



# SAR TEST REPORT

|                      |                              |
|----------------------|------------------------------|
| <b>Product Name</b>  | Tablet PC                    |
| <b>Model</b>         | Trio Stealth G4 10.1 v2      |
| <b>FCC ID</b>        | 2ABYR-G410                   |
| <b>Applicant</b>     | Mach Speed Technologies, LLC |
| <b>Manufacturer</b>  | Mach Speed Technologies, LLC |
| <b>Date of issue</b> | November 11, 2014            |

**TA Technology (Shanghai) Co., Ltd.**

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 2 of 61

## **GENERAL SUMMARY**

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Standard(s) | <p><b>FCC 47CFR §2.1093</b> Radiofrequency Radiation Exposure Evaluation: Portable Devices</p> <p><b>ANSI C95.1, 1992:</b> Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)</p> <p><b>IEEE Std 1528™-2003:</b> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.</p> <p><b>KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03:</b> SAR Measurement Requirements for 100 MHz to 6 GHz</p> <p><b>KDB 447498 D01 General RF Exposure Guidance v05r02:</b> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p> <p><b>KDB 616217 D04 SAR for laptop and tablets v01r01:</b> SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers</p> <p><b>KDB 248227 D01 SAR meas for 802 11 a b g v01r02:</b> SAR Measurement Procedures for 802.11a/b/g Transmitters.</p> |
| Conclusion            | <p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only.</p> <p>General Judgment: <b>Pass</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Comment               | The test result only responds to the measured sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Approved by Kai Xu

Kai Xu  
Director

Revised by

Minbao Ling  
Minbao Ling  
SAR Manager

Performed by

Xianjin Zhang  
Xianjin Zhang  
SAR Engineer

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

**TABLE OF CONTENT**

|                                                          |    |
|----------------------------------------------------------|----|
| 1. General Information .....                             | 5  |
| 1.1. Notes of the Test Report .....                      | 5  |
| 1.2. Testing Laboratory .....                            | 5  |
| 1.3. Applicant Information.....                          | 6  |
| 1.4. Manufacturer Information .....                      | 6  |
| 1.5. Information of EUT .....                            | 7  |
| 1.6. EUT Antenna Locations.....                          | 8  |
| 1.7. The Maximum Reported SAR <sub>1g</sub> Values ..... | 9  |
| 1.8. Test Date.....                                      | 9  |
| 2. SAR Measurements System Configuration.....            | 10 |
| 2.1. SAR Measurement Set-up.....                         | 10 |
| 2.2. DASY5 E-field Probe System.....                     | 11 |
| 2.2.1. EX3DV4 Probe Specification .....                  | 11 |
| 2.2.2. E-field Probe Calibration .....                   | 12 |
| 2.3. Other Test Equipment .....                          | 12 |
| 2.3.1. Device Holder for Transmitters .....              | 12 |
| 2.3.2. Phantom .....                                     | 13 |
| 2.4. Scanning Procedure.....                             | 13 |
| 2.5. Data Storage and Evaluation.....                    | 15 |
| 2.5.1. Data Storage.....                                 | 15 |
| 2.5.2. Data Evaluation by SEMCAD .....                   | 15 |
| 3. Laboratory Environment.....                           | 17 |
| 4. Tissue-equivalent Liquid .....                        | 18 |
| 4.1. Tissue-equivalent Liquid Ingredients .....          | 18 |
| 4.2. Tissue-equivalent Liquid Properties .....           | 18 |
| 5. System Check.....                                     | 19 |
| 5.1. Description of System Check .....                   | 19 |
| 5.2. System Check Results .....                          | 20 |
| 6. Operational Conditions during Test .....              | 21 |
| 6.1. General Description of Test Procedures.....         | 21 |
| 6.2. Measurement Variability.....                        | 21 |
| 6.3. Test Positions.....                                 | 22 |
| 6.3.1. Body Configuration .....                          | 22 |
| 6.3.2. SAR test reduction and exclusion guidance.....    | 23 |
| 7. Test Results .....                                    | 24 |
| 7.1. Conducted Power Results .....                       | 24 |
| 7.2. SAR Test Results .....                              | 27 |
| 7.2.1. WIFI .....                                        | 27 |
| 7.2.2. Simultaneous SAR.....                             | 28 |
| 8. Measurement Uncertainty .....                         | 30 |
| 9. Main Test Instruments .....                           | 31 |
| ANNEX A: Test Layout .....                               | 32 |
| ANNEX B: System Check Results .....                      | 34 |
| ANNEX C: Graph Results .....                             | 35 |

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 4 of 61

---

|                                                           |    |
|-----------------------------------------------------------|----|
| ANNEX D: Probe Calibration Certificate .....              | 36 |
| ANNEX E: D2450V2 Dipole Calibration Certificate .....     | 47 |
| ANNEX F: DAE4 Calibration Certificate .....               | 55 |
| ANNEX G: The EUT Appearances and Test Configuration ..... | 58 |

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 5 of 61

### 1. General Information

#### 1.1. Notes of the Test Report

**TA Technology (Shanghai) Co., Ltd.** has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

**TA Technology (Shanghai) Co., Ltd.** guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

**TA Technology (Shanghai) Co., Ltd.** is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample undergoing test was selected by the Client. This report only refers to the item that has undergone the test.

This report alone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

#### 1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: <http://www.ta-shanghai.com>

E-mail: [xukai@ta-shanghai.com](mailto:xukai@ta-shanghai.com)

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 6 of 61

---

### 1.3. Applicant Information

Company: Mach Speed Technologies, LLC  
300 E. Arlington Street, Suite 3, Ada  
Address: Oklahoma  
74820  
United States

### 1.4. Manufacturer Information

Company: Mach Speed Technologies, LLC  
300 E. Arlington Street, Suite 3, Ada  
Address: Oklahoma  
74820  
United States

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 7 of 61

## 1.5. Information of EUT

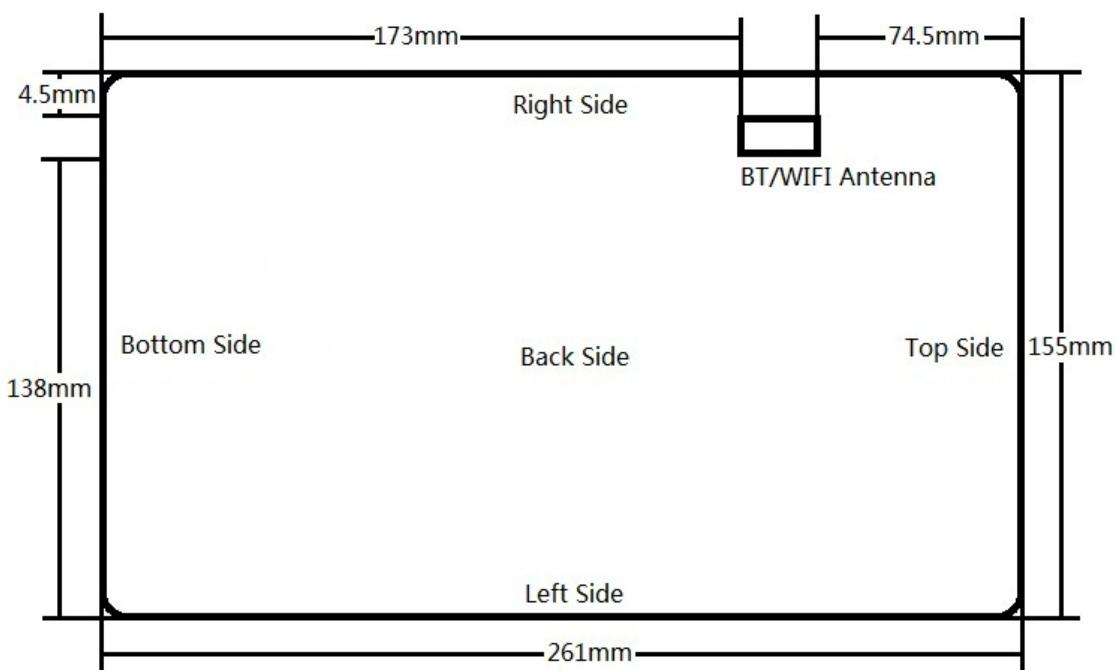
### General Information

|                    |                                              |
|--------------------|----------------------------------------------|
| Device Type:       | Portable Device                              |
| Exposure Category: | Uncontrolled Environment /General Population |
| State of Sample:   | Prototype Unit                               |
| SN:                | /                                            |
| Hardware Version:  | EM-T8511A-V3.CL                              |
| Software Version:  | Trio-stealth.101.00.04                       |
| Antenna Type:      | Internal Antenna                             |

### Device Operating Configurations:

|                          |                |            |
|--------------------------|----------------|------------|
| Test Mode(s):            | 802.11b;       |            |
|                          | 802.11g;       |            |
|                          | 802.11n HT20;  |            |
|                          | 802.11n HT40;  |            |
|                          | Bluetooth;     |            |
|                          | Bluetooth 4.0; |            |
| Test Frequency Range(s): | Mode           | Tx (MHz)   |
|                          | WIFI           | 2412 ~2462 |
|                          | Bluetooth      | 2402 ~2480 |

**TA Technology (Shanghai) Co., Ltd.  
Test Report**


Report No.: RXA1410-0235SAR01R2

Page 8 of 61

**Auxiliary Equipment Details**

| Name    | Model   | Manufacturer | S/N |
|---------|---------|--------------|-----|
| Battery | 3095150 | KANYO        | /   |

**1.6. EUT Antenna Locations**



**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 9 of 61

### 1.7. The Maximum Reported $\text{SAR}_{1g}$ Values

#### Body SAR Configuration

| Mode          | Test Position                  | Channel /Frequency(MHz) | Limit $\text{SAR}_{1g}$ 1.6 W/kg  |                                   |
|---------------|--------------------------------|-------------------------|-----------------------------------|-----------------------------------|
|               |                                |                         | Measured $\text{SAR}_{1g}$ (W/kg) | Reported $\text{SAR}_{1g}$ (W/kg) |
| WiFi(802.11b) | Test Position 3/<br>Right edge | 6/2437                  | 0.996                             | 1.206                             |

### 1.8. Test Date

The test performed on October 17, 2014.

## 2. SAR Measurements System Configuration

### 2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

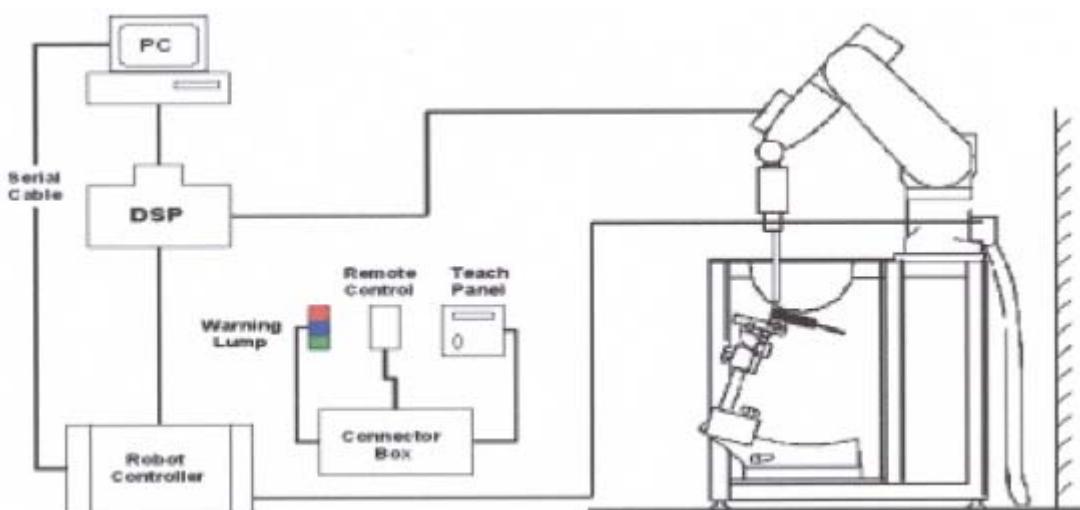



Figure 1. SAR Lab Test Measurement Set-up

## **2.2. DASY5 E-field Probe System**

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

### **2.2.1. EX3DV4 Probe Specification**

|               |                                                                                                                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction  | Symmetrical design with triangular core<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, e.g., DGBE)                                                |
| Calibration   | ISO/IEC 17025 calibration service available                                                                                                                                                                |
| Frequency     | 10 MHz to > 6 GHz<br>Linearity: $\pm 0.2$ dB<br>(30 MHz to 6 GHz)                                                                                                                                          |
| Directivity   | $\pm 0.3$ dB in HSL (rotation around probe axis)<br>$\pm 0.5$ dB in tissue material (rotation normal to probe axis)                                                                                        |
| Dynamic Range | 10 $\mu$ W/g to > 100 mW/g Linearity:<br>$\pm 0.2$ dB (noise: typically < 1 $\mu$ W/g)                                                                                                                     |
| Dimensions    | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm                                                                             |
| Application   | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%. |



**Figure 2. EX3DV4 E-field Probe**



**Figure 3. EX3DV4 E-field probe**

### **2.2.2. E-field Probe Calibration**

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than  $\pm$  10%. The spherical isotropy was evaluated and found to be better than  $\pm$  0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where:  $\Delta t$  = Exposure time (30 seconds),  
C = Heat capacity of tissue (brain or muscle),  
 $\Delta T$  = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:  
 $\sigma$  = Simulated tissue conductivity,  
 $\rho$  = Tissue density (kg/m<sup>3</sup>).

### **2.3. Other Test Equipment**

#### **2.3.1. Device Holder for Transmitters**

**Construction:** Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

**Material:** POM, Acrylic glass, Foam

### 2.3.2. Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

|                 |                          |
|-----------------|--------------------------|
| Shell Thickness | 2±0.2 mm                 |
| Filling Volume  | Approx. 30 liters        |
| Dimensions      | 190×600×0 mm (H x L x W) |



Figure 4.ELI4 Phantom

### 2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max.  $\pm 5\%$ .
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above  $\pm 0.1\text{mm}$ ). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within  $\pm 30^\circ$ .)
- Area Scan  
The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 14 of 61

spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

**Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01**

| Frequency | Maximum Area Scan Resolution (mm)<br>( $\Delta x_{area}, \Delta y_{area}$ ) | Maximum Zoom Scan Resolution (mm)<br>( $\Delta x_{zoom}, \Delta y_{zoom}$ ) | Maximum Zoom Scan Spatial Resolution (mm)<br>$\Delta z_{zoom}(n)$ | Minimum Zoom Scan Volume (mm)<br>(x,y,z) |
|-----------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|
| ≤ 2 GHz   | ≤ 15                                                                        | ≤ 8                                                                         | ≤ 5                                                               | ≥ 30                                     |
| 2-3 GHz   | ≤ 12                                                                        | ≤ 5                                                                         | ≤ 5                                                               | ≥ 30                                     |
| 3-4 GHz   | ≤ 12                                                                        | ≤ 5                                                                         | ≤ 4                                                               | ≥ 28                                     |
| 4-5 GHz   | ≤ 10                                                                        | ≤ 4                                                                         | ≤ 3                                                               | ≥ 25                                     |
| 5-6 GHz   | ≤ 10                                                                        | ≤ 4                                                                         | ≤ 2                                                               | ≥ 22                                     |

## **2.5. Data Storage and Evaluation**

### **2.5.1. Data Storage**

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DAE4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm<sup>2</sup>], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

### **2.5.2. Data Evaluation by SEMCAD**

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

|                    |                           |                                                    |
|--------------------|---------------------------|----------------------------------------------------|
| Probe parameters:  | - Sensitivity             | Norm <sub>i</sub> , $a_{i0}$ , $a_{i1}$ , $a_{i2}$ |
|                    | - Conversion factor       | ConvF <sub>i</sub>                                 |
|                    | - Diode compression point | Dcp <sub>i</sub>                                   |
| Device parameters: | - Frequency               | f                                                  |
|                    | - Crest factor            | cf                                                 |
| Media parameters:  | - Conductivity            |                                                    |
|                    | - Density                 |                                                    |

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 16 of 61

peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_{cp_i}$$

With  $V_i$  = compensated signal of channel i (i = x, y, z)

$U_i$  = input signal of channel i (i = x, y, z)

$c_f$  = crest factor of exciting field (DASY parameter)

$d_{cp_i}$  = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:  $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes:  $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$

With  $V_i$  = compensated signal of channel i (i = x, y, z)

$Norm_i$  = sensor sensitivity of channel i (i = x, y, z)  
[mV/(V/m)<sup>2</sup>] for E-field Probes

$ConvF$  = sensitivity enhancement in solution

$a_{ij}$  = sensor sensitivity factors for H-field probes

$f$  = carrier frequency [GHz]

$E_i$  = electric field strength of channel i in V/m

$H_i$  = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (p \cdot 1000)$$

with  $SAR$  = local specific absorption rate in mW/g

**$E_{tot}$**  = total field strength in V/m

$\sigma$  = conductivity in [mho/m] or [Siemens/m]

$\rho$  = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with  $P_{pwe}$  = equivalent power density of a plane wave in mW/cm<sup>2</sup>

**$E_{tot}$**  = total electric field strength in V/m

**$H_{tot}$**  = total magnetic field strength in A/m

### 3. Laboratory Environment

**Table 2: The Requirements of the Ambient Conditions**

|                                                                                                                                                                                                 |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Temperature                                                                                                                                                                                     | Min. = 18°C, Max. = 25 °C |
| Relative humidity                                                                                                                                                                               | Min. = 30%, Max. = 70%    |
| Ground system resistance                                                                                                                                                                        | < 0.5 Ω                   |
| Ambient noise is checked and found very low and in compliance with requirement of standards.<br>Reflection of surrounding objects is minimized and in compliance with requirement of standards. |                           |

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 18 of 61

## 4. Tissue-equivalent Liquid

### 4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Body Tissue Equivalent Matter

| MIXTURE%                              | FREQUENCY(Body) 2450MHz                 |  |
|---------------------------------------|-----------------------------------------|--|
| Water                                 | 73.2                                    |  |
| Glycol                                | 26.7                                    |  |
| Salt                                  | 0.1                                     |  |
| Dielectric Parameters<br>Target Value | f=2450MHz $\epsilon=52.7$ $\sigma=1.95$ |  |

### 4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

| Frequency         | Test Date  | Temp<br>°C | Measured Dielectric<br>Parameters |               | Target Dielectric<br>Parameters |               | Limit<br>(Within $\pm 5\%$ ) |                    |
|-------------------|------------|------------|-----------------------------------|---------------|---------------------------------|---------------|------------------------------|--------------------|
|                   |            |            | $\epsilon_r$                      | $\sigma(s/m)$ | $\epsilon_r$                    | $\sigma(s/m)$ | Dev<br>$\epsilon_r(%)$       | Dev<br>$\sigma(%)$ |
| 2450MHz<br>(body) | 2014-10-17 | 21.5       | 52.1                              | 1.99          | 52.7                            | 1.95          | -1.14                        | 2.05               |

## 5. System Check

### 5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ( $\pm 10\%$ ).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

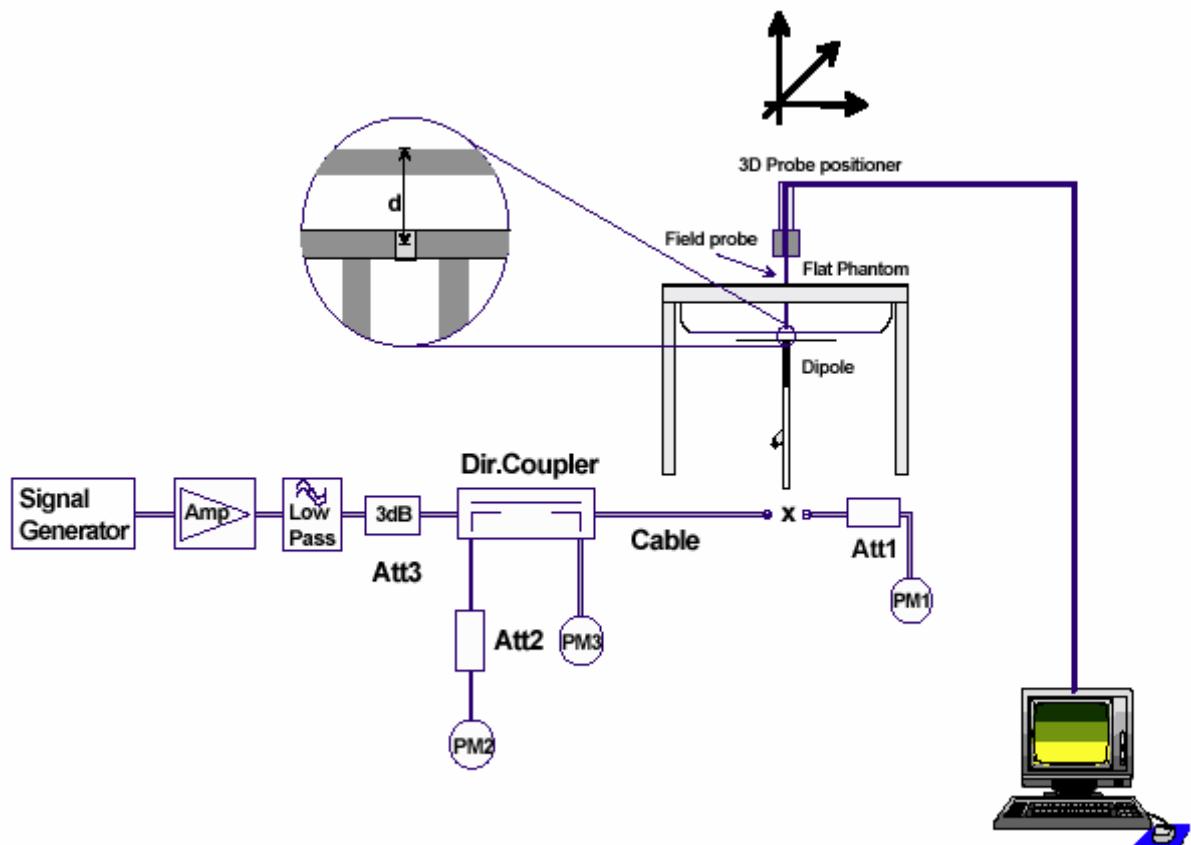



Figure 5. System Check Set-up

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 20 of 61

## 5.2. System Check Results

**Table 5: System Check in Body Tissue Simulating Liquid**

| Frequency | Test Date  | Dielectric Parameters |                | 250mW<br>Measured<br>SAR <sub>1g</sub> | 1W<br>Normalized<br>SAR <sub>1g</sub> | 1W<br>Target<br>SAR <sub>1g</sub> | Limit<br>(±10%<br>Deviation) |
|-----------|------------|-----------------------|----------------|----------------------------------------|---------------------------------------|-----------------------------------|------------------------------|
|           |            | $\epsilon_r$          | $\sigma$ (s/m) | (W/kg)                                 |                                       |                                   |                              |
| 2450MHz   | 2014-10-17 | 52.1                  | 1.99           | 13.20                                  | 52.80                                 | 52.40                             | 0.76%                        |

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate

## **6. Operational Conditions during Test**

### **6.1. General Description of Test Procedures**

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 16 for 802.11 b mode, set to 16 for 802.11 g mode, set to 16 for 802.11 n HT20 mode, set to 15 for 802.11 n HT40 mode by software, This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

### **6.2. Measurement Variability**

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is  $\geq 0.80$  W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was  $> 1.20$  or when the original or repeated measurement was  $\geq 1.45$  W/kg ( $\sim 10\%$  from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was  $\geq 1.5$  W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is  $> 1.20$ .
- 4) Repeated measurements are not required when the original highest measured SAR is  $< 0.80$  W/kg

### **6.3. Test Positions**

#### **6.3.1. Body Configuration**

The overall diagonal dimension of the display section of a tablet is 29.6 cm > 20 cm, Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. SAR evaluation for the front surface of tablet display screens are generally not necessary. The SAR Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

- Test Position 1: The back surface of the EUT towards to the bottom of the flat phantom. (ANNEX G Picture 4).
- Test Position 2: The left edge of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 5).
- Test Position 3: The right edge of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 6).
- Test Position 4: The top edge of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 7).
- Test Position 5: The bottom edge of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 8).

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

**6.3.2. SAR test reduction and exclusion guidance**

(1) The SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{(\text{max. power of channel, including tune-up tolerance, mW})}{(\text{min. test separation distance, mm})} * \sqrt{\text{Frequency (GHz)}} \leq 3.0$$

We calculate mW of the exclusion threshold value (3.0) to be compared.

$$[3.0 * (\text{min. test separation distance, mm}) / \sqrt{\text{Frequency (GHz)} }] \text{ mW}$$

(2) The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:

a) at 100 MHz to 1500 MHz

$$[\text{Power allowed at numeric Threshold at 50 mm in step 1} + (\text{test separation distance} - 50 \text{ mm}) \cdot (f_{(\text{MHz})}/150)] \text{ mW}$$

b) at > 1500 MHz and  $\leq$  6 GHz

$$[\text{Power allowed at numeric Threshold at 50 mm in step 1} + (\text{test separation distance} - 50 \text{ mm}) \cdot 10] \text{ mW}$$

| Band    | Test Position | Frequency (MHz) | Separation Distance (mm) | Maximum Power (dBm) | Maximum Power (mW) | SAR Exclusion Thresholds (mW) | Standalone SAR |
|---------|---------------|-----------------|--------------------------|---------------------|--------------------|-------------------------------|----------------|
| 802.11b | Back side     | 2462            | 0                        | 15                  | 31.62              | 9.56                          | Yes            |
|         | Left Edge     | 2462            | 138                      | 15                  | 31.62              | 976                           | No             |
|         | Right Edge    | 2462            | 4.5                      | 15                  | 31.62              | 9.56                          | Yes            |
|         | Top Edge      | 2462            | 74.5                     | 15                  | 31.62              | 341                           | No             |
|         | Bottom Edge   | 2462            | 173                      | 15                  | 31.62              | 1326                          | No             |
| BT      | Back side     | 2480            | 0                        | 7                   | 5.01               | 9.53                          | No             |
|         | Left Edge     | 2480            | 138                      | 7                   | 5.01               | 976                           | No             |
|         | Right Edge    | 2480            | 4.5                      | 7                   | 5.01               | 9.53                          | No             |
|         | Top Edge      | 2480            | 74.5                     | 7                   | 5.01               | 341                           | No             |
|         | Bottom Edge   | 2480            | 173                      | 7                   | 5.01               | 1326                          | No             |

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

## 7. Test Results

### 7.1. Conducted Power Results

**Table 6: Conducted Power Measurement Results**

| Mode    | Channel/<br>Frequency(MHz) | Data rate<br>(Mbps) | AV Power (dBm) |
|---------|----------------------------|---------------------|----------------|
| 802.11b | 1/2412                     | 1                   | 13.51          |
|         |                            | 2                   | 13.36          |
|         |                            | 5.5                 | 13.34          |
|         |                            | 11                  | 12.87          |
|         | 6/2437                     | 1                   | 14.17          |
|         |                            | 2                   | 13.98          |
|         |                            | 5.5                 | 13.87          |
|         |                            | 11                  | 13.33          |
|         | 11/2462                    | 1                   | 14.42          |
|         |                            | 2                   | 14.33          |
|         |                            | 5.5                 | 14.19          |
|         |                            | 11                  | 13.90          |
| 802.11g | 1/2412                     | 6                   | 12.45          |
|         |                            | 9                   | 12.28          |
|         |                            | 12                  | 12.13          |
|         |                            | 18                  | 11.76          |
|         |                            | 24                  | 11.15          |
|         |                            | 36                  | 10.61          |
|         |                            | 48                  | 10.15          |
|         |                            | 54                  | 9.99           |
|         | 6/2437                     | 6                   | 14.09          |
|         |                            | 9                   | 13.89          |
|         |                            | 12                  | 13.77          |
|         |                            | 18                  | 13.41          |
|         |                            | 24                  | 12.84          |
|         |                            | 36                  | 12.32          |
|         |                            | 48                  | 11.85          |
|         |                            | 54                  | 11.67          |
|         | 11/2462                    | 6                   | 13.22          |
|         |                            | 9                   | 13.03          |
|         |                            | 12                  | 12.87          |

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

|              |         |      |       |
|--------------|---------|------|-------|
|              |         | 18   | 12.53 |
|              |         | 24   | 11.96 |
|              |         | 36   | 11.38 |
|              |         | 48   | 11.01 |
|              |         | 54   | 10.82 |
| 802.11n HT20 | 1/2412  | MCS0 | 12.46 |
|              |         | MCS1 | 12.07 |
|              |         | MCS2 | 11.73 |
|              |         | MCS3 | 11.12 |
|              |         | MCS4 | 10.63 |
|              |         | MCS5 | 10.23 |
|              |         | MCS6 | 9.98  |
|              |         | MCS7 | 9.79  |
| 802.11n HT20 | 6/2437  | MCS0 | 14.16 |
|              |         | MCS1 | 13.72 |
|              |         | MCS2 | 13.14 |
|              |         | MCS3 | 12.81 |
|              |         | MCS4 | 12.31 |
|              |         | MCS5 | 11.89 |
|              |         | MCS6 | 11.71 |
|              |         | MCS7 | 11.28 |
| 802.11n HT40 | 11/2462 | MCS0 | 13.12 |
|              |         | MCS1 | 12.73 |
|              |         | MCS2 | 12.17 |
|              |         | MCS3 | 11.83 |
|              |         | MCS4 | 11.34 |
|              |         | MCS5 | 10.94 |
|              |         | MCS6 | 10.76 |
|              |         | MCS7 | 10.58 |
| 802.11n HT40 | 3/2422  | MCS0 | 10.06 |
|              |         | MCS1 | 9.39  |
|              |         | MCS2 | 8.84  |
|              |         | MCS3 | 8.15  |
|              |         | MCS4 | 7.49  |
|              |         | MCS5 | 7.07  |
|              |         | MCS6 | 6.79  |
|              |         | MCS7 | 6.71  |
|              | 6/2437  | MCS0 | 12.29 |

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 26 of 61

|        |      |       |
|--------|------|-------|
| 9/2452 | MCS1 | 11.44 |
|        | MCS2 | 10.91 |
|        | MCS3 | 10.51 |
|        | MCS4 | 9.85  |
|        | MCS5 | 9.41  |
|        | MCS6 | 9.15  |
|        | MCS7 | 9.05  |
|        | MCS0 | 10.49 |
|        | MCS1 | 9.81  |
|        | MCS2 | 9.29  |
|        | MCS3 | 8.82  |
|        | MCS4 | 8.17  |
|        | MCS5 | 7.31  |
|        | MCS6 | 7.06  |
|        | MCS7 | 6.97  |

| BT       | <b>Conducted Power (dBm)</b> |                |                |
|----------|------------------------------|----------------|----------------|
|          | Channel/Frequency(MHz)       |                |                |
|          | Ch 0/2402 MHz                | Ch 39/2441 MHz | Ch 78/2480 MHz |
| GFSK     | 5.6                          | 5.0            | 6.4            |
| π/4DQPSK | 5.4                          | 5.0            | 6.0            |
| 8DPSK    | 5.3                          | 5.0            | 6.1            |
| BT 4.0   | Ch 0/2402 MHz                | Ch 19/2440 MHz | Ch 39/2480 MHz |
| GFSK     | -0.6                         | -0.8           | 1.1            |

# TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1410-0235SAR01R2

Page 27 of 61

## 7.2. SAR Test Results

### 7.2.1. WIFI

**Table 7: SAR Values (802.11b)**

**Table 8: SAR Measurement Variability Results [WIFI (802.11b)]**

| Test Position   | Channel/<br>Frequency<br>(MHz) | Measured<br>SAR (1g) | 1 <sup>st</sup> Repeated<br>SAR (1g) | Ratio | 2 <sup>nd</sup> Repeated<br>SAR (1g) | 3 <sup>rd</sup> Repeated<br>SAR (1g) |
|-----------------|--------------------------------|----------------------|--------------------------------------|-------|--------------------------------------|--------------------------------------|
| Test Position 3 | 11/2462                        | 1.020                | 1.030                                | 1.01  | NA                                   | NA                                   |

Note: 1) When the original highest measured SAR is  $\geq 0.80$  W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was  $> 1.20$  or when the original or repeated measurement was  $\geq 1.45$  W/kg ( $\sim 10\%$  from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was  $\geq 1.5$  W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is  $> 1.20$ .

4) Repeated measurements are not required when the original highest measured SAR is  $< 0.80$  W/kg

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

**7.2.2. Simultaneous SAR**

| Air-Interface  | Band (MHz) | Type | Simultaneous Transmissions | Voice Over Digital Transport (Data) |
|----------------|------------|------|----------------------------|-------------------------------------|
| WIFI           | 2450       | Data | Yes<br>BT                  | NA                                  |
| Bluetooth (BT) | 2450       | Data | Yes<br>WIFI                | NA                                  |

**Estimated SAR**

(1) for test separation distances  $\leq$  50 mm

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter for test separation distances  $\leq$  50 mm.

$$\text{Estimated SAR} = \frac{(\text{max. power of channel, including tune-up tolerance, mW}) * \sqrt{f (\text{GHz})}}{(\text{min. test separation distance, mm})} * \frac{1}{7.5}$$

| Band      | Configuration | Frequency (MHz) | Maximum Power (dBm) | Separation Distance (mm) | Estimated SAR (W/kg) |
|-----------|---------------|-----------------|---------------------|--------------------------|----------------------|
| Bluetooth | Body          | 2480            | 7                   | 5                        | 0.210                |

(2) for test separation distances  $>$  50 mm

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is  $>$  50 mm

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is  $\leq$  1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$\text{Ratio} = \frac{(\text{SAR}_1 + \text{SAR}_2)^{1.5}}{(\text{min. test separation distance, mm})} < 0.04$$

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 29 of 61

**BT&WIFI Mode**

| <b>Test Position</b> | <b>Reported SAR<sub>1g</sub>(W/kg)</b> | <b>WIFI</b> | <b>BT</b> | <b>MAX. Σ SAR<sub>1g</sub></b> | <b>peak location separation ratio</b> |
|----------------------|----------------------------------------|-------------|-----------|--------------------------------|---------------------------------------|
| Test Position 1      | 0.874                                  | 0.210       |           | 1.084                          | No                                    |
| Test Position 2      | 0.400                                  | 0.400       |           | 0.800                          | No                                    |
| Test Position 3      | 1.206                                  | 0.210       |           | 1.416                          | No                                    |
| Test Position 4      | 0.400                                  | 0.400       |           | 0.800                          | No                                    |
| Test Position 5      | 0.400                                  | 0.400       |           | 0.800                          | No                                    |

Note: 1. The value with blue color is the maximum  $\Sigma$ SAR<sub>1g</sub> Value.

2. MAX.  $\Sigma$ SAR<sub>1g</sub> = Reported SAR<sub>Max.WIFI</sub> + Reported SAR<sub>Max.GSM/UMTS</sub>

MAX.  $\Sigma$ SAR<sub>1g</sub> = 1.416W/kg < 1.6 W/kg, so the Simultaneous transimiton SAR with volum scan are not required for BT and WIFI.

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 30 of 61

---

## **8. Measurement Uncertainty**

The measured SAR were <1.5 W/kg for all frequency bands, therefore per KDB Publication 865664 D01v01r03, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports.

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

## 9. Main Test Instruments

**Table 9: List of Main Instruments**

| No. | Name                     | Type           | Serial Number | Calibration Date         | Valid Period |
|-----|--------------------------|----------------|---------------|--------------------------|--------------|
| 01  | Network analyzer         | Agilent 8753E  | US37390326    | September 1, 2014        | One year     |
| 02  | Dielectric Probe Kit     | Agilent 85070E | US44020115    | No Calibration Requested |              |
| 03  | Power meter              | Agilent E4417A | GB41291714    | March 9, 2014            | One year     |
| 04  | Power sensor             | Agilent N8481H | MY50350004    | September 22, 2014       | One year     |
| 05  | Power sensor             | E9327A         | US40441622    | January 1, 2014          | One year     |
| 06  | Signal Generator         | HP 8341B       | 2730A00804    | September 1, 2014        | One year     |
| 07  | Dual directional coupler | 777D           | 50146         | March 24, 2014           | One year     |
| 08  | Amplifier                | IXA-020        | 0401          | No Calibration Requested |              |
| 09  | E-field Probe            | EX3DV4         | 3677          | November 28, 2013        | One year     |
| 10  | DAE                      | DAE4           | 1317          | January 16, 2014         | One year     |
| 11  | Validation Kit 2450MHz   | D2450V2        | 786           | September 1, 2014        | Three years  |
| 12  | Temperature Probe        | JM222          | AA1009129     | March 13, 2014           | One year     |
| 13  | Hygrothermograph         | WS-1           | 64591         | September 25, 2014       | One year     |

**\*\*\*END OF REPORT \*\*\***

**TA Technology (Shanghai) Co., Ltd.  
Test Report**

Report No.: RXA1410-0235SAR01R2

Page 32 of 61

**ANNEX A: Test Layout**



**Picture 1: Specific Absorption Rate Test Layout**

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 33 of 61



**Picture 2: Liquid depth in the Flat Phantom (2450 MHz, 15.3cm depth)**

## ANNEX B: System Check Results

### System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 10/17/2014

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.99$  mho/m;  $\epsilon_r = 52.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 °C      Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

**d=10mm, Pin=250mW/Area Scan (41x71x1):** Measurement grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 17.3 mW/g

**d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.4 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 26.1 W/kg

**SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.27 mW/g**

Maximum value of SAR (measured) = 15 mW/g

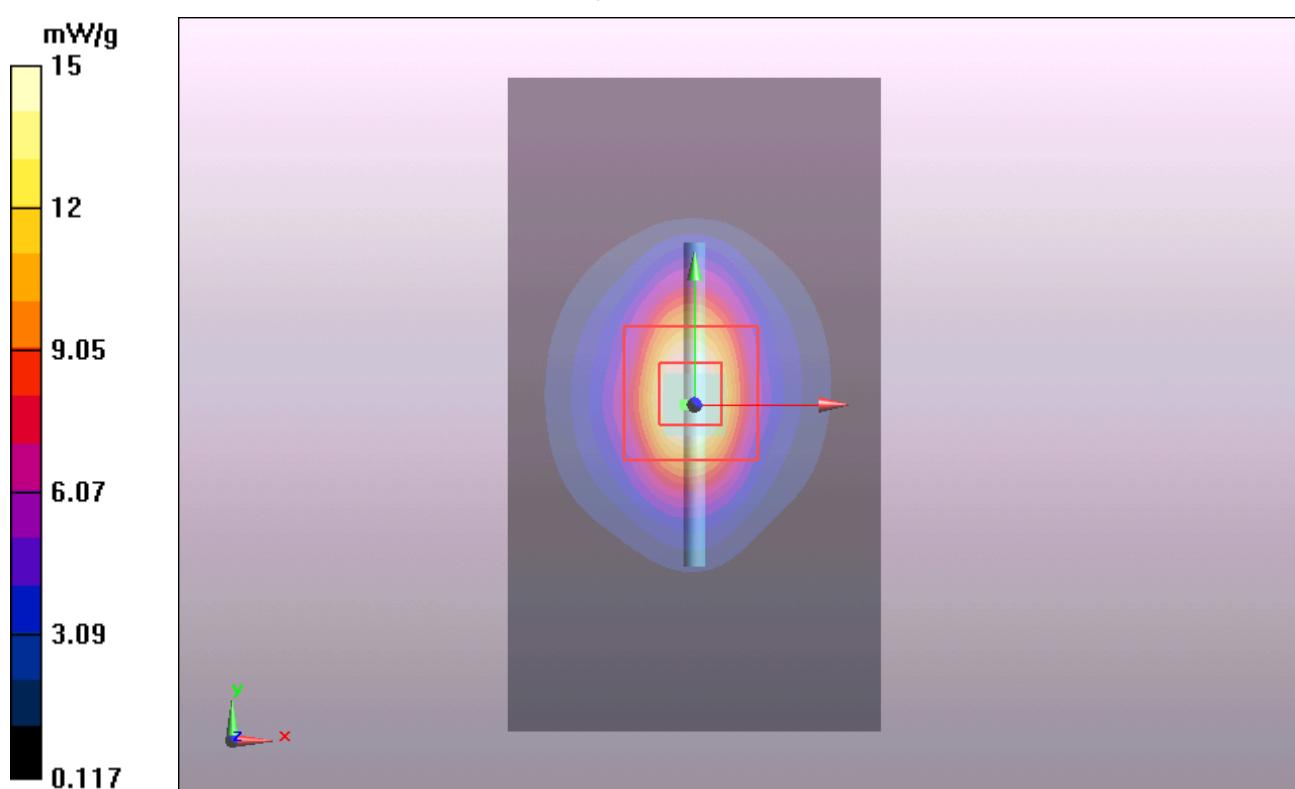



Figure 6 System Performance Check 2450MHz 250mW

## ANNEX C: Graph Results

### 802.11b Test Position 3 Middle

Date: 10/17/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used:  $f = 2437$  MHz;  $\sigma = 1.977$  S/m;  $\epsilon_r = 52.177$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 °C      Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

**Test Position 3 Middle/Area Scan (41x241x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.01 W/kg

**Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.191 V/m; Power Drift = 0.167 dB

Peak SAR (extrapolated) = 2.88 W/kg

**SAR(1 g) = 0.996 W/kg; SAR(10 g) = 0.365 W/kg**

Maximum value of SAR (measured) = 1.13 W/kg

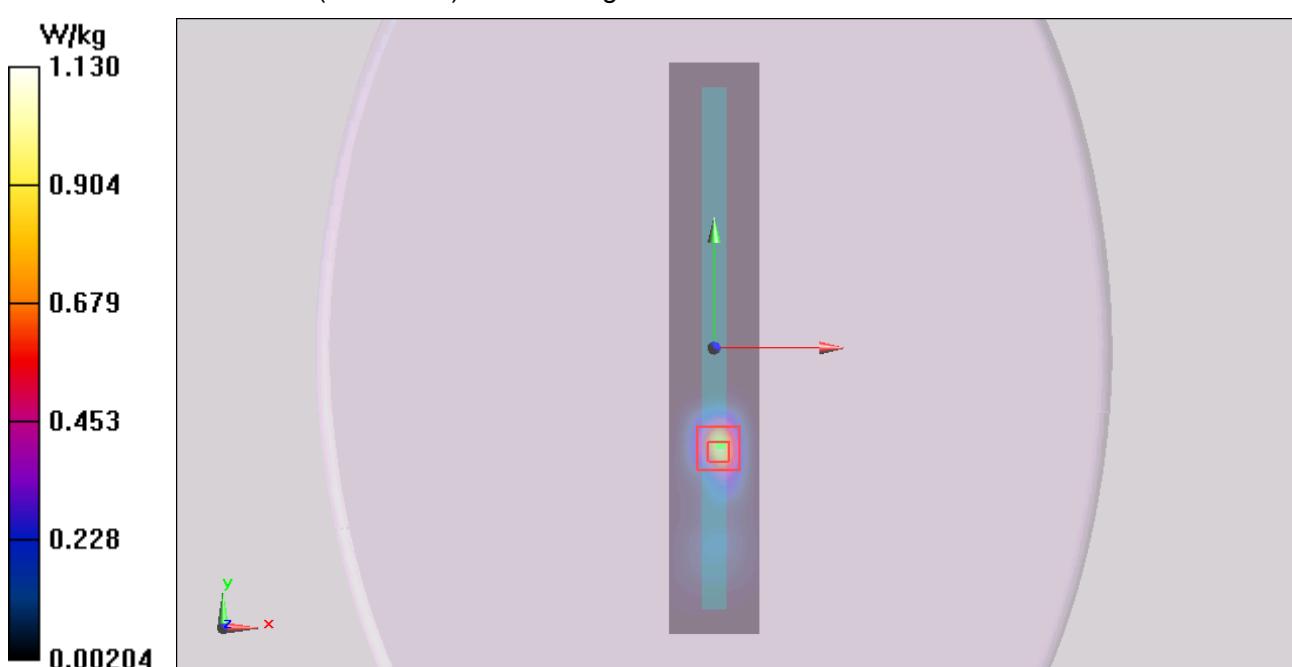



Figure 7 802.11b Test Position 3 Channel 6

TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2

Page 36 of 61

ANNEX D: Probe Calibration Certificate



In Collaboration with  
**s p e a g**  
CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emeite.com Http://www.emcite.com



Client

TA-ShangHai

Certificate No: J13-2-2971

**CALIBRATION CERTIFICATE**

Object EX3DV4 - SN:3677

Calibration Procedure(s) TMC-OS-E-02-195  
Calibration Procedures for Dosimetric E-field Probes

Calibration date: November 28, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID #       | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-13 (TMC, No.JW13-044)             | Jun-14                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-13 (TMC, No.JW13-044)             | Jun-14                |
| Power sensor NRP-Z91    | 101548     | 01-Jul-13 (TMC, No.JW13-044)             | Jun-14                |
| Reference10dBAttenuator | BT0520     | 12-Dec-12(TMC, No.JZ12-867)              | Dec-14                |
| Reference20dBAttenuator | BT0267     | 12-Dec-12(TMC, No.JZ12-866)              | Dec-14                |
| Reference Probe EX3DV4  | SN 3846    | 03-Sep-13(SPEAG No.EX3-3846_Sep13)       | Sep-14                |
| DAE4                    | SN 777     | 22-Feb-13 (SPEAG, DAE4-777_Feb13)        | Feb-14                |
| Secondary Standards     | ID #       | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| SignalGeneratorMG3700A  | 6201052605 | 01-Jul-13 (TMC, No.JW13-045)             | Jun-14                |
| Network Analyzer E5071C | MY46110673 | 15-Feb-13 (TMC, No.JZ13-781)             | Feb-14                |

|                | Name        | Function                          | Signature |
|----------------|-------------|-----------------------------------|-----------|
| Calibrated by: | Yu Zongying | SAR Test Engineer                 |           |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                |           |
| Approved by:   | Lu Bingsong | Deputy Director of the Laboratory |           |

Issued: November 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 37 of 61



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

### Glossary:

|                       |                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| TS                    | tissue simulating liquid                                                                                                                    |
| NORM <sub>x,y,z</sub> | sensitivity in free space                                                                                                                   |
| ConvF                 | sensitivity in TSL / NORM <sub>x,y,z</sub>                                                                                                  |
| DCP                   | diode compression point                                                                                                                     |
| CF                    | crest factor (1/duty_cycle) of the RF signal                                                                                                |
| A,B,C,D               | modulation dependent linearization parameters                                                                                               |
| Polarization $\Phi$   | $\Phi$ rotation around probe axis                                                                                                           |
| Polarization $\theta$ | $\theta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i<br>$\theta=0$ is normal to probe axis |

### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

### Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$ : Assessed for E-field polarization  $\theta=0$  ( $\leq 900$ MHz in TEM-cell;  $f > 1800$ MHz: waveguide).  $NORM_{x,y,z}$  are only intermediate values, i.e., the uncertainties of  $NORM_{x,y,z}$  does not effect the  $E^2$ -field uncertainty inside TSL (see below ConvF).
- $NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency\_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCP_{x,y,z}$ : DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}; A, B, C$  are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to  $NORM_{x,y,z} * ConvF$  whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$ MHz to  $\pm 100$ MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the  $NORM_x$  (no uncertainty required).

TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2

Page 38 of 61



Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

# Probe EX3DV4

SN: 3677

Calibrated: November 28, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 39 of 61



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

## DASY – Parameters of Probe: EX3DV4 - SN: 3677

### Basic Calibration Parameters

|                                                 | Sensor X | Sensor Y | Sensor Z | Unc (k=2)   |
|-------------------------------------------------|----------|----------|----------|-------------|
| Norm( $\mu$ V/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.38     | 0.44     | 0.38     | $\pm$ 10.8% |
| DCP(mV) <sup>B</sup>                            | 99.8     | 100.9    | 101.9    |             |

### Modulation Calibration Parameters

| UID | Communication System Name |   | A dB | B dB, $\mu$ V | C   | D dB | VR mV | Unc <sup>E</sup> (k=2) |
|-----|---------------------------|---|------|---------------|-----|------|-------|------------------------|
| 0   | CW                        | X | 0.0  | 0.0           | 1.0 | 0.00 | 93.3  | $\pm$ 2.6%             |
|     |                           | Y | 0.0  | 0.0           | 1.0 |      | 101.7 |                        |
|     |                           | Z | 0.0  | 0.0           | 1.0 |      | 92.1  |                        |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5 and Page 6).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

## DASY – Parameters of Probe: EX3DV4 - SN: 3677

### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>c</sup> | Relative Permittivity <sup>f</sup> | Conductivity (S/m) <sup>f</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth (mm) | Unct. (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|------------|-------------|
| 750                  | 41.9                               | 0.89                            | 9.94    | 9.94    | 9.94    | 0.16  | 1.13       | ±12%        |
| 850                  | 41.5                               | 0.92                            | 9.41    | 9.41    | 9.41    | 0.11  | 1.47       | ±12%        |
| 1750                 | 40.1                               | 1.37                            | 8.22    | 8.22    | 8.22    | 0.14  | 2.11       | ±12%        |
| 1900                 | 40.0                               | 1.40                            | 8.15    | 8.15    | 8.15    | 0.14  | 2.34       | ±12%        |
| 2100                 | 39.8                               | 1.49                            | 7.87    | 7.87    | 7.87    | 0.13  | 3.21       | ±12%        |
| 2450                 | 39.2                               | 1.80                            | 7.64    | 7.64    | 7.64    | 0.39  | 0.95       | ±12%        |
| 5200                 | 36.0                               | 4.66                            | 5.73    | 5.73    | 5.73    | 0.95  | 0.62       | ±13%        |
| 5300                 | 35.9                               | 4.76                            | 5.68    | 5.68    | 5.68    | 0.87  | 0.67       | ±13%        |
| 5500                 | 35.6                               | 4.96                            | 5.62    | 5.62    | 5.62    | 0.97  | 0.62       | ±13%        |
| 5600                 | 35.5                               | 5.07                            | 5.29    | 5.29    | 5.29    | 0.89  | 0.63       | ±13%        |
| 5800                 | 35.3                               | 5.27                            | 5.29    | 5.29    | 5.29    | 1.02  | 0.61       | ±13%        |

<sup>c</sup> Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>f</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2

Page 41 of 61



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

**DASY – Parameters of Probe: EX3DV4 - SN: 3677**

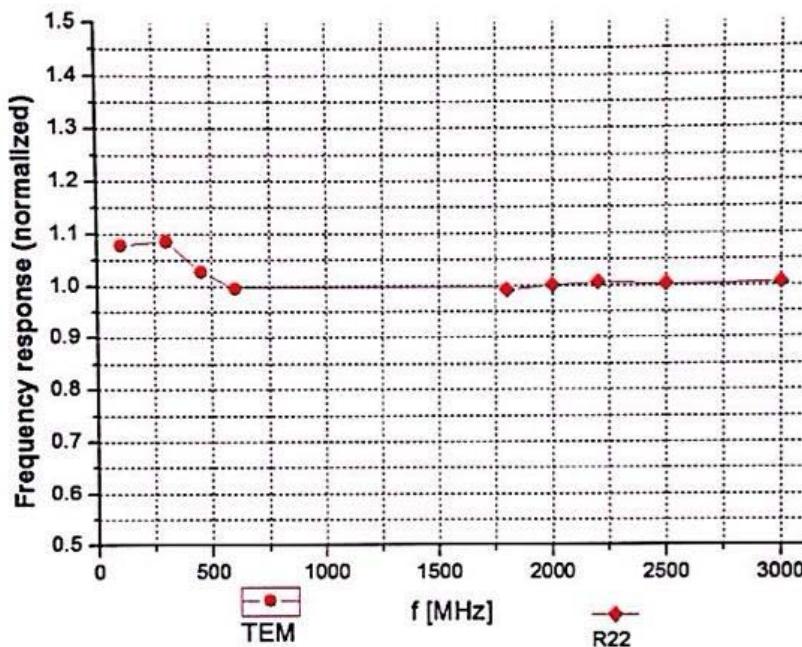
**Calibration Parameter Determined in Body Tissue Simulating Media**

| f [MHz] <sup>c</sup> | Relative Permittivity <sup>f</sup> | Conductivity (S/m) <sup>f</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth (mm) | Unct. (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|------------|-------------|
| 750                  | 55.5                               | 0.96                            | 9.72    | 9.72    | 9.72    | 0.11  | 1.97       | ±12%        |
| 850                  | 55.2                               | 0.99                            | 9.51    | 9.51    | 9.51    | 0.15  | 1.55       | ±12%        |
| 1750                 | 53.4                               | 1.49                            | 7.77    | 7.77    | 7.77    | 0.14  | 3.23       | ±12%        |
| 1900                 | 53.3                               | 1.52                            | 7.63    | 7.63    | 7.63    | 0.15  | 2.81       | ±12%        |
| 2100                 | 53.2                               | 1.62                            | 7.97    | 7.97    | 7.97    | 0.16  | 4.09       | ±12%        |
| 2450                 | 52.7                               | 1.95                            | 7.61    | 7.61    | 7.61    | 0.45  | 0.92       | ±12%        |
| 5200                 | 49.0                               | 5.30                            | 4.72    | 4.72    | 4.72    | 0.66  | 1.10       | ±13%        |
| 5300                 | 48.9                               | 5.42                            | 4.67    | 4.67    | 4.67    | 0.64  | 1.19       | ±13%        |
| 5500                 | 48.6                               | 5.65                            | 4.34    | 4.34    | 4.34    | 0.73  | 0.80       | ±13%        |
| 5600                 | 48.5                               | 5.77                            | 4.29    | 4.29    | 4.29    | 0.74  | 0.81       | ±13%        |
| 5800                 | 48.2                               | 6.00                            | 4.46    | 4.46    | 4.46    | 0.78  | 0.80       | ±13%        |

<sup>c</sup> Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>f</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.  
Test Report


Report No.: RXA1410-0235SAR01R2

Page 42 of 61



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

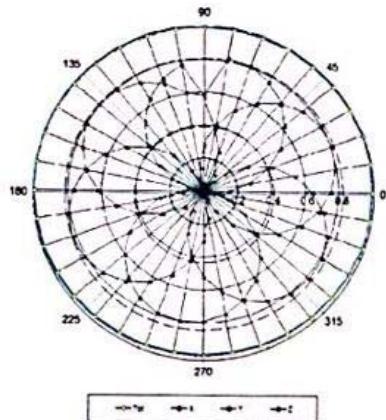
**Frequency Response of E-Field**  
(TEM-Cell: ifi110 EXX, Waveguide: R22)



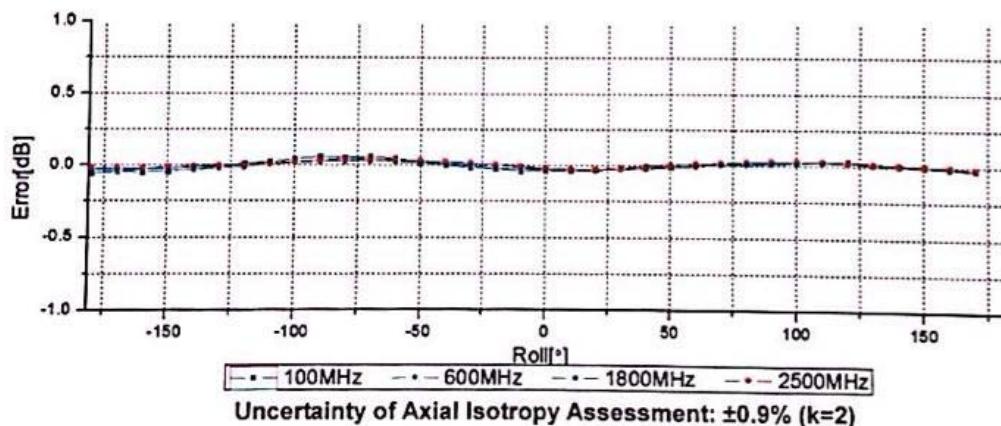
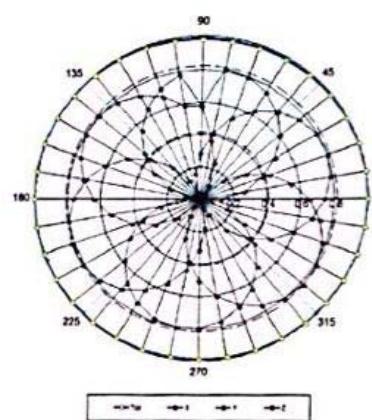
Uncertainty of Frequency Response of E-field:  $\pm 7.5\%$  (k=2)

TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2


Page 43 of 61





Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

**Receiving Pattern ( $\Phi$ ),  $\theta=0^\circ$**

**f=600 MHz, TEM**

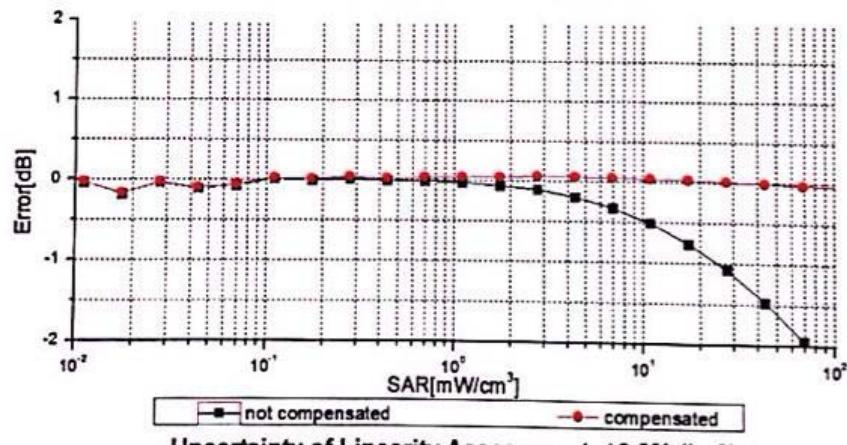
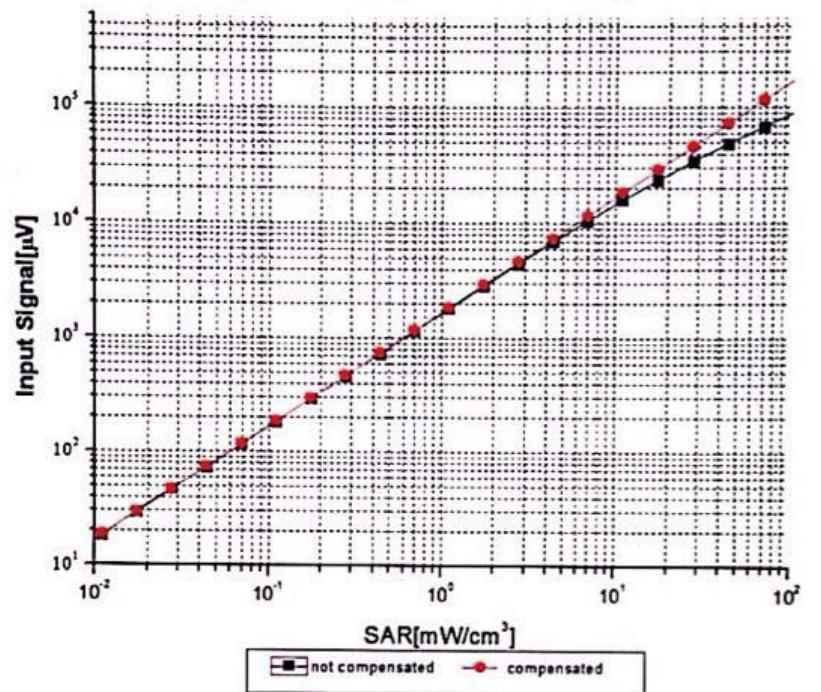


**f=1800 MHz, R22**



Uncertainty of Axial Isotropy Assessment:  $\pm 0.9\%$  ( $k=2$ )

TA Technology (Shanghai) Co., Ltd.  
Test Report



Report No.: RXA1410-0235SAR01R2

Page 44 of 61



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

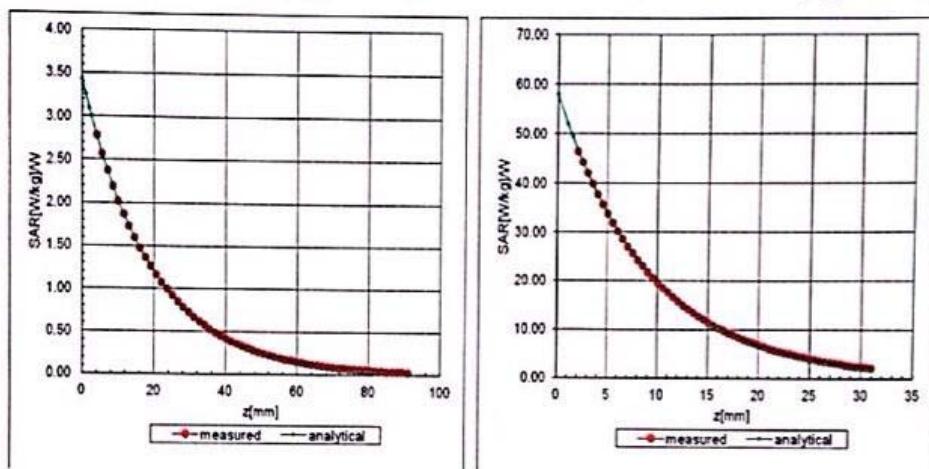
**Dynamic Range f(SAR<sub>head</sub>)**  
(TEM cell, f = 900 MHz)



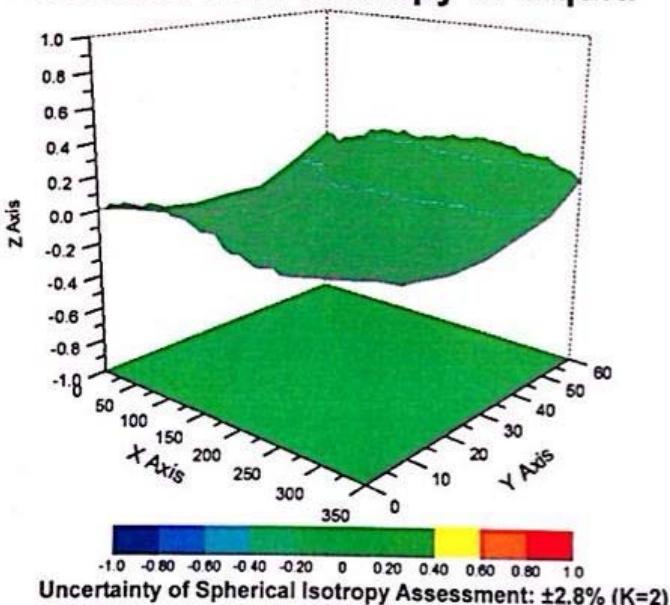
Uncertainty of Linearity Assessment:  $\pm 0.9\%$  ( $k=2$ )

TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2


Page 45 of 61




Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 FAX: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

### Conversion Factor Assessment

$f=850$  MHz, WGLS R9(H\_convF)       $f=2450$  MHz, WGLS R26(H\_convF)



### Deviation from Isotropy in Liquid



TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2

Page 46 of 61



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: Info@emcite.com Http://www.emcite.com

**DASY - Parameters of Probe: EX3DV4 - SN: 3677**

**Other Probe Parameters**

|                                                      |            |
|------------------------------------------------------|------------|
| <b>Sensor Arrangement</b>                            | Triangular |
| <b>Connector Angle (°)</b>                           | 117        |
| <b>Mechanical Surface Detection Mode</b>             | enabled    |
| <b>Optical Surface Detection Mode</b>                | disable    |
| <b>Probe Overall Length</b>                          | 337mm      |
| <b>Probe Body Diameter</b>                           | 10mm       |
| <b>Tip Length</b>                                    | 9mm        |
| <b>Tip Diameter</b>                                  | 2.5mm      |
| <b>Probe Tip to Sensor X Calibration Point</b>       | 1mm        |
| <b>Probe Tip to Sensor Y Calibration Point</b>       | 1mm        |
| <b>Probe Tip to Sensor Z Calibration Point</b>       | 1mm        |
| <b>Recommended Measurement Distance from Surface</b> | 2mm        |

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 47 of 61

### ANNEX E: D2450V2 Dipole Calibration Certificate



In Collaboration with  
**s p e a g**  
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: ctll@chinattl.com Http://www.chinattl.cn



CALIBRATION  
No. L0570

Client

TA(Shanghai)

Certificate No: Z14-97075

#### CALIBRATION CERTIFICATE

Object D2450V2 - SN: 786

Calibration Procedure(s) TMC-OS-E-02-194  
Calibration procedure for dipole validation kits

Calibration date: September 1, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID #       | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRV         | 102083     | 11-Sep-13 (TMC, No.JZ13-443)             | Sep-14                |
| Power sensor NRV-Z5     | 100595     | 11-Sep-13 (TMC, No. JZ13-443)            | Sep -14               |
| Reference Probe ES3DV3  | SN 3149    | 5- Sep-13 (SPEAG, No.ES3-3149_Sep13)     | Sep-14                |
| DAE3                    | SN 536     | 23-Jan-14 (SPEAG, DAE3-536_Jan14)        | Jan -15               |
| Signal Generator E4438C | MY49070393 | 13-Nov-13 (TMC, No.JZ13-394)             | Nov-14                |
| Network Analyzer E8362B | MY43021135 | 19-Oct-13 (TMC, No.JZ13-278)             | Oct-14                |

| Calibrated by: | Name        | Function                          | Signature |
|----------------|-------------|-----------------------------------|-----------|
|                | Zhao Jing   | SAR Test Engineer                 |           |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                |           |
| Approved by:   | Lu Bingsong | Deputy Director of the laboratory |           |

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 48 of 61



In Collaboration with  
**s p e a g**  
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinatl.com](mailto:cttl@chinatl.com) [Http://www.chinatl.cn](http://www.chinatl.cn)



CALIBRATION  
No. L0570

### Glossary:

|       |                                |
|-------|--------------------------------|
| TSL   | tissue simulating liquid       |
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

- DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 49 of 61



In Collaboration with  
**s p e a g**  
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
 E-mail: [cttl@chinatrl.com](mailto:cttl@chinatrl.com) [Http://www.chinatrl.cn](http://www.chinatrl.cn)



CALIBRATION  
No. L0570

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

|                                     |                                      |             |
|-------------------------------------|--------------------------------------|-------------|
| <b>DASY Version</b>                 | DASY52                               | 52.8.8.1222 |
| <b>Extrapolation</b>                | Advanced Extrapolation               |             |
| <b>Phantom</b>                      | Triple Flat Phantom 5.1C             |             |
| <b>Distance Dipole Center - TSL</b> | 10 mm                                | with Spacer |
| <b>Zoom Scan Resolution</b>         | $dx, dy, dz = 5 \text{ mm}$          |             |
| <b>Frequency</b>                    | $2450 \text{ MHz} \pm 1 \text{ MHz}$ |             |

### Head TSL parameters

The following parameters and calculations were applied.

|                                                | Temperature                 | Permittivity           | Conductivity                         |
|------------------------------------------------|-----------------------------|------------------------|--------------------------------------|
| <b>Nominal Head TSL parameters</b>             | 22.0 °C                     | 39.2                   | 1.80 mho/m                           |
| <b>Measured Head TSL parameters</b>            | $(22.0 \pm 0.2) \text{ °C}$ | $40.2 \pm 6 \text{ %}$ | $1.84 \text{ mho/m} \pm 6 \text{ %}$ |
| <b>Head TSL temperature change during test</b> | <1.0 °C                     | ----                   | ----                                 |

### SAR result with Head TSL

| SAR averaged over 1 $\text{cm}^3$ (1 g) of Head TSL   | Condition          |                                                        |
|-------------------------------------------------------|--------------------|--------------------------------------------------------|
| SAR measured                                          | 250 mW input power | 13.2 mW / g                                            |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | <b>52.5 mW/g <math>\pm 20.8 \text{ % (k=2)}</math></b> |
| SAR averaged over 10 $\text{cm}^3$ (10 g) of Head TSL | Condition          |                                                        |
| SAR measured                                          | 250 mW input power | 6.20 mW / g                                            |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | <b>24.8 mW/g <math>\pm 20.4 \text{ % (k=2)}</math></b> |

### Body TSL parameters

The following parameters and calculations were applied.

|                                                | Temperature                 | Permittivity           | Conductivity                         |
|------------------------------------------------|-----------------------------|------------------------|--------------------------------------|
| <b>Nominal Body TSL parameters</b>             | 22.0 °C                     | 52.7                   | 1.95 mho/m                           |
| <b>Measured Body TSL parameters</b>            | $(22.0 \pm 0.2) \text{ °C}$ | $51.3 \pm 6 \text{ %}$ | $2.00 \text{ mho/m} \pm 6 \text{ %}$ |
| <b>Body TSL temperature change during test</b> | <1.0 °C                     | ----                   | ----                                 |

### SAR result with Body TSL

| SAR averaged over 1 $\text{cm}^3$ (1 g) of Body TSL   | Condition          |                                                        |
|-------------------------------------------------------|--------------------|--------------------------------------------------------|
| SAR measured                                          | 250 mW input power | 13.3 mW / g                                            |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | <b>52.4 mW/g <math>\pm 20.8 \text{ % (k=2)}</math></b> |
| SAR averaged over 10 $\text{cm}^3$ (10 g) of Body TSL | Condition          |                                                        |
| SAR measured                                          | 250 mW input power | 6.20 mW / g                                            |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | <b>24.6 mW/g <math>\pm 20.4 \text{ % (k=2)}</math></b> |

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 50 of 61



In Collaboration with  
**s p e a g**  
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinatl.com](mailto:cttl@chinatl.com) [Http://www.chinatl.cn](http://www.chinatl.cn)



CALIBRATION  
No. L0570

### Appendix

#### Antenna Parameters with Head TSL

|                                      |                            |
|--------------------------------------|----------------------------|
| Impedance, transformed to feed point | $57.1\Omega - 0.57j\Omega$ |
| Return Loss                          | - 23.6 dB                  |

#### Antenna Parameters with Body TSL

|                                      |                            |
|--------------------------------------|----------------------------|
| Impedance, transformed to feed point | $56.0\Omega + 3.31j\Omega$ |
| Return Loss                          | - 23.7 dB                  |

#### General Antenna Parameters and Design

|                                  |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.192 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data


|                 |       |
|-----------------|-------|
| Manufactured by | SPEAG |
|-----------------|-------|

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 51 of 61



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: ctli@chinatrl.com Http://www.chinatrl.cn



### DASY5 Validation Report for Head TSL

Date: 01.09.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

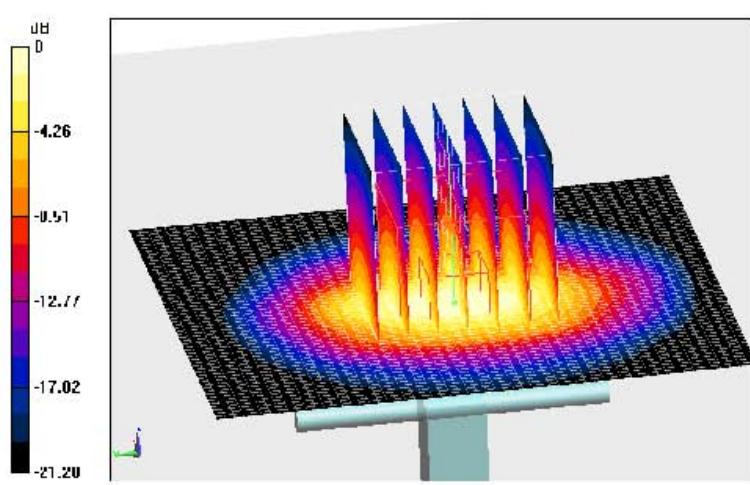
Medium parameters used:  $\epsilon_r = 1.84$  S/m;  $\sigma = 40.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149, ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


**System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 99.583 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.6 W/kg

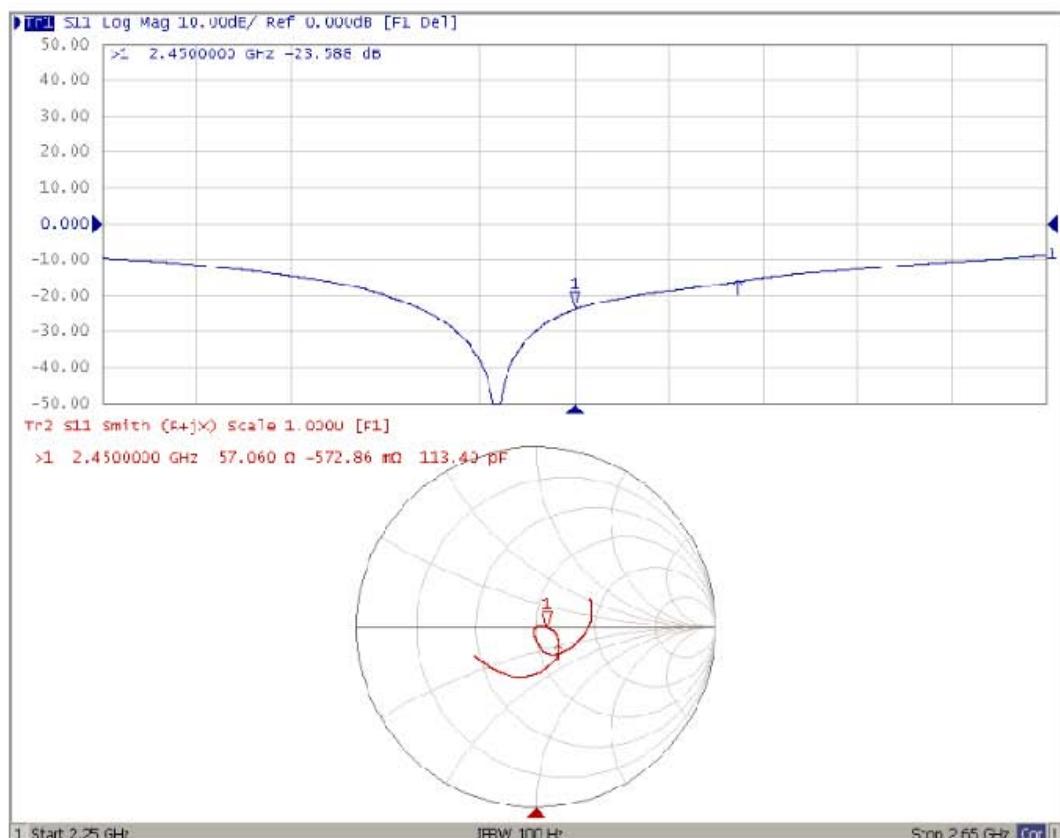
**SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg**

Maximum value of SAR (measured) = 17.3 W/kg



# TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1410-0235SAR01R2


Page 52 of 61



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: ctli@chinatfl.com Http://www.chinatfl.cn



## Impedance Measurement Plot for Head TSL



# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 53 of 61



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: ctli@chinatrl.com Http://www.chinatrl.cn



### DASY5 Validation Report for Body TSL

Date: 01.09.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

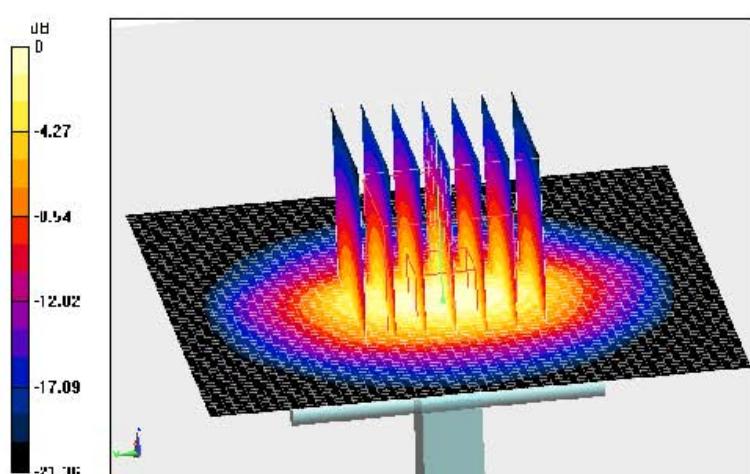
Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.988$  S/m;  $\epsilon_r = 51.25$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149, ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


**System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.120 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.8 W/kg

**SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg**

Maximum value of SAR (measured) = 17.7 W/kg

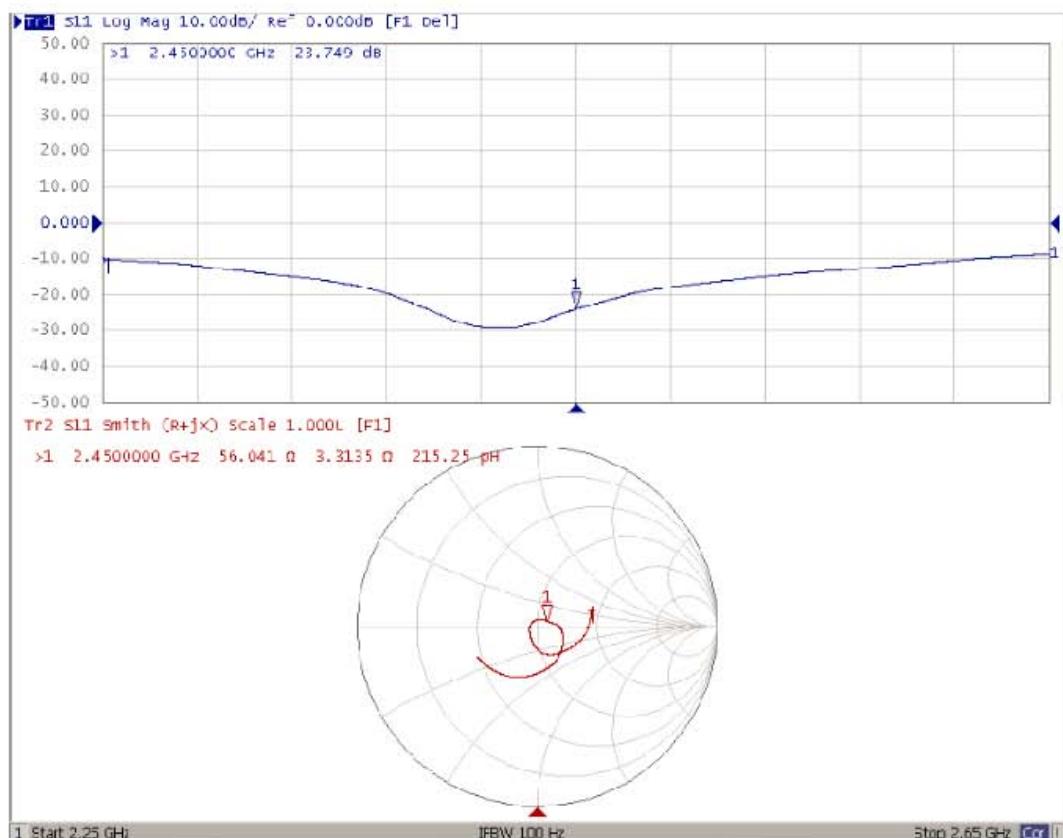


# TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1410-0235SAR01R2

Page 54 of 61




In Collaboration with  
**s p e a g**  
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinatrl.com](mailto:cttl@chinatrl.com) [Http://www.chinatrl.cn](http://www.chinatrl.cn)



CALIBRATION  
No. L0570

## Impedance Measurement Plot for Body TSL



TA Technology (Shanghai) Co., Ltd.  
Test Report

Report No.: RXA1410-0235SAR01R2

Page 55 of 61

ANNEX F: DAE4 Calibration Certificate



In Collaboration with  
**s p e a g**  
CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: [Info@cmcite.com](mailto:Info@cmcite.com) Http://www.cmcite.com



Client : TA(Shanghai)

Certificate No: J14-2-0052

**CALIBRATION CERTIFICATE**

| Object                                                                                                                                                                                                                                                                    | DAE4 - SN: 1317                                                                         |                                               |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
| Calibration Procedure(s)                                                                                                                                                                                                                                                  | TMC-OS-E-01-198<br>Calibration Procedure for the Data Acquisition Electronics<br>(DAEx) |                                               |                       |
| Calibration date:                                                                                                                                                                                                                                                         | January 16, 2014                                                                        |                                               |                       |
| This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. |                                                                                         |                                               |                       |
| All calibrations have been conducted in the closed laboratory facility: environment temperature( $22\pm3$ )°C and humidity<70%.                                                                                                                                           |                                                                                         |                                               |                       |
| Calibration Equipment used (M&TE critical for calibration)                                                                                                                                                                                                                |                                                                                         |                                               |                       |
| Primary Standards                                                                                                                                                                                                                                                         | ID #                                                                                    | Cal Date(Calibrated by, Certificate No.)      | Scheduled Calibration |
| Documenting Process Calibrator 753                                                                                                                                                                                                                                        | 1971018                                                                                 | 01-July-13 (TMC, No:JW13-049)                 | July-14               |
| Calibrated by:                                                                                                                                                                                                                                                            | Name<br>Yu Zongying                                                                     | Function<br>SAR Test Engineer                 | Signature<br>         |
| Reviewed by:                                                                                                                                                                                                                                                              | Name<br>Qi Dianyuan                                                                     | Function<br>SAR Project Leader                |                       |
| Approved by:                                                                                                                                                                                                                                                              | Name<br>Lu Bingsong                                                                     | Function<br>Deputy Director of the laboratory | <br>7-2-2013 17:33    |
| Issued: January 16, 2014                                                                                                                                                                                                                                                  |                                                                                         |                                               |                       |
| This calibration certificate shall not be reproduced except in full without written approval of the laboratory.                                                                                                                                                           |                                                                                         |                                               |                       |

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 56 of 61



Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel. +86-10-62304633-2079 Fax. +86-10-62304633-2504  
E-mail: [Info@cmcite.com](mailto:Info@cmcite.com) Http://www.cmcite.com

### Glossary:

|                 |                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------|
| DAE             | data acquisition electronics                                                            |
| Connector angle | information used in DASY system to align probe sensor X to the robot coordinate system. |

### Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

# TA Technology (Shanghai) Co., Ltd.

## Test Report

Report No.: RXA1410-0235SAR01R2

Page 57 of 61



Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504  
E-mail: [Info@emcite.com](mailto:Info@emcite.com) [Http://www.emcite.com](http://www.emcite.com)

### DC Voltage Measurement

A/D - Converter Resolution nominal

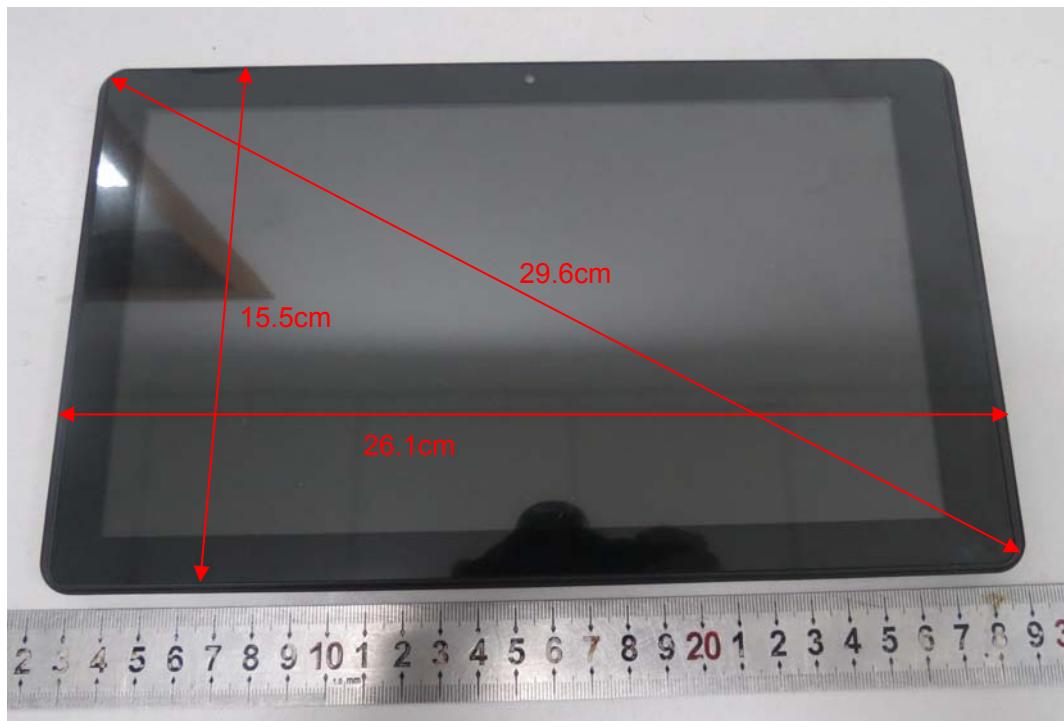
High Range 1LSB =  $6.1\mu V$ , full range =  $-100...+300\text{ mV}$

Low Range 1LSB =  $61\text{nV}$ , full range =  $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec, Measuring time: 3 sec

| Calibration Factors | X                                  | Y                                  | Z                                  |
|---------------------|------------------------------------|------------------------------------|------------------------------------|
| High Range          | $404.058 \pm 0.15\% \text{ (k=2)}$ | $404.060 \pm 0.15\% \text{ (k=2)}$ | $403.954 \pm 0.15\% \text{ (k=2)}$ |
| Low Range           | $3.99002 \pm 0.7\% \text{ (k=2)}$  | $3.99910 \pm 0.7\% \text{ (k=2)}$  | $3.98303 \pm 0.7\% \text{ (k=2)}$  |

### Connector Angle


|                                           |                         |
|-------------------------------------------|-------------------------|
| Connector Angle to be used in DASY system | $119^\circ \pm 1^\circ$ |
|-------------------------------------------|-------------------------|

**TA Technology (Shanghai) Co., Ltd.  
Test Report**

Report No.: RXA1410-0235SAR01R2

Page 58 of 61

**ANNEX G: The EUT Appearances and Test Configuration**



a.EUT

**Picture 3: Constituents of the EUT**

**TA Technology (Shanghai) Co., Ltd.**  
**Test Report**

Report No.: RXA1410-0235SAR01R2

Page 59 of 61



**Picture 4: Test position 1**



**Picture 5: Test position 2 (this position is not tested)**

**TA Technology (Shanghai) Co., Ltd.  
Test Report**

Report No.: RXA1410-0235SAR01R2

Page 60 of 61



**Picture 6: Test Position 3**



**Picture 7: Test Position 4 (this position is not tested)**

**TA Technology (Shanghai) Co., Ltd.  
Test Report**

Report No.: RXA1410-0235SAR01R2

Page 61 of 61



**Picture 8: Test Position 5 (this position is not tested)**