

RADIO TEST REPORT FCC ID: 2ABYN115

Product: Receiver Trade Mark: Godox Model No.: WEC SRX Family Model: N/A Report No.: S24030403411001 Issue Date: Mar 20, 2024

Prepared for

GODOX PHOTO EQUIPMENT CO., LTD

1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, 518103 China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Table of Contents

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	ENERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10 11
7 TE	ST REQUIREMENTS	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME). 20DB BANDWIDTH TEST. PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS.	
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MAXIMUM CONDUCTED OUTPUT POWER	

1 TEST RESULT CERTIFICATION

Applicant's name	GODOX PHOTO EQUIPMENT CO.,LTD
Address	1st to 4th Floor, Building 2/1st to 4th Floor, Building 4 ,Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, 518103 China
Manufacturer's Name	GODOX Photo Equipment Co.,Ltd.
Address	4th Floor of Building 1, 1st to 4 th Floor of Building 2, 4th Floor of Building 3,1st to 4th Floor of Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Bao'an District, Shenzhen 518103, China
Product description	
Product name	Receiver
Trade Mark	Godox
Model and/or type reference	WEC SRX
Family Model	N/A
Test Sample number	S240304034012
Date of Test	Mar 04, 2024 ~ Mar 20, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.

Prepared . Many . Hu By : Mary Hu Approved : (By : Alex Li (Project Engineer) (Supervisor) (Manager)

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

NTEK 北测

R

ac.N

ACCREDITED Certificate #4298.01

Product Feature and Specification		
Equipment	Receiver	
Trade Mark	Godox	
FCC ID	2ABYN115	
Model No.	WEC SRX	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	-0.01dBi	
Adapter	N/A	
Battery	Built-in Li-ion battery: DC 3.8V,200mAh,0.76Wh	
Power Rating	Built-in Li-ion battery: DC 3.8V,200mAh,0.76Wh or Type-C Input: DC 5V,200mA	
HW Version	20230914H31	
Firmware version	N/A	
SW Version	V1.0	


Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

Report No.	Version	Description	Issued Date
S24030403411001	Rev.01	Initial issue of report	Mar 20, 2024

5 DESCRIPTION OF TEST MODES

NTEK 北源

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Cartificate #4298 01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases			
Final Test Mode	Description		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4 CH78(2480MHz)			
Mode 5	Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For AC Conducted Emission Mode

For AC Conducted E	EUT	C-1	AE-1 Adapter	AC PLUG	
For Radiated Test Ca	EUT				
Measurement	Cases C-2 EUT				
Instrument					

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	KSA29B0500200D5	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Type-C Cable	NO	NO	30cm
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-MF

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

adiate		cor equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2026.01.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

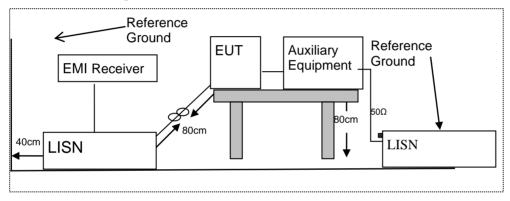
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

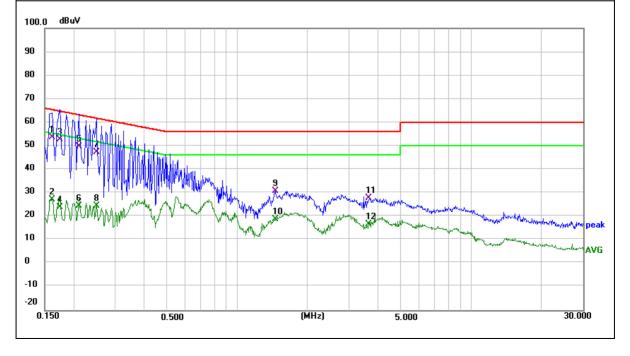
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

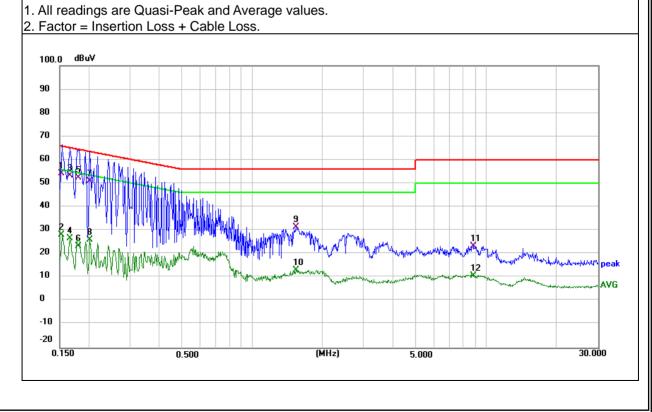

7.1.6 **Test Results**

EUT:	Receiver	Model Name :	WEC SRX
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V powered by adapter AC120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	43.65	9.95	53.60	65.36	-11.76	QP
0.1620	17.37	9.95	27.32	55.36	-28.04	AVG
0.1740	42.73	9.97	52.70	64.77	-12.07	QP
0.1740	14.12	9.97	24.09	54.77	-30.68	AVG
0.2100	39.74	10.06	49.80	63.21	-13.41	QP
0.2100	14.42	10.06	24.48	53.21	-28.73	AVG
0.2500	37.26	10.14	47.40	61.76	-14.36	QP
0.2500	14.28	10.14	24.42	51.76	-27.34	AVG
1.4500	18.26	12.56	30.82	56.00	-25.18	QP
1.4500	6.20	12.56	18.76	46.00	-27.24	AVG
3.6580	18.31	9.67	27.98	56.00	-28.02	QP
3.6580	7.21	9.67	16.88	46.00	-29.12	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.



EUT:	Receiver	Model Name :	WEC SRX
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V powered by adapter AC120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	44.47	9.93	54.40	65.79	-11.39	QP
0.1539	18.19	9.93	28.12	55.79	-27.67	AVG
0.1660	43.33	9.97	53.30	65.16	-11.86	QP
0.1660	16.58	9.97	26.55	55.16	-28.61	AVG
0.1819	42.51	9.99	52.50	64.40	-11.90	QP
0.1819	13.24	9.99	23.23	54.40	-31.17	AVG
0.2020	40.86	10.04	50.90	63.53	-12.63	QP
0.2020	15.90	10.04	25.94	53.53	-27.59	AVG
1.5420	18.74	12.74	31.48	56.00	-24.52	QP
1.5420	0.43	12.74	13.17	46.00	-32.83	AVG
8.8060	13.76	9.69	23.45	60.00	-36.55	QP
8.8060	1.10	9.69	10.79	50.00	-39.21	AVG

Remark:

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.20	According to For Fair 13.203, Restricted bands						
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	(-,,	- ()	
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	′m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

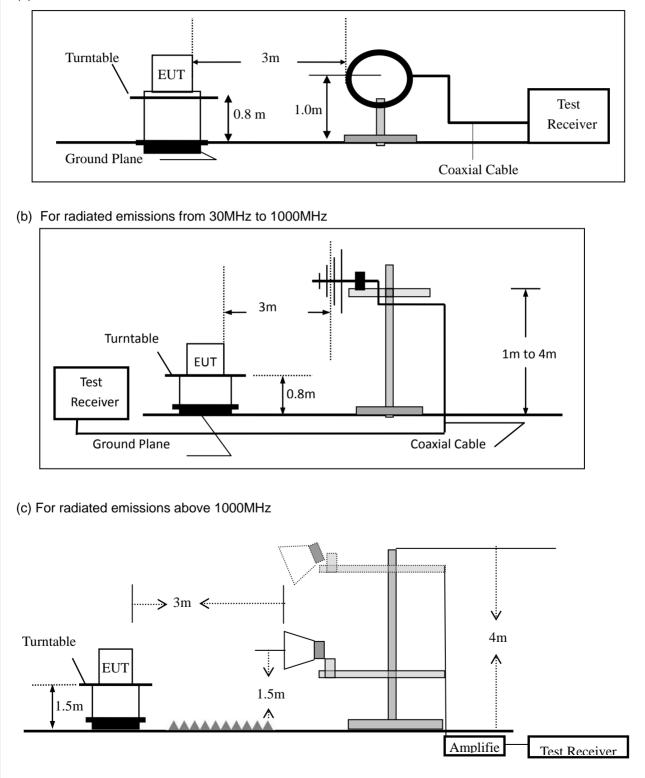
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

NTEK 北视


The Measuring equipment is listed in the section 6.3 of this test report.

ac.M

ACCREDITED

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Cartificate #4298 01

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab 200	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

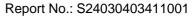
EUT:	Receiver	Model No.:	WEC SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	(dB) AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

 Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:
 EUT: Receiver Model Name : WEC SRX
 Tomperature 25 °C

Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 2
Test Voltage :	DC 3.8V		


Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
V	30.0000	6.11	26.34	32.45	40.00	-7.55	QP	
V	115.7256	12.63	18.51	31.14	43.50	-12.36	QP	
V	191.7450	15.09	16.25	31.34	43.50	-12.16	QP	
V	287.9904	17.81	19.99	37.80	46.00	-8.20	QP	
V	480.5276	8.23	24.65	32.88	46.00	-13.12	QP	
V	919.2865	7.22	30.94	38.16	46.00	-7.84	QP	

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.6374	5.29	25.98	31.27	40.00	-8.73	QP
Н	183.2005	18.77	16.58	35.35	43.50	-8.15	QP
Н	287.9904	21.22	19.99	41.21	46.00	-4.79	QP
Н	480.5276	17.35	24.65	42.00	46.00	-4.00	QP
Н	839.1816	7.89	30.07	37.96	46.00	-8.04	QP
Н	896.9963	7.36	30.70	38.06	46.00	-7.94	QP
	n Level= Meter dBu¥/m						
70							
60							
50							
40					3 4		5 6 X X ~
30	Willy way was a second se		لد الاست	Aller M	Munderstown the Adam	man the and the second	
20	Minune Minthe Margan Share	www. Wither Marmell	ynatriel an 'n geralderele	and Management And			
10							
0.0							
30.00	0 60	.00	()	(Hz)	300.00		1000.000

ACCREDITED Certificate #4298.01

Spurious	Emissior	n Above 1	GHz (1GH	z to 25GF	z)							
EUT:	Re	ceiver		Mode	l No.:		WEC	SRX				
Temperature:	20	°C		Relat	ve Humidity	/:	48%					
Test Mode:	Mc	de2/Mod	e3/Mode4	lode4 Test By: Mary Hu								
All the modula									/:			
	· ·											
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level Limits Ma		Margin	Remark	Comment			
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	uV/m)	(dB)				
			Low Chan	nel (2402 N	/Hz)(GFSK)	Abo	ve 1G					
4804.58	63.93	5.21	35.59	44.30	60.43	74	1.00	-13.57	Pk	Vertical		
4804.58	43.94	5.21	35.59	44.30	40.44	54	1.00	-13.56	AV	Vertical		
7206.61	60.68	6.48	36.27	44.60	58.83	74	1.00	-15.17	Pk	Vertical		
7206.61	43.39	6.48	36.27	44.60	41.54	54	1.00	-12.46	AV	Vertical		
4804.52	60.62	5.21	35.55	44.30	57.08	74	1.00	-16.92	Pk	Horizontal		
4804.52	40.72	5.21	35.55	44.30	37.18	54	1.00	-16.82	AV	Horizontal		
7206.70	62.26	6.48	36.27	44.52	60.49	74.00		-13.51	Pk	Horizontal		
7206.70	40.41	6.48	36.27	44.52	38.64	54.00		-15.36	AV	Horizontal		
			Mid Chan	nel (2441 N	IHz)(GFSK)∙	Abov	/e 1G					
4882.94	63.94	5.21	35.66	44.20	60.61	74	1.00	-13.39	Pk	Vertical		
4882.94	43.99	5.21	35.66	44.20	40.66	54	1.00	-13.34	AV	Vertical		
7323.12	60.01	7.10	36.50	44.43	59.18	74	1.00	-14.82	Pk	Vertical		
7323.12	42.59	7.10	36.50	44.43	41.76	54	1.00	-12.24	AV	Vertical		
4882.24	62.71	5.21	35.66	44.20	59.38	74	1.00	-14.62	Pk	Horizontal		
4882.24	41.75	5.21	35.66	44.20	38.42	54	1.00	-15.58	AV	Horizontal		
7324.43	59.82	7.10	36.50	44.43	58.99	74	1.00	-15.01	Pk	Horizontal		
7324.43	43.76	7.10	36.50	44.43	42.93	54	1.00	-11.07	AV	Horizontal		
			High Chan	nel (2480 N	/Hz)(GFSK)	Abc	ve 1G					
4959.89	66.30	5.21	35.52	44.21	62.82	74	1.00	-11.18	Pk	Vertical		
4959.89	43.66	5.21	35.52	44.21	40.18	54	1.00	-13.82	AV	Vertical		
7439.75	60.57	7.10	36.53	44.60	59.60	74	1.00	-14.40	Pk	Vertical		
7439.75	42.25	7.10	36.53	44.60	41.28	54	1.00	-12.72	AV	Vertical		
4960.06	60.17	5.21	35.52	44.21	56.69	74	1.00	-17.31	Pk	Horizontal		
4960.06	41.35	5.21	35.52	44.21	37.87	54	1.00	-16.13	AV	Horizontal		
7440.88	63.06	7.10	36.53	44.60	62.09	74	1.00	-11.91	Pk	Horizontal		
7440.88	41.38	7.10	36.53	44.60	40.41	54	1.00	-13.59	AV	Horizontal		

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

UT:	Receiver	•		Ν	Nodel	No.:		WEC	SRX		
emperature	20 ℃			F	Relative Humidity:			48%			
est Mode:	Mode2/ I	Mode4		Т	Test E	By:		Mary	Hu		
All the modulation modes have been tested, and the worst result was report as below:											
Frequency	Meter Reading	Cable Loss	Antenna Factor		Preamp Emission		Lin	nits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	dB/m	(dE	3)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
			1	Mbps((GFSk	K)-Non-hopp	ing				
2310.00	53.21	2.97	27.80	43.8	80	40.18	7	74	-33.82	Pk	Horizonta
2310.00	42.86	2.97	27.80	43.8	80	29.83	5	54	-24.17	AV	Horizonta
2310.00	51.70	2.97	27.80	43.8	80	38.67	7	74	-35.33	Pk	Vertical
2310.00	42.21	2.97	27.80	43.8	80	29.18	5	54	-24.82	AV	Vertical
2390.00	54.93	3.14	27.21	43.8	80	41.48	7	74	-32.52	Pk	Vertical
2390.00	40.45	3.14	27.21	43.8	80	27.00	5	54	-27.00	AV	Vertical
2390.00	51.53	3.14	27.21	43.8	80	38.08	7	74	-35.92	Pk	Horizonta
2390.00	44.65	3.14	27.21	43.8	80	31.20	5	54	-22.80	AV	Horizonta
2483.50	51.13	3.58	27.70	44.(00	38.41	7	74	-35.59	Pk	Vertical
2483.50	41.86	3.58	27.70	44.(00	29.14	5	54	-24.86	AV	Vertical
2483.50	50.94	3.58	27.70	44.0	00	38.22	7	74	-35.78	Pk	Horizonta
2483.50	41.71	3.58	27.70	44.(00	28.99	5	54	-25.01	AV	Horizonta
				1Mbp	ps(GF	SK)-hopping	9				
2310.00	52.82	2.97	27.80	43.8	80	39.79	7	74	-34.21	Pk	Horizonta
2310.00	42.28	2.97	27.80	43.8	80	29.25	5	54	-24.75	AV	Horizonta
2310.00	54.42	2.97	27.80	43.8	80	41.39	7	74	-32.61	Pk	Vertical
2310.00	41.68	2.97	27.80	43.8	80	28.65	5	54	-25.35	AV	Vertical
2390.00	51.76	3.14	27.21	43.8	80	38.31	7	74	-35.69	Pk	Vertical
2390.00	42.63	3.14	27.21	43.8	80	29.18	5	54	-24.82	AV	Vertical
2390.00	50.90	3.14	27.21	43.8	80	37.45	7	74	-36.55	Pk	Horizonta
2390.00	42.30	3.14	27.21	43.8	80	28.85	5	54	-25.15	AV	Horizonta
2483.50	53.87	3.58	27.70	44.(00	41.15	7	74	-32.85	Pk	Vertical
2483.50	41.86	3.58	27.70	44.(00	29.14	5	54	-24.86	AV	Vertical
2483.50	51.73	3.58	27.70	44.(00	39.01	7	74	-34.99	Pk	Horizonta
2483.50	40.01	3.58	27.70	44.(00	27.29	5	54	-26.71	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

EUT:	Re	eceiver		Model No.: WEC SRX								
Temperature	: 20	°C			Relat	ive Humidity	v:	48%				
Fest Mode:		ode2/ Moc	le4		Test	•	/	Mary				
All the modulation modes have been tested, and the worst result was report as below:												
Frequency	Reading Level		Antenna Factor	Pre	amp ictor	Emission Level		nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре		
3260	59.90	4.04	29.57	44	4.70	48.81	-	74	-25.19	Pk	Vertical	
3260	48.19	4.04	29.57	44.70		37.10	ę	54	-16.90	AV	Vertical	
3260	55.92	4.04	29.57	9.57 44.70		44.83	-	74	-29.17	Pk	Horizonta	
3260	45.48	4.04	29.57	44	4.70	34.39	ę	54	-19.61	AV	Horizonta	
3332	62.00	4.26	29.87	44	1.40	51.73	7	74	-22.27	Pk	Vertical	
3332	47.72	4.26	29.87	44	1.40	37.45	ę	54	-16.55	AV	Vertical	
3332	62.58	4.26	29.87	44	4.40	52.31	-	74	-21.69	Pk	Horizonta	
3332	46.73	4.26	29.87	44	1.40	36.46	ę	54	-17.54	AV	Horizonta	
17797	49.48	10.99	43.95	43	3.50	60.92		74	-13.08	Pk	Vertical	
17797	37.30	10.99	43.95	43	3.50	48.74	ę	54	-5.26	AV	Vertical	
17788	55.01	11.81	43.69	44	4.60	65.91		74	-8.09	Pk	Horizonta	
17788	37.05	11.81	43.69	44	1.60	47.95	Ę	54	-6.05	AV	Horizonta	

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

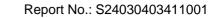
7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup


Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Receiver	Model No.:	WEC SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Receiver	Model No.:	WEC SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Receiver	Model No.:	WEC SRX
Temperature:	20 ℃	Relative Humidity:	48% Mary Hu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Receiver	Model No.:	WEC SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Receiver	Model No.:	WEC SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Receiver	Model No.:	WEC SRX 48%
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: -0.01 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

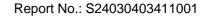
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.1 Maximum Conducted Output Power

NTEK 北测®


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	GFSK	2402	Ant1	-7.79	21	Pass
NVNT	GFSK	2441	Ant1	-8.18	21	Pass
NVNT	GFSK	2480	Ant1	-7.82	21	Pass

ACCREDITED Certificate #4298.01

	Power		Graphs SK 2402MHz Ant1			
Spectrum	1 Gwei 1					
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	.38 dB 👄 RE 1 ms 👄 VE		Mode Auto Sweep			
●1Pk Max						
			M1[1]			-7.79 dBm 94510 GHz
10 dBm				+ +	2.401	71010 0112
0 dBm		M1				
-10 dBm						
-20 dBm						
-30 dBm						
00 00						
-40 dBm						
-50 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.402 GHz		1001	l pts		Spar	n 5.0 MHz
			Rea	dy 🚺		

Att SGL Count	35 dB		1 ms 👄 VE		Mode Auto	Sweep			
⊖1Pk Max									````
					M1	[1]		0.44	-8.18 dBm
10 dBm								2.44	091510 GHz
0 dBm									
				M1					
-10 dBm—									
-20 dBm									
-20 GEAH									
-30 dBm									
-40 dBm—									
-50 dBm									
-60 dBm									
-70 dBm—									
CF 2.441 (GHz			1001	pts			Spa	n 5.0 MHz
	Y					Read	y (0
Spectrur	20.00 dBm	Offset 2	.42 dB 🔵 RE	3W 2 MHz	SK 2480MH				
Ref Level Att SGL Count	20.00 dBm 35 dB	Offset 2 SWT		3W 2 MHz					
Ref Level Att	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto				-7.82 dBm
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.48(
Ref Level Att SGL Count	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.48	-7.82 dBm
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.48(-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count PIPK Max 10 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2,480	-7.82 dBm
Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 35 dB	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep		2.480	-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz	Mode Auto	Sweep			-7.82 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm- -0 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	20.00 dBm 35 dB 100/100	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz 3W 2 MHz	Mode Auto	Sweep			-7.82 dBm 005490 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm- -0 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	20.00 dBm 35 dB 100/100	Offset 2 SWT	.42 dB 🔵 RE	3W 2 MHz 3W 2 MHz	Mode Auto	Sweep		Spe	-7.82 dBm 005490 GHz

8.2 -20dB Bandwidth

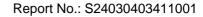
NTEK 北测

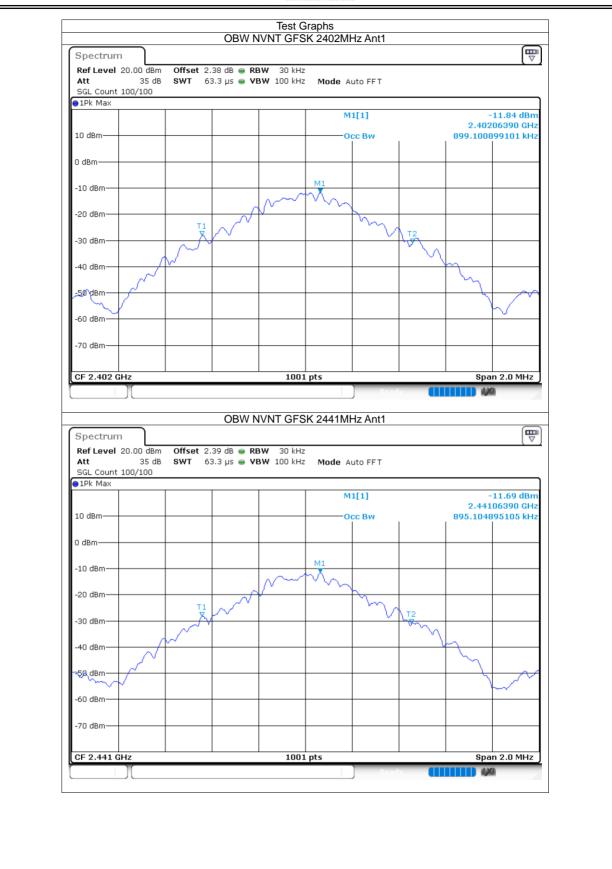
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	GFSK	2402	Ant1	0.936	Pass
NVNT	GFSK	2441	Ant1	0.99	Pass
NVNT	GFSK	2480	Ant1	1.038	Pass

ACCREDITED

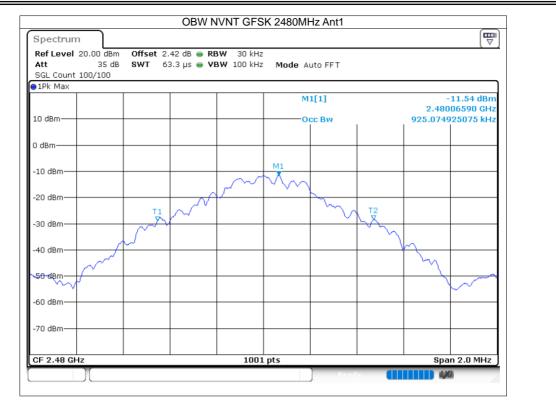
ß

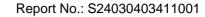
ilac-MR

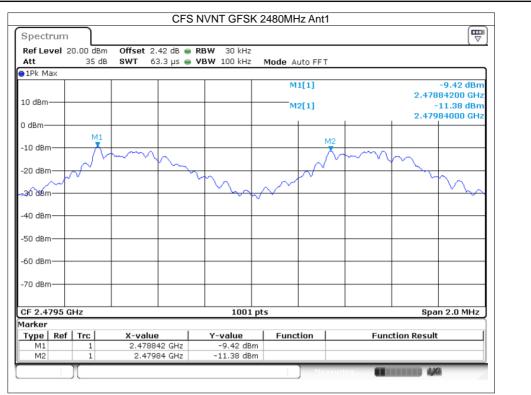


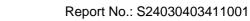

	-2000 Dan		GFSK 2480MHz		
Spectrum					[₩
Ref Level 20.00 dBm	Offset 2.42 dB 👄	RBW 30 kHz			
Att 35 dB	SWT 63.3 µs 👄	VBW 100 kHz	Mode Auto FFT		
SGL Count 100/100					
1Pk Max					
			M1[1]	-11.64	
10 dBm				2.47999800	
			M2[1]	-31.41 2.47946800	
) dBm				2.47940800	GHZ
		MI			
10 dBm		1000 cm	A		
20 dBm		$\mathcal{A}^{\vee} \sim 1$			
20 dBm			al al		
30 dBm	M2		V	M3	
So abiii					
40 dBm	~				
\sim					
50 dBm					<u>^-</u>
-60 dBm					
70 dBm					
/U dBm					
CF 2.48 GHz		1001 pt	s	Span 2.0 M	/IHz
larker					
Type Ref Trc	X-value	Y-value	Function	Function Result	
M1 1	2.479998 GHz	-11.64 dBm			
M2 1 M3 1	2.479468 GHz 2.480506 GHz	-31.41 dBm -31.55 dBm			
	2.400500 GHZ	-31.55 UBM			

ondition	Channel Bai Mode	Frequency (MHz)	Antenna	99% OBW (MH
NVNT	GFSK	2402	Ant1	0.899
NVNT	GFSK	2441	Ant1	0.895
NVNT	GFSK	2480	Ant1	0.925

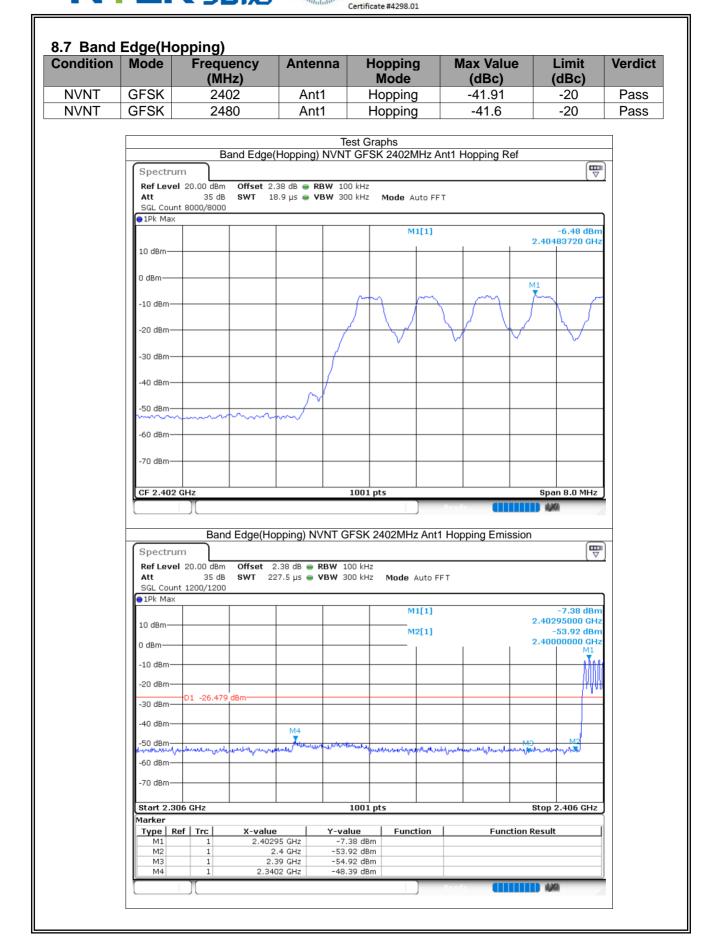





8.4 Carrie	r Frequ	encies Se	paration				
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	GFSK	Ant1	2401.838	2402.84	1.002	0.624	Pass
NVNT	GFSK	Ant1	2440.838	2441.842	1.004	0.66	Pass
NVNT	GFSK	Ant1	2478.842	2479.84	0.998	0.692	Pass



NVNT GFSK Ant1 79 15 Test Graphs Hopping No. NVNT GFSK 2402MHz Ant1 Spectrum Ref Level 20:00 dBm Offset 2:38 dB @ RBW 100 kHz Att 35 dB SWT 1 ms @ VBW 300 kHz Mode Auto Sweep @1Pk Max
Hopping No. NVNT GFSK 2402MHz Ant1 Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspan
Hopping No. NVNT GFSK 2402MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Att 35 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep I D dBm
Spectrum Image: Spectrum Ref Level 20.00 dbm Offset 2.38 db RBW 100 kHz Att 35 db SWT 1 ms VBW 300 kHz Mode Auto Sweep Introduction M1[1] -7.01 dbm 2.4020040 GHz -8.59 dbm Introduction M2[1] -8.59 dbm 2.4800765 GHz -8.59 dbm O dBm M1[1] -10/cbtm M2 -10/cbtm M2 -10/cbtm
Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Att 35 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep ● IPk Max
Att 35 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep IPk Max M1[1] -7.01 dBm 2.4020040 GHz -8.59 dBm 10 dBm M2[1] -8.59 dBm 2.4800765 GHz -8.59 dBm 0 dBm
M1[1] -7.01 dBm 10 dBm 2.4020040 GHz 0 dBm -8.59 dBm 0 dBm 2.4800765 GHz 0 dBm -10 dBm -20 gBm -10 dBm -50 dBm -10 dBm
10 dBm 2.4020040 GHz 0 dBm 8.59 dBm 0 dBm 2.4800765 GHz 0 dBm 9.24800765 GHz 0 dBm 9.24800765 GHz 0 dBm 9.24800765 GHz 0 dBm 9.24800765 GHz -20 dBm 9.24800765 GHz -30 dBm 9.24800765 GHz -30 dBm 9.24800765 GHz -60 dBm 9.24800765 GHz
M2 M2 0 dBm 2.4800765 GHz M1 M2 -10/dBm M2 -20 dBm
-10)clbm 444444444444444444444444444444444444
-10 /dBm //////////////////////////////////
-30 dBm -40 dBm -60 dBm
-30 dBm -40 dBm -60 dBm
-40 dBm
-60 dBm
-60 dBm
-60 dBm
-70 dBm
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker
Type Ref Trc X-value Y-value Function Function Result
M1 1 2.402004 GHz -7.01 dBm M2 1 2.4800765 GHz -8.59 dBm
Measuring 🚺 🎶


	Mode	Freque		tenna	Hopping Mode	g			Limit	Verdi
/NT	GFSK	(MHz 2402		Ant1	No-Hoppi	na	(dBc) -41.05		(dBc) -20	Pas
/NT	GFSK	2480		Ant1	No-Hoppi		-44.17		-20	Pas
	· · ·					- '		1		_
			Band Edge NV		st Graphs 2402MHz Ant		nning Ref			-
	Spectru		Dana Lage IV		2402111127111		pping iter			
	Ref Leve	l 20.00 dBm	Offset 2.38 dB ((`)	
	Att SGL Cour	35 dB nt 100/100	SWT 18.9 µs (• VBW 300	kHz Mode Au	uto FFT				
	●1Pk Max				MI	L[1]			-8.89 dBm	
	10 dBm						1	2.401	84020 GHz	
	TO UBIII									
	0 dBm									
	-10 dBm—				M1					
	10 000				$ \rangle $					
	-20 dBm—	+ +		کر 🚽						
	-30 dBm—				\rightarrow					
	-40 dBm—	+ +		_/						
	-50 dBm—			$\sim -$	_	Δ				
	m	form	m			Sim	m	\sim	m	
	-60 dBm—									
	-70 dBm—									
	CF 2.402	GHz		1	001 pts				n 8.0 MHz	
	CF 2.402	GHz		1	001 pts	Rea	dy (11	Spa	n 8.0 MHz	
	CF 2.402		nd Edge NVNT) No-Hoppi				_
	CF 2.402	Bai	nd Edge NVNT) Rea			n 8.0 MHz	_
	Spectru Ref Leve	Bai m 1 20.00 dBm	Offset 2.38 dB	GFSK 24	D2MHz Ant1 N					_
	Spectru Ref Leve Att SGL Cour	Ba m 1 20.00 dBm 35 dB nt 100/100		GFSK 24	D2MHz Ant1 N					_
	Spectru Ref Leve Att	Ba m 1 20.00 dBm 35 dB nt 100/100	Offset 2.38 dB	GFSK 24	D2MHz Ant1 N D kHz D kHz Mode A			n	-9.50 dBm	_
	Spectru Ref Leve Att SGL Cour	Ba m 1 20.00 dBm 35 dB nt 100/100	Offset 2.38 dB	GFSK 24	D2MHz Ant1 N D kHz D kHz Mode A	uto FFT		2.402	-9.50 dBm 15000 GHz	_
	Spectru Ref Leve Att SGL Cour ● 1Pk Max	Ba m 1 20.00 dBm 35 dB nt 100/100	Offset 2.38 dB	GFSK 24	D2MHz Ant1 N D kHz D kHz Mode A	uto FFT		2.402	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz	_
	Spectru Ref Leve Att SGL Cour PIPk Max 10 dBm—	Ba m 1 20.00 dBm 35 dB nt 100/100	Offset 2.38 dB	GFSK 24	D2MHz Ant1 N D kHz D kHz Mode A	uto FFT		2.402	-9.50 dBm 15000 GHz 53.39 dBm	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- 0 dBm-	Ba m 1 20.00 dBm 35 dB nt 100/100	Offset 2.38 dB	GFSK 24	D2MHz Ant1 N D kHz D kHz Mode A	uto FFT		2.402	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz	
	Spectru Ref Leve Att SGL Cour 10 dBm- 0 dBm- -10 dBm-	Ba m 1 20.00 dBm 35 dB nt 100/100	Offset 2.38 dB SWT 227.5 μs	GFSK 24	D2MHz Ant1 N D kHz D kHz Mode A	uto FFT		2.402	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm-	Bar m 1 20.00 dBm 35 dB at 100/100	Offset 2.38 dB SWT 227.5 µs	GFSK 24	D2MHz Ant1 N D kHz D kHz M0de A M1 M2	uto FFT [[1] 2[1]		2.402	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm-	Bar m 1 20.00 dBm 35 dB at 100/100	Offset 2.38 dB SWT 227.5 µs	GFSK 24	D2MHz Ant1 N D kHz D kHz M0de A M1 M2	uto FFT [[1] 2[1]		2.402 - 2.400	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	Bar m 1 20.00 dBm 35 dB at 100/100	Offset 2.38 dB SWT 227.5 μs	GFSK 24	D2MHz Ant1 N D kHz D kHz M0de A M1 M2	uto FFT [[1] 2[1]		2.402 - 2.400	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1	
	Spectru Ref Leve Att SGL Cour • 1Pk Max 10 dBm	Bar m 1 20.00 dBm 35 dB at 100/100	Offset 2.38 dB SWT 227.5 µs	GFSK 24	D2MHz Ant1 N D kHz D kHz M0de A M1 M2	uto FFT [[1] 2[1]		2.402 - 2.400	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	Bar m 1 20.00 dBm 35 dB at 100/100	Offset 2.38 dB SWT 227.5 µs	GFSK 24	D2MHz Ant1 N D kHz D kHz M0de A M1 M2	uto FFT [[1] 2[1]		2.402 - 2.400	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1	
	Spectru Ref Leve Att SGL Cour • 1Pk Max 10 dBm	Bar m al 20.00 dBm 35 dB at 100/100 = D1 -28.889 d	Offset 2.38 dB SWT 227.5 µs	GFSK 24	D2MHz Ant1 N D kHz D kHz M0de A M1 M2	uto FFT [[1] 2[1]		2.402 	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -70 dBm- -70 dBm- Start 2.3 Marker	Bar Bar Bar Bar Bar Bar Bar Bar	Offset 2.38 dB SWT 227.5 μs	GFSK 24	D2MHz Ant1 N	uto FFT [[1] 2[1]		n 2.402 2.400 بریل اوبلر اوبلر اوبل ایر اوبلر اوبلر اوبلر Stop 2	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1 	
	Spectru Ref Leve Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm- -40 dBm- -50 dBm- -50 dBm- -70 dBm- Start 2.3 Marker Type R M1	Bar m 1 20.00 dBm 35 dB 1 100/100 D1 -28.889 d 0 06 GHz ef Trc 1 1	Offset 2.38 dB SWT 227.5 μs	GFSK 24	D2MHz Ant1 N	uto FFT [[1] 2[1]		2.402 	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1 	
	Spectru Ref Leve Att SGL Cour • 1Pk Max 10 dBm	Bar m 1 20.00 dBm 35 dB 100/100 D1 -28.889 d Muuhhauna 06 GHz ef [Trc]	Offset 2.38 dB SWT 227.5 μs	GFSK 24	D2MHz Ant1 N	uto FFT [[1] 2[1]		n 2.402 2.400 بریل اوبلر اوبلر اوبل ایر اوبلر اوبلر اوبلر Stop 2	-9.50 dBm 15000 GHz 53.39 dBm 00000 GHz M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	

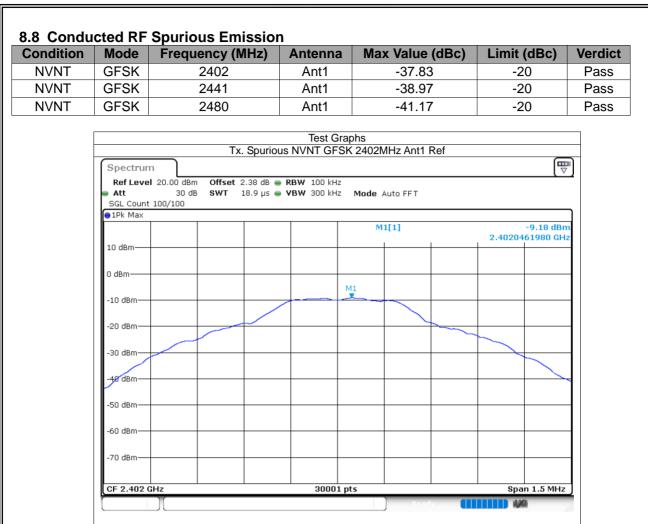
ACCREDITED Certificate #4298.01

NTEK 北测

Ref Level 20.00 dBm Att 35 dB							
SGL Count 100/100			Mode A	uto FFT			
●1Pk Max							
			м	1[1]		2.479	-8.47 dBm 84020 GHz
10 dBm							
0 dBm		М1					
-10 dBm		, X-	~				
			4				
-20 dBm			<u> </u>				
-30 dBm							
-50 0811							
-40 dBm							
		4	Ì	5			
-50 dBm				han			~
-60 dBm	m v v v v				\sim	m	~ m
-70 dBm							
CF 2.48 GHz	1 1	1001	pts			Spa	n 8.0 MHz
Ref Level 20.00 dBm Att 35 dB							
SGL Count 100/100				Auto EET			
			- Moue /	Auto FFT			
							-0.02 dBm
1Pk Max			м	1[1]		2.480	-9.02 dBm 05000 GHz
10 dBm			м			-	05000 GHz 53.66 dBm
0 dBm			м	1[1]		-	05000 GHz
0 dBm			м	1[1]		-	05000 GHz 53.66 dBm
0 dBm			м	1[1]		-	05000 GHz 53.66 dBm
10 dBm 0 dBm M1 -10 dBm -20 dBm	1 d8m		м	1[1]		-	05000 GHz 53.66 dBm
10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm D1 -28,47	1 dBm		м	1[1]		-	05000 GHz 53.66 dBm
10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm			M M	1[1] 2[1]		2.483	05000 GHz 53.66 dBm 50000 GHz
10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm			M M	1[1] 2[1]		2.483	05000 GHz 53.66 dBm 50000 GHz
	Ma		M M	1[1] 2[1]		2.483	05000 GHz 53.66 dBm 50000 GHz
			M M	1[1] 2[1]		2.483	05000 GHz 53.66 dBm 50000 GHz
			M	1[1] 2[1]		- 2.483	05000 GHz 53.66 dBm 50000 GHz
1Pk Max 10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm		1001	M	1[1] 2[1]		- 2.483	05000 GHz 53.66 dBm 50000 GHz
1Pk Max 10 dBm 0 dBm M1 -10 dBm -20 dBm -30 cBm 0 dBm -30 cBm -50 dBm -60 dBm -70 dBm -70 dBm Start 2.476 GHz		1001 Y-value	 	1[1] 2[1] ກຸມA.ມາໃຫ່,ຈາກຸປ		- 2.483	05000 GHz 53.66 dBm 50000 GHz
1Pk Max 10 dBm 0 dBm -10 fBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -7	<u>Ма</u> милиции имиции и и и	1001 <u>Y-value</u> -9.02 dBr	M 	1[1] 2[1] ກຸມA.ມາໃຫ່,ຈາກຸປ		2.483	05000 GHz 53.66 dBm 50000 GHz
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -7	Na Watan Watan Watan Watan Watan Watan Watan Watan X-value	1001 Y-value	M 	1[1] 2[1] ກຸມA.ມາໃຫ່,ຈາກຸປ		2.483	05000 GHz 53.66 dBm 50000 GHz

®

Iac-MR

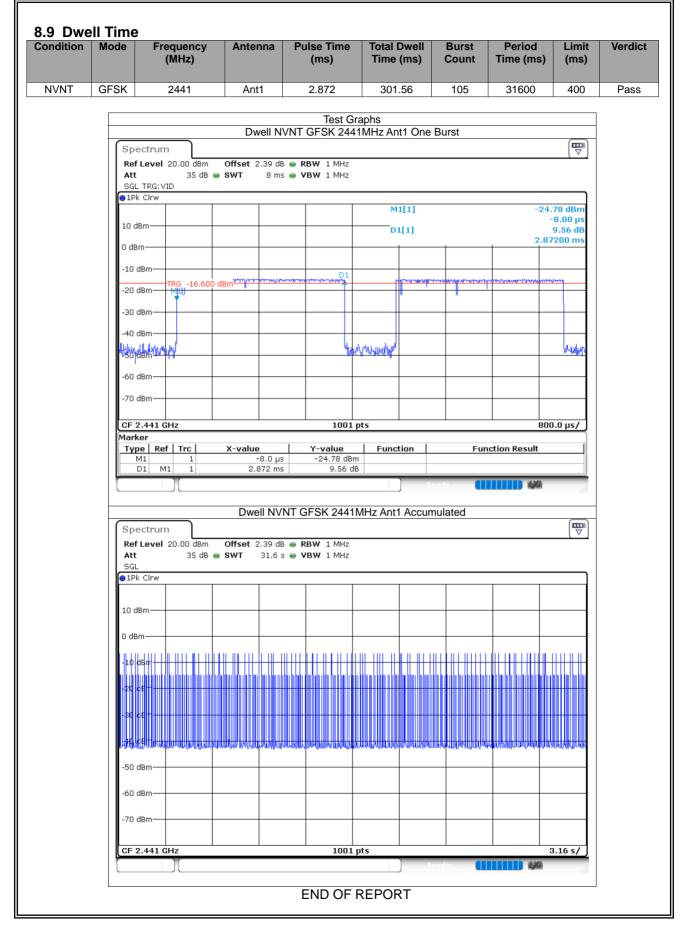

ACCREDITED

NTEK 北测

Att	20.00 dBm 35 dB			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT			(₩
● 1Pk Max	8000/8000								
-					м	1[1]			-8.78 dBm
10 dBm								2.479	84020 GHz
10 000									
0 dBm									
				M1					
≥10 dBm—	m	m	- <u> </u>	M /M	~ <u></u>				
-20 dBm		\int							
\sim	<u>ک</u>	(\mathcal{N}	V					
-30 dBm—					\rightarrow				
					\				
-40 dBm					1				
-50 dBm						m			
						m	m	h	
-60 dBm—									
70 40-									
-70 dBm									
	Banc	I Edge(Hc	opping) N	1001 IVNT GFSK) Read z Ant1 Hop	oping Emi		n 8.0 MHz
Spectrun Ref Level Att	Banc	Offset 2	2.42 dB 👄		2480MH2		oping Emis		m 8.0 MHz
Spectrun Ref Level Att SGL Count	Banc n 20.00 dBm 35 dB	Offset 2	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z z Mode /	Auto FFT	oping Emis		(₩ \
Spectrun Ref Level Att SGL Count 1Pk Max	Banc n 20.00 dBm 35 dB	Offset 2	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z z Mode /		oping Emi	ssion	
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm-	Banc n 20.00 dBm 35 dB	Offset 2	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Banc n 20.00 dBm 35 dB	Offset 2	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT 1[1]	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Banc n 20.00 dBm 35 dB	Offset 2	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT 1[1]	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Att SGL Count 1Pk Max 10 dBm	Banc n 20.00 dBm 35 dB	Offset 2	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT 1[1]	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm- 11 10 dBm- 12 dBm-	Banc n 20.00 dBm 35 dB	Offset 2 SWT 2:	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT 1[1]	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	Banc n 20.00 dBm 35 dB : 1200/1200	Offset 2 SWT 2:	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT 1[1]	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	Banc n 20.00 dBm 35 dB : 1200/1200	Offset 2 SWT 2 dBm	2.42 dB 👄	IVNT GFSK RBW 100 kH:	2480MHz z Mode /	Auto FFT 1[1]	oping Emis	ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	Banc 20.00 dBm 35 dB 1200/1200 201 -28.784	Offset 2 SWT 2 dBm	2.42 dB • 27.5 µs •		2480MHz z Mode / M	Auto FFT 1[1]		ssion 2.4777	-9.18 dBm 05000 GHz 52.66 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	Banc 20.00 dBm 35 dB 1200/1200 201 -28.784	Offset 2 SWT 2 dBm	2.42 dB • 27.5 µs •		2480MHz z Mode / M	Auto FFT 1[1] 2[1]		2.477 2.483	-9.18 dBm 705000 GHz 52.66 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm- 11 10 dBm- -30 dBm- -40 dBm- -40 dBm- -50 dBm- -60 dBm-	Banc 20.00 dBm 35 dB 1200/1200 201 -28.784	Offset 2 SWT 2 dBm	2.42 dB • 27.5 µs •		2480MHz z Mode / M	Auto FFT 1[1] 2[1]		2.477 2.483	-9.18 dBm 705000 GHz 52.66 dBm 50000 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 11 12 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm	Banc 20.00 dBm 35 dB 1200/1200 201 -28.784	Offset 2 SWT 2 dBm	2.42 dB • 27.5 µs •		2480MHz z Mode / M	Auto FFT 1[1] 2[1]	oping Emis	2.477 2.483	-9.18 dBm 705000 GHz 52.66 dBm 50000 GHz
Spectrun Ref Level Att SGL Count SGL Count 10 dBm	Banc 20.00 dBm 35 dB 1200/1200 201 -28.784	Offset 2 SWT 2 dBm	2.42 dB • 27.5 µs •		2480MHz 2 Mode / M	Auto FFT 1[1] 2[1]		2.477 2.483	-9.18 dBm 705000 GHz 52.66 dBm 50000 GHz
Spectrun Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Banc n 20.00 dBm 35 dB 1200/1200 201 -28.784	dBm	2.42 dB • 27.5 µs •		2480MHz z Mode / M M	Auto FFT 1[1] 2[1]	un al an	2.477 2.483	-9.18 dBm 05000 GHz 52.66 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm Start 2.477 Marker Type Re M1	Banc 1 20.00 dBm 35 dB 1200/1200 201 -28.784 0 0 0 0 0 0 0 0 0 0 0 0 0	dBm dBm dBm 4 M3 dbm x-value 2.477	2.42 dB 27.5 µs	IVNT GFSK RBW 100 kH: VBW 300 kH: 000 000 000 000 000 000 000 0	2480MH2 2 Mode / M M m pts Func m	Auto FFT 1[1] 2[1]	un al an	2.477 2.483	-9.18 dBm 05000 GHz 52.66 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 0 dBm -0 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Banc n 20.00 dBm 35 dB 1200/1200 201 -28.784	Offset 2 SWT 2 dBm dBm 4 M3 dbmulgAugut constant	2.42 dB • 27.5 µs •	IVNT GFSK RBW 100 kH: VBW 300 kH: 	2480MH2 2 2 Mode 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Auto FFT 1[1] 2[1]	un al an	2.477 2.483	-9.18 dBm 52.66 dBm 55000 GHz

Tx. Spurious NVNT GFSK 2402MHz Ant1 Emission

		0/10							
∋1Pk M	ax								0.01.10
						M1[1]			-9.31 dBm 2.402070 GHz
10 dBm					+	M2[1]			-47.02 dBm
0 dBm-					\rightarrow				5.176650 GHz
	M1								
-10 dBn	∩ <mark>-Ť</mark>				+				
-20 dBn									
20 42.									
-30 dBn	n ++ D	1 -29,180	dBm		+				
-40 dBn									
-40 UBI		M	2	M5					
-50 dBn	n	M3	M4	T	_			Landard and Million	
	فتعليهم ورارا	A DESCRIPTION OF THE OWNER OWNER OWNER OWNER O	a destant for a second second second	السياقا فعامتهم وحياريهما				a facto de la compañía de la compañía.	
and an a state of the second	and the second second	a para manana an		A CONTRACTOR OF A CONTRACTOR O					
-70 dBn	n								
Start 3	0.0 M	IHz	<u> </u>	300	001 pts			s	top 26.5 GHz
Marker									
Туре	Ref	Trc	X-value	Y-value	, L	Function	1	Function Re:	sult
M1		1	2.40207 GH						
M2		1	5.17665 GH:						
MЗ		1	4.697543 GH: 7.026021 GH:						
M4							1		



Spectrum		ous NVNT GFSI			
Ref Level 20.00	dBm Offset 2.39 dB	RBW 100 kHz			[\[abla]
Att 3	80 dB SWT 18.9 µs	🔵 VBW 300 kHz	Mode Auto FFT		
SGL Count 100/10 1Pk Max	iu]
			M1[1]		-8.74 dBm
10 dBm				+	2.4408391550 GHz
0 dBm					
10 dBm-		MI			
-10 dBm					
-20 dBm					
					\sim
-30 dBm					
-40 dBm					
					1
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.441 GHz		30001 p	ts		Span 1.5 MHz
Spectrum	Tx. Spurious	NVNT GFSK 2	441MHz Ant1 E	mission	
Ref Level 20.00	dBm Offset 2.39 dB	e RBW 100 kHz			
Ref Level 20.00 Att 3 SGL Count 10/10	dBm Offset 2.39 dB				
Ref Level 20.00 Att 3 SGL Count 10/10	dBm Offset 2.39 dB	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max	dBm Offset 2.39 dB	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 IPk Max 10 0 dBm 0	dBm Offset 2.39 dB	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max 10 0 dBm	dBm Offset 2.39 dB	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 1Pk Max 10 dBm 0 -10 dBm M1	dBm Offset 2.39 dB	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 IPk Max 3 10 dBm 0 -10 dBm -10 dBm -20 dBm -20 dBm	dBm Offset 2.39 dB 10 dB SWT 265 ms	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm
Att 3 SGL Count 10/10 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm D1 -28	dBm Offset 2.39 dB 10 dB SWT 265 ms	e RBW 100 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 IPk Max 10 dBm 0 -10 dBm 0 -20 dBm 01 -20 dBm 01	dBm Offset 2.39 dB 00 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 IPk Max 10 dBm 0 dBm -0 dBm -10 dBm -10 dBm -20 dBm -10 -28	dBm Offset 2.39 dB 8 SWT 265 ms .738 dBm .738 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Ref Level 20.00 Att 33 SGL Count 10/10 IPk Max 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm D1 -28 -40 dBm -40 dBm -20	dBm Offset 2.39 dB 10 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 IPk Max 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm D1 -28 -40 dBm -40 dBm -20	dBm Offset 2.39 dB 8 SWT 265 ms .738 dBm .738 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max 3 10 dBm 0 -10 dBm -0 -20 dBm -0 -30 dBm 01 -20 dBm -01 -70 dBm -01	dBm Offset 2.39 dB 8 SWT 265 ms .738 dBm .738 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max 3 10 dBm 0 -10 dBm -0 -20 dBm -0 -30 dBm 01 -20 dBm -01 -70 dBm -01 -70 dBm -01 -70 dBm -01	dBm Offset 2.39 dB 8 SWT 265 ms .738 dBm .738 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Ref Level 20.00 Att 33 SGL Count 10/10 IPk Max 10 dBm 10 dBm	dBm Offset 2.39 dB 10 dB SWT 265 ms .738 dBm .738 dBm 	RBW 100 kHz VBW 300 kHz	Mode Auto Swee		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Ref Level 20.00 Att SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -20 dBm -30 dBm -30 dBm -70 dBm -50 dBm -70 dBm	dBm Offset 2.39 dB 10 dB SWT 265 ms .738 dBm .738 dBm	RBW 100 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz Souther statements Souther statements Souther statements Souther statements Y-value -9.45 dBm	Mode Auto Swee M1[1] M2[1] M2[1] L L L L L L L L L L L L L L L L L L		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Ref Level 20.00 Att 33 SGL Count 10/10 IPk Max	dBm Offset 2.39 dB 10 dB SWT 265 ms .738 dBm .738 dBm	 RBW 100 kHz YBW 300 kHz YBW 300 kHz 300 kHz 4 4<	Mode Auto Swee M1[1] M2[1] M2[1] L L L L L L L L L L L L L L L L L L		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz
Mathematical Section Mathematical Section 10 dBm 3 10 dBm 0 10 dBm 0 -20 dBm -10 -20 dBm -10 -30 dBm 01 -20 dBm -20 -70 dBm -20	dBm Offset 2.39 dB 10 dB SWT 265 ms .738 dBm	RBW 100 kHz VBW 300 kHz VBW 300 kHz S	Mode Auto Swee M1[1] M2[1] M2[1] L L L L L L L L L L L L L L L L L L		-9.45 dBm 2.440900 GHz -47.71 dBm 5.176650 GHz

Tx. Spurious NVNT GFSK 2480MHz Ant1 Ref ₽ Spectrum Ref Level 20.00 dBm Offset 2.42 dB 👄 RBW 100 kHz Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] -8.74 dBn 2.4800042500 GH 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 1.5 MHz CF 2.48 GHz 30001 pts Tx. Spurious NVNT GFSK 2480MHz Ant1 Emission ₽ Spectrum Ref Level 20.00 dBm Offset 2.42 dB 🖷 RBW 100 kHz Att 30 dB SWT 265 ms 👄 VBW 300 kHz Mode Auto Sweep SGL Count 10/10 ●1Pk Max M1[1] -9.21 dBn 2.479720 GHz 10 dBm M2[1] -49.91 dBm 15.683476 GHz 0 dBm -10 dBm -20 dBm· D1 -28.737 30 dBm 40 dBn -50 dBm· V. 11 7 Y. -70 dBm Start 30.0 MHz 30001 pts Stop 26.5 GHz Marker Type | Ref | Trc Function Result Function X-value Y-value -9.21 dBm 2.47972 GHz Μ1 1 M2 15.683476 GHz -49.91 dBm ΜЗ 4.976361 GHz -54.55 dBm 1 M4 1 7.314544 GHz -54.60 dBm 9.920074 GHz M5 1 -53.32 dBm

