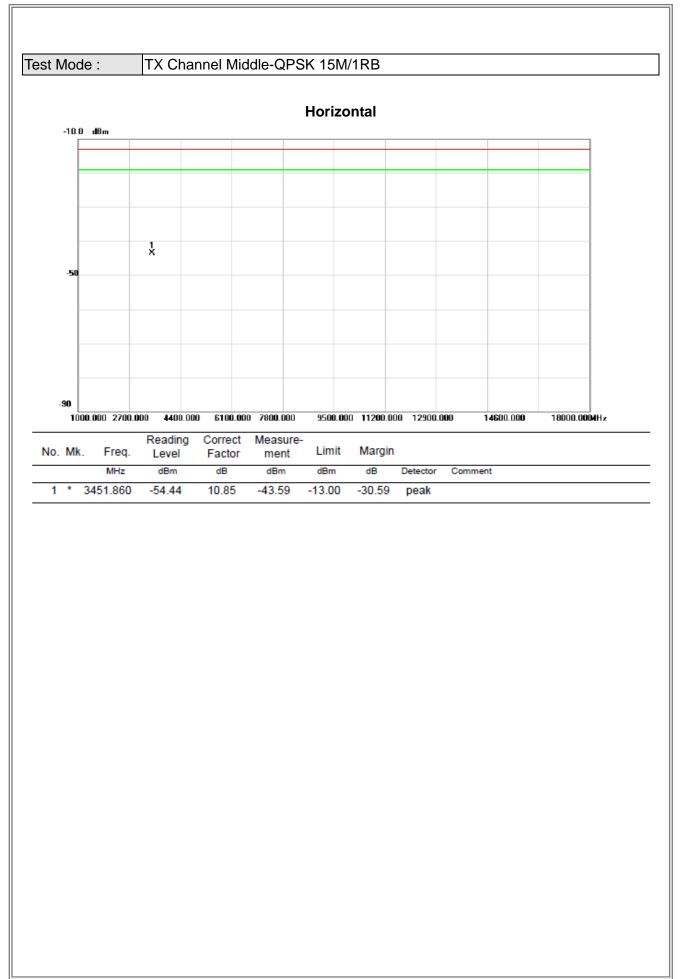


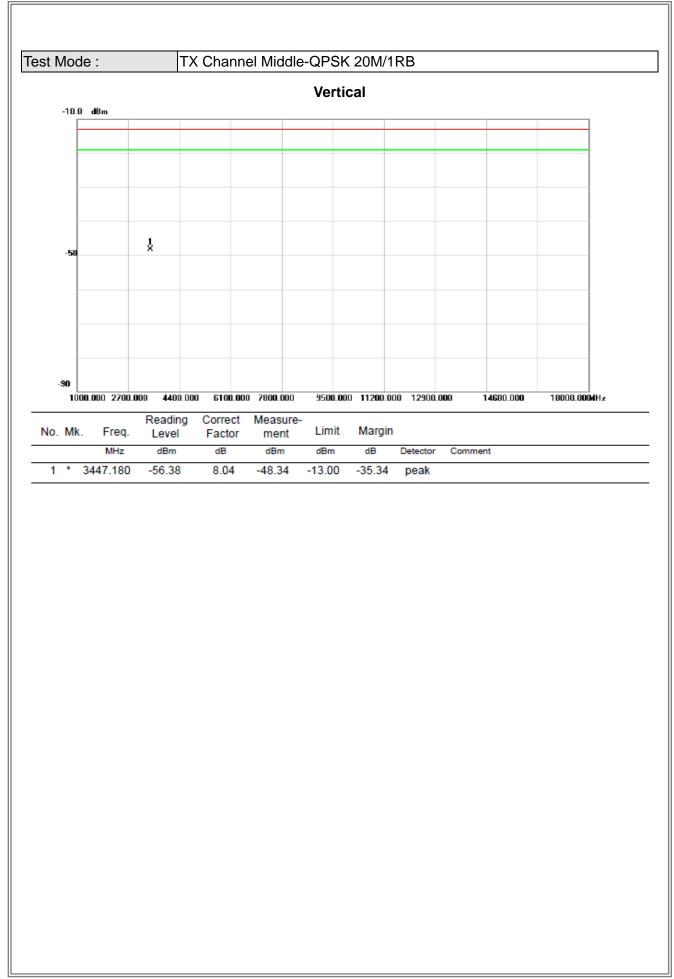


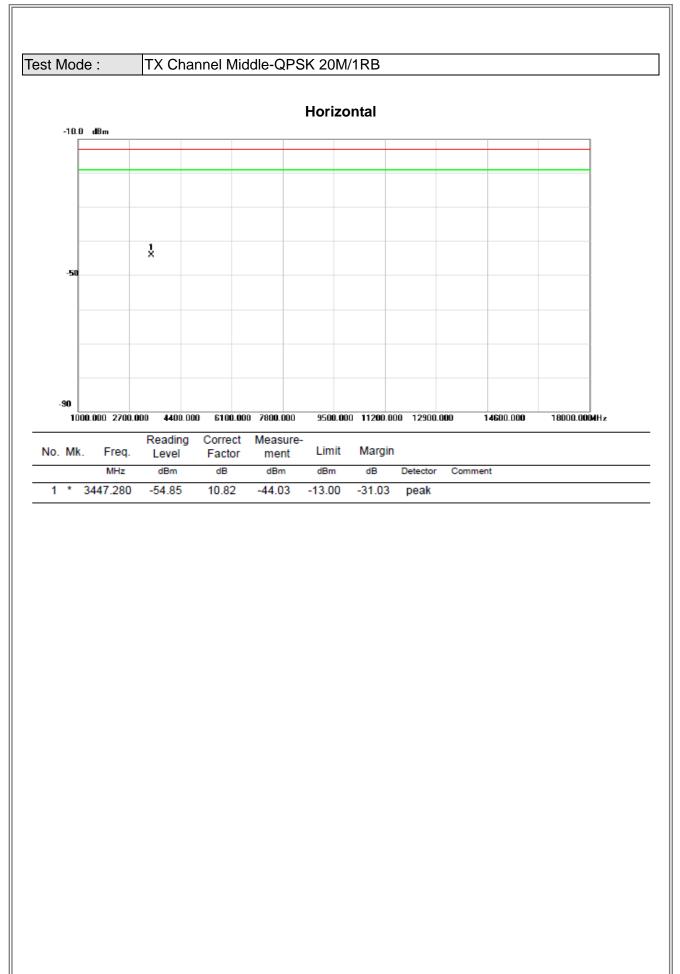












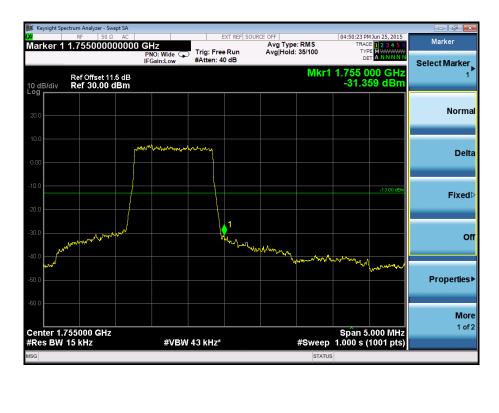
ATTACHMENTE - BAND EDGE

Report No.: BTL-FICP-12-1506C242



Band Edge on Configuration QPSK-1.4M / 1RB Channel Lowest-CONDUCTED MODE

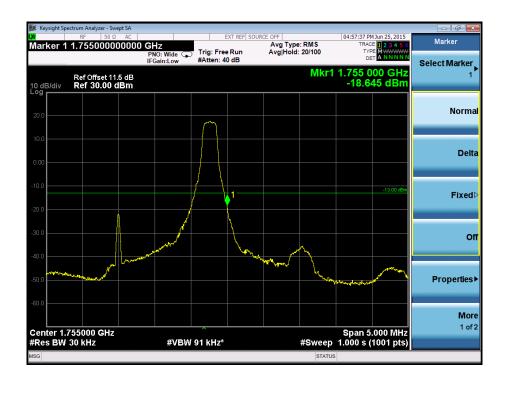
Band Edge on Configuration QPSK-1.4M / 1RB Channel Highest-CONDUCTED MODE





Band Edge on Configuration QPSK-1.4M / 6RB Channel Lowest-CONDUCTED MODE

Band Edge on Configuration QPSK-1.4M / 6RBChannel Highest-CONDUCTED MODE

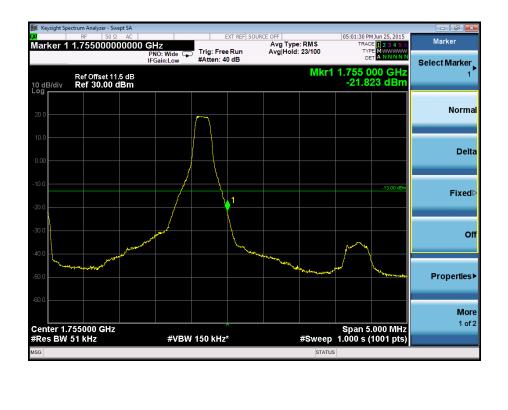


Band Edge on Configuration QPSK-3M / 1RB Channel Lowest-CONDUCTED MODE


Band Edge on Configuration QPSK-3M / 1RB Channel Highest-CONDUCTED MODE

Band Edge on Configuration QPSK-3M / 15RB Channel Lowest-CONDUCTED MODE

							um Analyzer - Swept SA	📕 Keysight Spe
Marker	04:55:59 PM Jun 25, 2015 TRACE 1 2 3 4 5 6		Avg Typ	T REF SOU		GHz	RF 50 Ω AC	larker 1
Select Marker	TYPE NWWWW DET A N N N N N		Avg Hold		Trig: Free #Atten: 40	PNO: Wide IFGain:Low		
1	1.710 000 GHz -24.693 dBm	Mkr1					Ref Offset 11.5 dB Ref 30.00 dBm	0 dB/div
Norm								
NOTIN								20.0
								10.0
Del	with the for the second second	and the second	mm	former				3.00
Fixed	-13.00 dBm			1				0.0
				1				0.0
c					mannad		man	0.0
								~~~~~
								10.0
Properties								0.0
								i0.0
<b>Mo</b> 1 of								
	Span 5.000 MHz 1.000 s (1001 pts)	#Sweep			91 kHz*	#VBW	0000 GHz ) kHz	enter 1.7 Res BW
		STATUS						6G

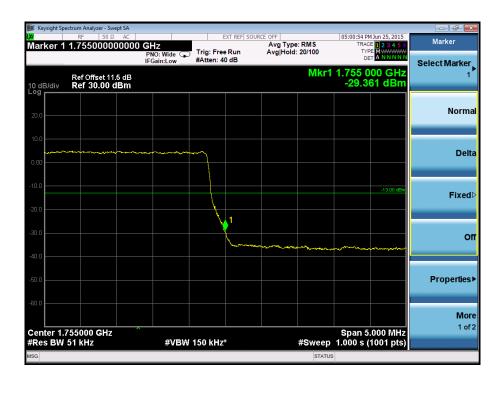

#### Band Edge on Configuration QPSK-3M / 15RBChannel Highest-CONDUCTED MODE



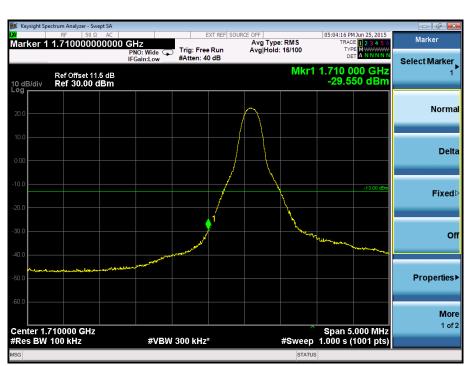
# Band Edge on Configuration QPSK-5M / 1RB Channel Lowest-CONDUCTED MODE



#### Band Edge on Configuration QPSK-5M / 1RB Channel Highest-CONDUCTED MODE

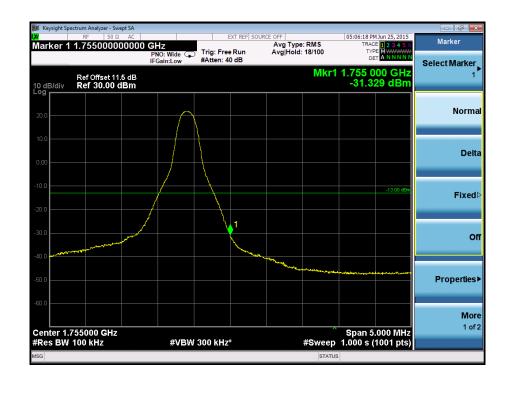





## Band Edge on Configuration QPSK-5M / 25RB Channel Lowest-CONDUCTED MODE

#### Band Edge on Configuration QPSK-5M / 25RB Channel Highest-CONDUCTED MODE








# Band Edge on Configuration QPSK-10M / 1RB Channel Lowest-CONDUCTED MODE

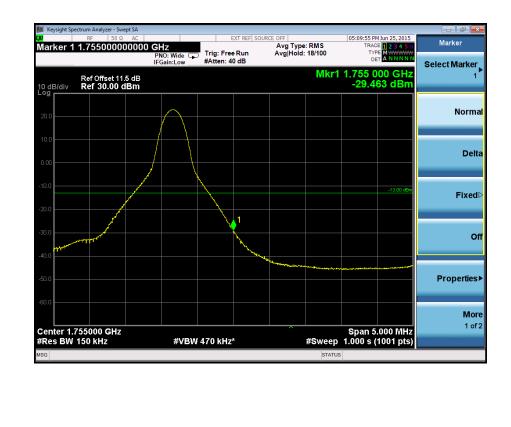

Band Edge on Configuration QPSK-10M / 1RB Channel Highest-CONDUCTED MODE



# Band Edge on Configuration QPSK-10M / 50RB Channel Lowest-CONDUCTED MODE

							ctrum Analyzer - Swept SA	
Marker	05:04:46 PM Jun 25, 2015 TRACE 12 3 4 5 6 TYPE MWWWW DET A N N N N N		Avg Type Avg Hold		Trig: Free #Atten: 4	GHz PNO: Wide C	RF 50 Ω AC 1.7100000000000000	<mark>/</mark> Marker 1
Select Marker 1	1.710 000 GHz -33.442 dBm	Mkr1			#Atten: 4	IFGain:Low	Ref Offset 11.5 dB Ref 30.00 dBm	0 dB/div
Norm								. <b>og</b>
Delt								10.0 <b></b> 5.00 <b></b>
Fixed	-13.00 dBm							
o				,				0.0
Properties								0.0
<b>Mo</b> i 1 of	Span 5.000 MHz 1.000 s (1001 pts)	<b>40</b>			200 111-1	#\/D\W	710000 GHz	
	1.000 \$ (1001 pts)	#Sweep			300 kHz*	#VBW	100 KHZ	Res BW

#### Band Edge on Configuration QPSK-10M / 50RB Channel Highest-CONDUCTED MODE








### Band Edge on Configuration QPSK-15M / 1RB Channel Lowest-CONDUCTED MODE

Band Edge on Configuration QPSK-15M / 1RB Channel Highest-CONDUCTED MODE

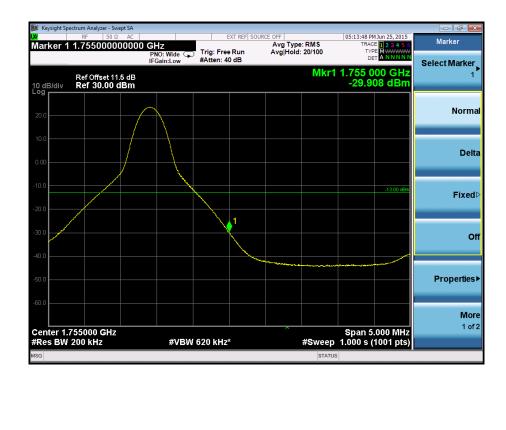







### Band Edge on Configuration QPSK-15M / 75RB Channel Lowest-CONDUCTED MODE

#### Band Edge on Configuration QPSK-15M / 75RB Channel Highest-CONDUCTED MODE








## Band Edge on Configuration QPSK-20M / 1RB Channel Lowest-CONDUCTED MODE

#### Band Edge on Configuration QPSK-20M / 1RB Channel Highest-CONDUCTED MODE



Report No.: BTL-FICP-12-1506C242



# Band Edge on Configuration QPSK-20M / 100RB Channel Lowest-CONDUCTED MODE

#### Band Edge on Configuration QPSK-20M / 100RB Channel Highest-CONDUCTED MODE



# ATTACHMENTF - FREQUENCY STABILITY

Test Mode :

#### QPSK Channel Middle 1.4M/1RB 0 offset

# Voltage vs. Frequency Stabiility

Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	2.53	0.001460317	2.5
0	3.61	0.002083694	2.5
10	2.28	0.001316017	2.5
20	-2.16	0.001246753	2.5
30	3.55	0.002049062	2.5
40	2.73	0.001575758	2.5
45	-1.68	0.000969697	2.5
Max. Deviation (ppm)	3.61	0.002083694	2.5

#### Voltage vs. Frequency Stability

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	2.55	0.001471861	2.5
3.5	4.16	0.002401154	2.5
4.35	2.54	0.001466089	2.5
Max. Deviation (ppm)	4.16	0.002401154	2.5



#### QPSK Channel Middle 3M/1RB 0 offset

## Voltage vs. Frequency Stabiility

Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	-1.55	0.000894661	2.5
0	2.93	0.001691198	2.5
10	-1.66	0.000958153	2.5
20	2.99	0.00172583	2.5
30	3.60	0.002077922	2.5
40	-1.77	0.001021645	2.5
45	4.06	0.002343434	2.5
Max. Deviation (ppm)	4.06	0.002343434	2.5

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	3.20	0.001847042	2.5
3.5	-2.56	0.001477633	2.5
4.35	3.66	0.002112554	2.5
Max. Deviation (ppm)	3.66	0.002112554	2.5

## QPSK Channel Middle 5M/1RB 0 offset

## Voltage vs. Frequency Stabiility

Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	4.10	0.002366522	2.5
0	-2.24	0.001292929	2.5
10	3.12	0.001800866	2.5
20	-1.66	0.000958153	2.5
30	2.88	0.001662338	2.5
40	-1.76	0.001015873	2.5
45	3.64	0.00210101	2.5
Max. Deviation (ppm)	4.10	0.002366522	2.5

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	2.53	0.001460317	2.5
3.5	-1.64	0.000946609	2.5
4.35	4.09	0.00236075	2.5
Max. Deviation (ppm)	4.09	0.00236075	2.5

#### QPSK Channel Middle 10M/1RB 0 offset

## Voltage vs. Frequency Stabiility

Temperature(℃)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	-1.22	0.000704185	2.5
0	2.67	0.001541126	2.5
10	1.88	0.001085137	2.5
20	-2.54	0.001466089	2.5
30	4.16	0.002401154	2.5
40	-2.23	0.001287157	2.5
45	4.32	0.002493506	2.5
Max. Deviation (ppm)	4.32	0.002493506	2.5

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	2.56	0.001477633	2.5
3.5	3.14	0.00181241	2.5
4.35	2.09	0.001206349	2.5
Max. Deviation (ppm)	3.14	0.00181241	2.5



#### QPSK Channel Middle 15M/1RB 0 offset

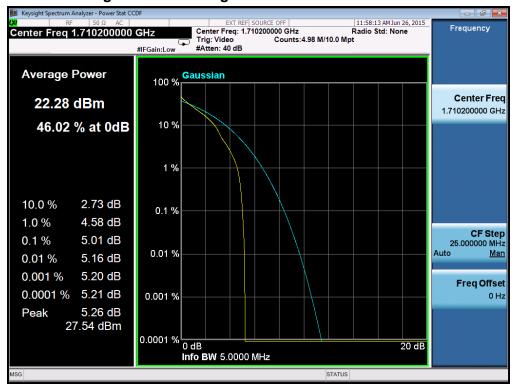
## Voltage vs. Frequency Stabiility

Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	-1.97	0.001137085	2.5
0	2.55	0.001471861	2.5
10	-1.44	0.000831169	2.5
20	3.56	0.002054834	2.5
30	-2.84	0.00163925	2.5
40	4.19	0.00241847	2.5
45	-2.05	0.001183261	2.5
Max. Deviation (ppm)	4.19	0.00241847	2.5

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	-2.53	0.001460317	2.5
3.5	1.94	0.001119769	2.5
4.35	-1.86	0.001073593	2.5
Max. Deviation (ppm)	2.53	0.001460317	2.5

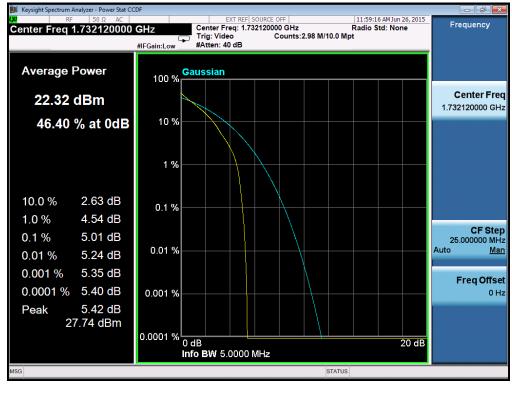


## QPSK Channel Middle 20M/1RB 0 offset


#### Voltage vs. Frequency Stabiility

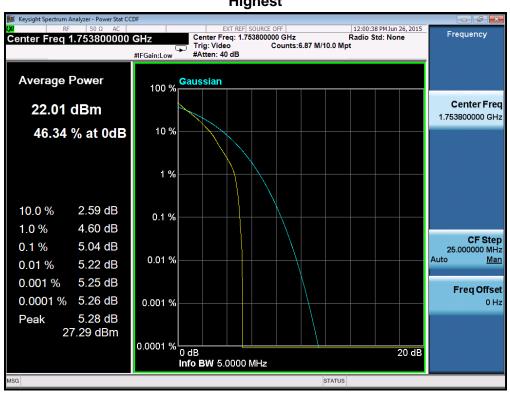
Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	-1.93	0.001113997	2.5
0	2.25	0.001298701	2.5
10	-1.14	0.000658009	2.5
20	4.41	0.002545455	2.5
30	2.08	0.001200577	2.5
40	1.62	0.000935065	2.5
45	3.21	0.001852814	2.5
Max. Deviation (ppm)	4.41	0.002545455	2.5

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	2.25	0.001298701	2.5
3.5	3.46	0.001997114	2.5
4.35	1.59	0.000917749	2.5
Max. Deviation (ppm)	3.46	0.001997114	2.5


## ATTACHMENTG - PEAK TO AVERAGE RADIO

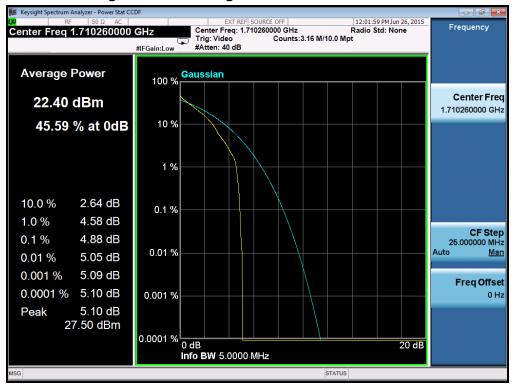





#### Peak to Average Ratio of Configuration-QPSK-1.4M/1RB channel Lowest

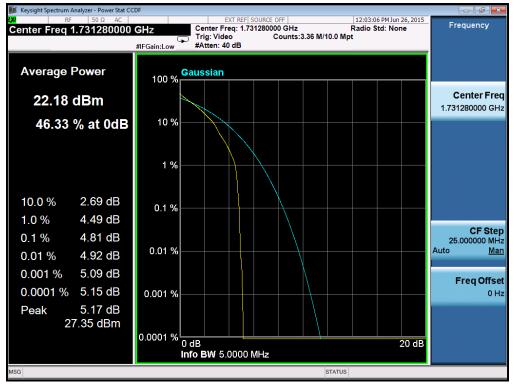
#### Peak to Average Ratio of Configuration-QPSK-1.4M/1RB channel Middle

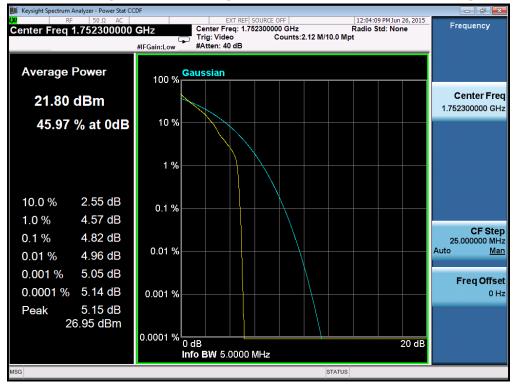



Report No.: BTL-FICP-12-1506C242

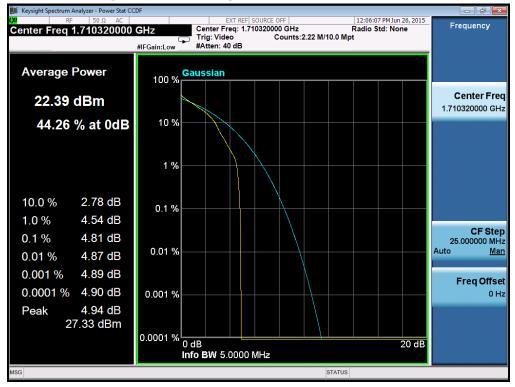
Page 115 of 138




## Peak to Average Ratio of Configuration-QPSK-1.4M/1RB channel Highest

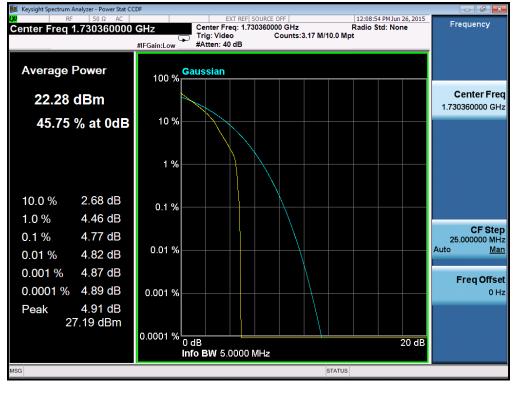


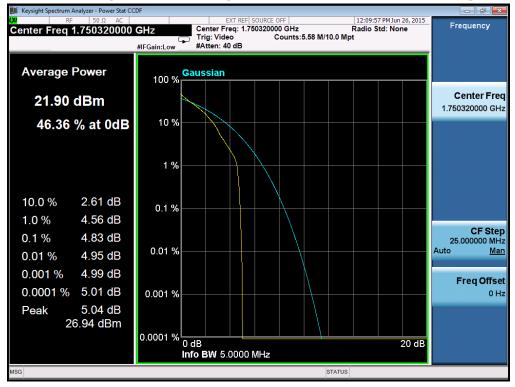




#### Peak to Average Ratio of Configuration-QPSK-3M/1RB channel Lowest

#### Peak to Average Ratio of Configuration-QPSK-3M/1RB channel Middle







#### Peak to Average Ratio of Configuration-QPSK-3M/1RB channel Highest

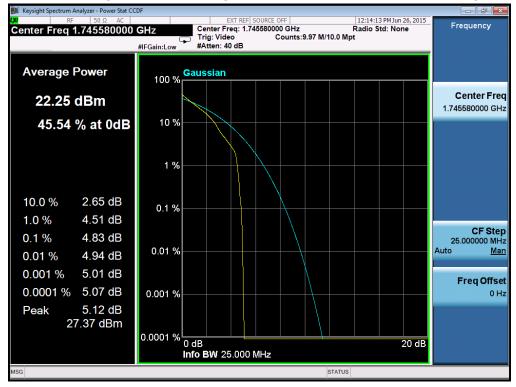



#### Peak to Average Ratio of Configuration-QPSK-5M/1RB channel Lowest

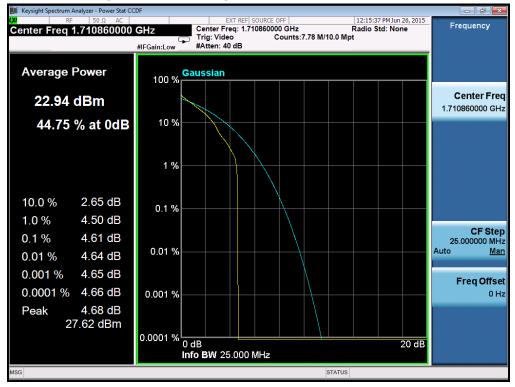








#### Peak to Average Ratio of Configuration-QPSK-5M/1RB channel Highest

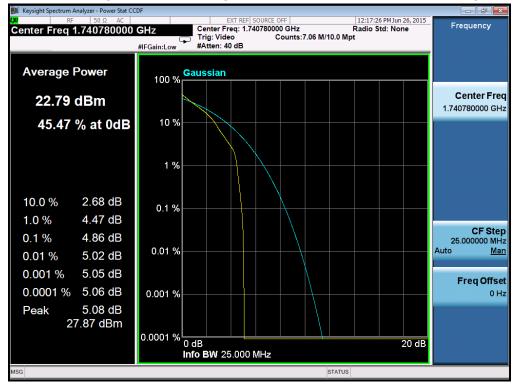



#### Peak to Average Ratio of Configuration-QPSK-10M/1RB channel Lowest

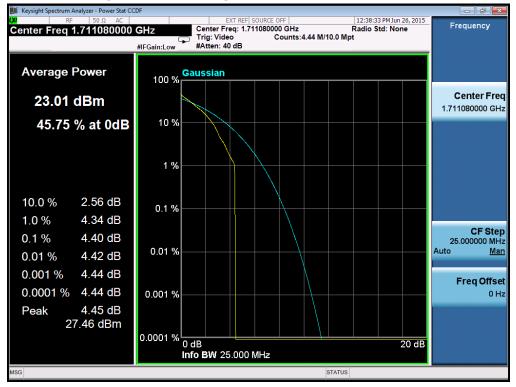







#### Peak to Average Ratio of Configuration-QPSK-10M/1RB channel Highest



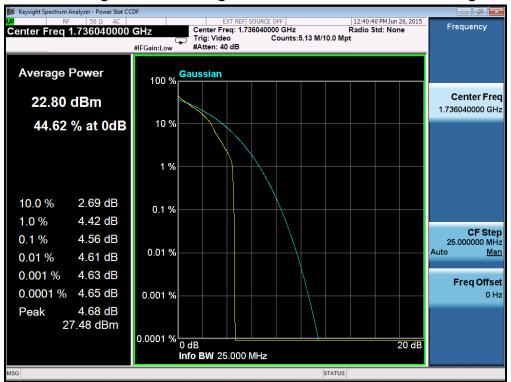

#### Peak to Average Ratio of Configuration-QPSK-15M/1RB channel Lowest



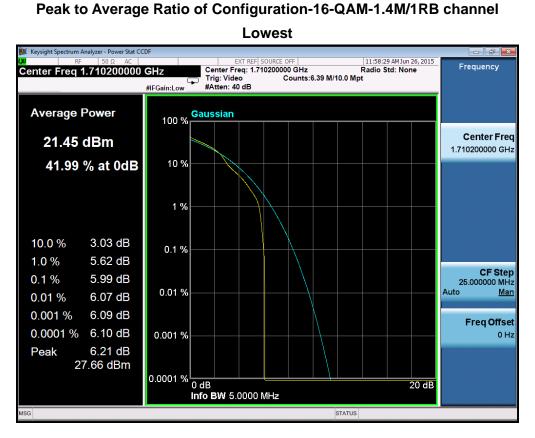




#### Peak to Average Ratio of Configuration-QPSK-15M/1RB channel Highest




#### Peak to Average Ratio of Configuration-QPSK-20M/1RB channel Lowest










#### Peak to Average Ratio of Configuration-QPSK-20M/1RB channel Highest



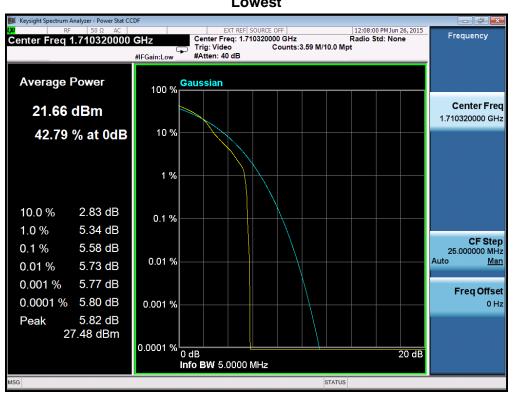

Peak to Average Ratio of Configuration-16-QAM-1.4M/1RB channel Middle






## Peak to Average Ratio of Configuration-16-QAM-1.4M/1RB channel Highest

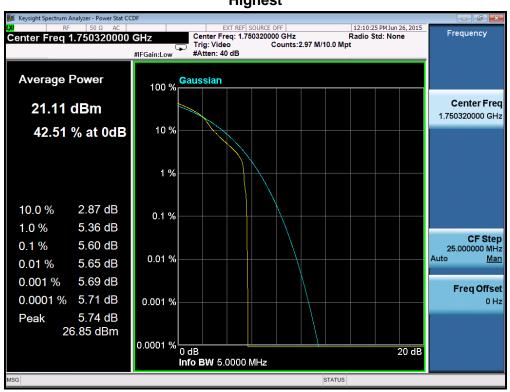



Peak to Average Ratio of Configuration-16-QAM-3M/1RB channel

Peak to Average Ratio of Configuration-16-QAM-3M/1RB channel Middle






## Peak to Average Ratio of Configuration-16-QAM-3M/1RB channel Highest



#### Peak to Average Ratio of Configuration-16-QAM-5M/1RB channel Lowest








## Peak to Average Ratio of Configuration-16-QAM-5M/1RB channel Highest



# Peak to Average Ratio of Configuration-16-QAM-10M/1RB channel

Peak to Average Ratio of Configuration-16-QAM-10M/1RB channel Middle

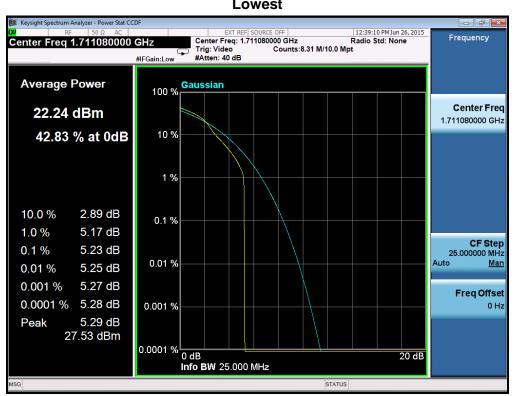




## Peak to Average Ratio of Configuration-16-QAM-10M/1RB channel Highest



# Peak to Average Rattio of Configuration-16-QAM-15M/1RB channel


Peak to Average Ratio of Configuration-16-QAM-15M/1RB channel Middle



Report No.: BTL-FICP-12-1506C242



## Peak to Average Ratio of Configuration-16-QAM-15M/1RB channel Highest



#### Peak to Average Ratio of Configuration-16-QAM-20M/1RB channel Lowest

Peak to Average Ratio of Configuration-16-QAM-20M/1RB channel Middle





## Peak to Average Ratio of Configuration-16-QAM-20M/1RB channel Highest