

RADIO TEST REPORT FCC ID: 2ABYN081

Product:2.4GHz Wireless MicrophoneProduct:System Receiver for
Sony(Receiver)Trade Mark:GodoxModel No.:Virso SRXFamily Model:N/AReport No.:S23042700613001Issue Date:Oct 25, 2023

Prepared for

GODOX PHOTO EQUIPMENT CO., LTD

1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, 518103 China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Table of Contents

1 TE	ST RESULT CERTIFICATION	3
	MMARY OF TEST RESULTS	
	CILITIES AND ACCREDITATIONS	
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5
4 GE	ENERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10
7 TE	ST REQUIREMENTS	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 32 33 34
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MAXIMUM CONDUCTED OUTPUT POWER	

1 TEST RESULT CERTIFICATION

Applicant's name:	GODOX PHOTO EQUIPMENT CO.,LTD		
Address:	1st to 4th Floor, Building 2/1st to 4th Floor, Building 4 ,Yaochuan		
	Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, 518103 China		
Manufacturer's Name	GODOX Photo Equipment Co.,Ltd.		
Address:	4th Floor of Building 1, 1st to 4 th Floor of Building 2, 4th Floor of Building 3,1st to 4th Floor of Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Bao'an District, Shenzhen 518103, China		
Product description			
Product name:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)		
Trade Mark:	Godox		
Model and/or type reference:	Virso SRX		
Family Model:	N/A		
Test Sample number::	S230427006014		
Date of Test:	Sep 04, 2023 ~ Oct 25, 2023		

Measurement Procedure Used:

APPLICABLE STANDARDS STANDARD/ TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C Complied ANSI C63.10-2013 This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.

Prepared . Mary Hu Reviewed . Aaron Cheng Approved . By : Aaron Cheng By : Agron Cheng By : (Supervisor) Alex Li (Project Engineer) (Supervisor) (Manager)

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

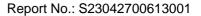
3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment 2.4GHz Wireless Microphone System Receiver for Sony(Receiver)				
Trade Mark	le Mark Godox			
FCC ID	2ABYN081			
Model No.	Virso SRX			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	79 Channels			
Antenna Type	Printed Antenna			
Antenna Gain	1.52dBi			
Adapter	N/A			
Battery	Built-in Li-ion battery: 3.7V, 600mAh, 2.22Wh			
Power Rating	Built-in Li-ion battery: 3.7V, 600mAh, 2.22Wh or Type-C Input: 5V,0.45A			
HW Version	20220526H33			
SW Version	V1.0			


Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Povicion History

Revision History				
Report No.	Version	Description	Issued Date	
S23042700613001	Rev.01	Initial issue of report	Oct 25, 2023	
		_		

NTEK 北源

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Cartificate #4298 01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)		
0	2402		
1	2403		
39	2441		
40	2442		
77	2479		
78	2480		

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases			
Final Test Mode	Description		
Mode 1	normal link mode		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases			
Final Test Mode	Description		
Mode 2	CH00(2402MHz)		
Mode 3 CH39(2441MHz)			
Mode 4	CH78(2480MHz)		
Mode 5	Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For AC Conducted Emission Mode

FOLAC CONducted Emissio					
	EUT	C-2	AE-1 Adapter	AC PLUG	
For Radiated Test Cases					
E	JT				
For Conducted Test Cases					
Measurement C-2	EUT				

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2. EUT built-in battery-powered, the battery is fully-charged.

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals

ac-M

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-MF

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

		cor equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.16	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

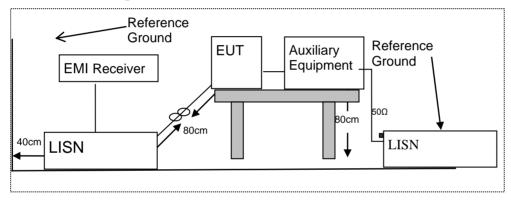
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

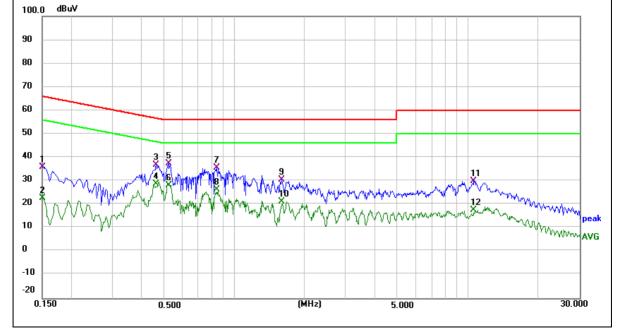
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 **Test Results**

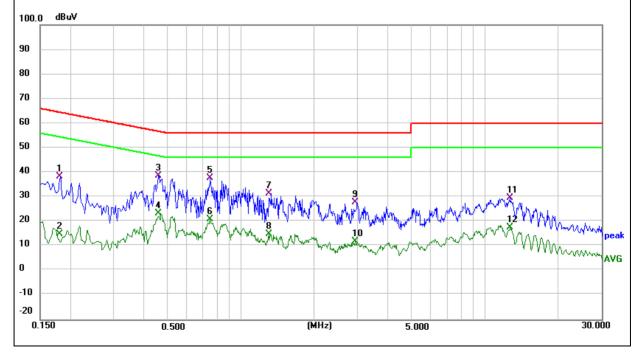

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model Name :	Virso SRX
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V powered by adapter AC120V/60Hz	Test Mode:	Mode 1

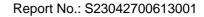
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	26.04	9.93	35.97	66.00	-30.03	QP
0.1500	12.88	9.93	22.81	56.00	-33.19	AVG
0.4620	26.31	10.57	36.88	56.66	-19.78	QP
0.4620	18.27	10.57	28.84	46.66	-17.82	AVG
0.5220	26.91	10.69	37.60	56.00	-18.40	QP
0.5220	17.51	10.69	28.20	46.00	-17.80	AVG
0.8420	24.28	11.34	35.62	56.00	-20.38	QP
0.8420	14.91	11.34	26.25	46.00	-19.75	AVG
1.5940	17.73	12.84	30.57	56.00	-25.43	QP
1.5940	8.38	12.84	21.22	46.00	-24.78	AVG
10.5740	20.24	9.69	29.93	60.00	-30.07	QP
10.5740	7.93	9.69	17.62	50.00	-32.38	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model Name :	Virso SRX
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V powered by adapter AC120V/60Hz	Test Mode:	Mode 1


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remain
0.1819	28.46	9.99	38.45	64.40	-25.95	QP
0.1819	4.96	9.99	14.95	54.40	-39.45	AVG
0.4580	28.07	10.57	38.64	56.73	-18.09	QP
0.4580	12.82	10.57	23.39	46.73	-23.34	AVG
0.7460	26.58	11.15	37.73	56.00	-18.27	QP
0.7460	9.70	11.15	20.85	46.00	-25.15	AVG
1.3020	19.22	12.26	31.48	56.00	-24.52	QP
1.3020	2.61	12.26	14.87	46.00	-31.13	AVG
2.9420	18.15	9.67	27.82	56.00	-28.18	QP
2.9420	2.19	9.67	11.86	46.00	-34.14	AVG
12.6540	20.06	9.70	29.76	60.00	-30.24	QP
12.6540	7.84	9.70	17.54	50.00	-32.46	AVG
0.7460 0.7460 1.3020 1.3020 2.9420 2.9420 12.6540	26.58 9.70 19.22 2.61 18.15 2.19 20.06	11.15 11.15 12.26 12.26 9.67 9.67 9.70	37.73 20.85 31.48 14.87 27.82 11.86 29.76	56.00 46.00 56.00 46.00 56.00 46.00 60.00	-18.27 -25.15 -24.52 -31.13 -28.18 -34.14 -30.24	QF AV QF AV QF AV

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fait 15.205, Restricted bands					
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	(-,,,	- ()	
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Fraguanay (MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

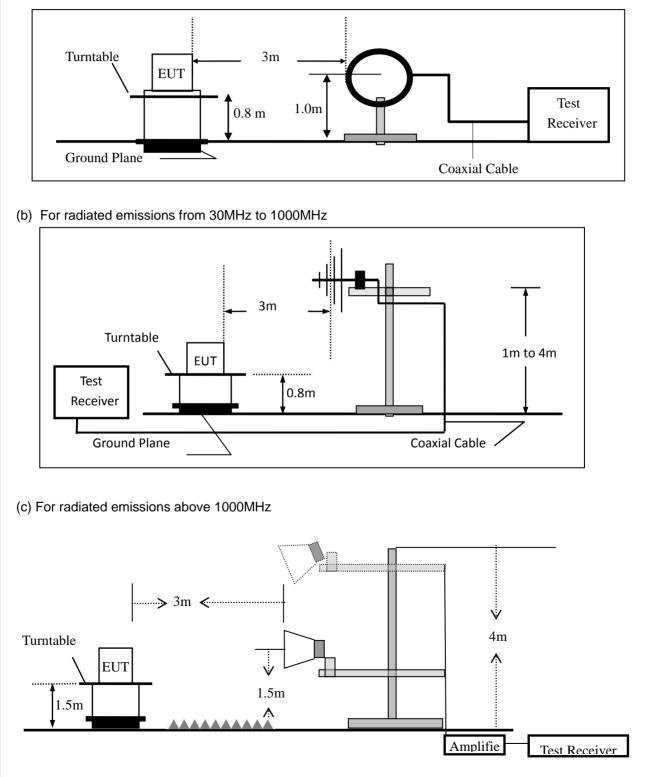
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

NTEK 北视


The Measuring equipment is listed in the section 6.3 of this test report.

ac.M

ACCREDITED

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

ļ	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
	Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
	30 to 1000	QP	120 kHz	300 kHz						
	Ab aug. 1000	Peak	1 MHz	1 MHz						
	Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)									
EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model No.:	Virso SRX						
Temperature:	20 ℃	Relative Humidity:	48%						
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu						

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

	Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:									
EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model Name :	Virso SRX							
Temperature:	25 ℃	Relative Humidity:	55%							
Pressure:	1010hPa	Test Mode:	Mode 2							
Test Voltage :	DC 3.7V									

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
V	30.3173	5.43	26.24	31.67	40.00	-8.33	QP	
V	103.8055	10.36	17.90	28.26	43.50	-15.24	QP	
V	180.6488	12.45	16.74	29.19	43.50	-14.31	QP	
V	194.4534	12.07	16.22	28.29	43.50	-15.21	QP	
V	480.5276	8.32	24.54	32.86	46.00	-13.14	QP	
V	935.5463	6.79	31.02	37.81	46.00	-8.19	QP	
	n Level= Meter f							
40 30 20 10	and the foreign and the foreig	Notrie March March	had an a share a	and the second s	5 Landor Martin	and the second	S.	
0								

(MHz)

300.00

-10 -20

30.000

60.00

1000.000

NTEK 北测

Polar	Freque	ency		eter Iding	Factor	Emiss Lev	-	Limits	Margin	Remarl
(H/V)	(MH	z)	(dE	BuV)	(dB)	(dBuV	//m)	(dBuV/m)	(dB)	
Н	169.00	054	14	.32	17.39	31.7	'1	43.50 -11.79		QP
Н	175.6	516	15	5.24	17.02	32.2	26	43.50 -11.24		QP
Н	194.4	534	15	5.10	16.22	31.3	32	43.50	-12.18	QP
Н	211.5	265	12	2.83	16.50	29.3	33	43.50	-14.17	QP
Н	287.99	904	9.	.29	19.93	29.2	22	46.00	-16.78	QP
Н	480.30	051	17	' .74	24.53	42.2	27	46.00	-3.73	QP
70										
60										
50						ſ			ō X	
40 30						12 3 X X X 4		5	the marked or show the	witness
20	Viniens der vinderen			month	and and a start and a start and and and a	/Mm/hullu	manual	5 Jack Marine Marked M Marked Marked M	a manage and	
20		ANN WWWWWWWW	and when	and and the second s						
10										
0										
-10										
-20										
30.000		60.0	0		(MHz)		300.00		1000.000

ACCREDITED Certificate #4298.01

opunouo		GHz Wire	<u>GHz (1GH</u> eless		12)					
UT:	Mi Re	crophone ceiver for ny(Receiv	System	Mode	Model No.:			Virso SRX		
emperature			,	Relat	ive Humidity	/:	48%			
est Mode:	Mo	de2/Mod	e3/Mode4	Test	By:		Mary I	Hu		
I the modul	ation mo	des have	been teste		worst resul				/:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Remark	Commen
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)		
			Low Chan	nel (2402 N	/Hz)(GFSK)	Abov	ve 1G			
4804.89	68.03	5.21	35.59	44.30	64.53	74	l.00	-9.47	Pk	Vertical
4804.89	43.21	5.21	35.59	44.30	39.71	54	l.00	-14.29	AV	Vertical
7206.78	62.28	6.48	36.27	44.60	60.43	74	l.00	-13.57	Pk	Vertical
7206.78	42.50	6.48	36.27	44.60	40.65	54	1.00	-13.35	AV	Vertical
4804.06	60.64	5.21	35.55	44.30	57.10	74	1.00	-16.90	Pk	Horizonta
4804.06	42.06	5.21	35.55	44.30	38.52	54	1.00	-15.48	AV	Horizonta
7206.77	59.61	6.48	36.27	44.52	57.84	74.00		-16.16	Pk	Horizonta
7206.77 42.17 6.48 36.27					40.40		.00	-13.60	AV	Horizonta
					/Hz)(GFSK)-	Abov	/e 1G	I	I	
4882.87	66.68	5.21	35.66	44.20	63.35	74	.00	-10.65	Pk	Vertical
4882.87	43.76	5.21	35.66	44.20	40.43	54	1.00	-13.57	AV	Vertical
7323.48	61.87	7.10	36.50	44.43	61.04	74	.00	-12.96	Pk	Vertical
7323.48	42.86	7.10	36.50	44.43	42.03		1.00	-11.97	AV	Vertical
4882.84	62.52	5.21	35.66	44.20	59.19		1.00	-14.81	Pk	Horizonta
4882.84	42.77	5.21	35.66	44.20	39.44		1.00	-14.56	AV	Horizonta
7324.04	60.13	7.10	36.50	44.43	59.30		1.00	-14.70	Pk	Horizonta
7324.04	41.75	7.10	36.50	44.43	40.92		.00	-13.08	AV	Horizonta
		T _			/Hz)(GFSK)	1				
4959.73	67.28	5.21	35.52	44.21	63.80		1.00	-10.20	Pk	Vertical
4959.73	43.86	5.21	35.52	44.21	40.38	54.00		-13.62	AV	Vertical
7439.47	60.62	7.10	36.53	44.60	59.65		.00	-14.35	Pk	Vertical
7439.47	43.16	7.10	36.53	44.60	42.19		.00	-11.81	AV	Vertical
4960.35	64.52	5.21	35.52	44.21	61.04		1.00	-12.96	Pk	Horizonta
4960.35	43.27	5.21	35.52	44.21	39.79		1.00	-14.21	AV	Horizonta
7440.53	63.15	7.10	36.53	44.60	62.18		1.00	-11.82	Pk	Horizonta
7440.53	40.73	7.10	36.53	44.60	39.76	54	.00	-14.24	AV	Horizonta

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

EUT:	2.4GHz System I Sony(Re	Receive	Microphoi for		Model No.: Virso SRX			SRX		
Femperature	20 ℃			Rela	itive Humidit	y:	48%			
Fest Mode:	Mode2/ I	Mode4		Test	By:		Mary	Hu		
All the modu	lation mod	des have	e been test	ed, and t	ne worst res	ult wa	is repo	ort as belo	ow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	IV/m)	(dB)	Туре	
			1	Mbps(GF	SK)-Non-hopp	bing		•		
2310.00	54.18	2.97	27.80	43.80	41.15	7	' 4	-32.85	Pk	Horizonta
2310.00	45.00	2.97	27.80	43.80	31.97	5	54	-22.03	AV	Horizonta
2310.00	54.56	2.97	27.80	43.80	41.53	7	' 4	-32.47	Pk	Vertical
2310.00	44.56	2.97	27.80	43.80	31.53	5	54	-22.47	AV	Vertical
2390.00	53.36	3.14	27.21	43.80	39.91	7	' 4	-34.09	Pk	Vertical
2390.00	42.76	3.14	27.21	43.80	29.31	5	54	-24.69	AV	Vertical
2390.00	50.21	3.14	27.21	43.80	36.76	7	' 4	-37.24	Pk	Horizonta
2390.00	41.94	3.14	27.21	43.80	28.49	5	54	-25.51	AV	Horizonta
2483.50	51.92	3.58	27.70	44.00	39.20	7	' 4	-34.80	Pk	Vertical
2483.50	43.77	3.58	27.70	44.00	31.05	5	54	-22.95	AV	Vertical
2483.50	52.99	3.58	27.70	44.00	40.27	7	' 4	-33.73	Pk	Horizonta
2483.50	44.33	3.58	27.70	44.00	31.61	5	54	-22.39	AV	Horizonta
				1Mbps(G	FSK)-hoppin	g				
2310.00	56.56	2.97	27.80	43.80	43.53	7	' 4	-30.47	Pk	Horizonta
2310.00	42.22	2.97	27.80	43.80	29.19	5	54	-24.81	AV	Horizonta
2310.00	52.05	2.97	27.80	43.80	39.02	7	' 4	-34.98	Pk	Vertical
2310.00	43.39	2.97	27.80	43.80	30.36	5	54	-23.64	AV	Vertical
2390.00	52.40	3.14	27.21	43.80	38.95	7	' 4	-35.05	Pk	Vertical
2390.00	44.48	3.14	27.21	43.80	31.03	5	54	-22.97	AV	Vertical
2390.00	54.13	3.14	27.21	43.80	40.68	7	' 4	-33.32	Pk	Horizonta
2390.00	42.02	3.14	27.21	43.80	28.57	5	54	-25.43	AV	Horizonta
2483.50	51.09	3.58	27.70	44.00	38.37	7	' 4	-35.63	Pk	Vertical
2483.50	40.02	3.58	27.70	44.00	27.30	5	54	-26.70	AV	Vertical
2483.50	50.88	3.58	27.70	44.00	38.16	7	' 4	-35.84	Pk	Horizonta
2483.50	44.22	3.58	27.70	44.00	31.50	5	54	-22.50	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

		4GHz Wire crophone									
EUT:	Re	eceiver for	-	Model No.:				Virso SRX			
Temperature	Sony(Receiver) mperature: 20 °C			Relat	Relative Humidity: 48%						
Test Mode:		ode2/ Moc	64						LI		
			-	<u></u>	Test I			Mary			
All the modu							lit wa	is repo	n as beid	ow:	
Frequency	Reading Level	Cable	Antenna Factor		eamp actor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре	
3260	61.27	4.04	29.57	44	4.70	50.18	-	74	-23.82	Pk	Vertical
3260	47.66	4.04	29.57	44	4.70	36.57	ę	54	-17.43	AV	Vertical
3260	53.32	4.04	29.57	44	4.70	42.23	-	74	-31.77	Pk	Horizonta
3260	43.18	4.04	29.57	44	4.70	32.09	ę	54	-21.91	AV	Horizonta
3332	63.29	4.26	29.87	44	4.40	53.02	-	74	-20.98	Pk	Vertical
3332	47.24	4.26	29.87	44	4.40	36.97	ę	54	-17.03	AV	Vertical
3332	62.11	4.26	29.87	44	4.40	51.84	-	74	-22.16	Pk	Horizonta
3332	46.65	4.26	29.87	44	4.40	36.38	ę	54	-17.62	AV	Horizontal
17797	50.85	10.99	43.95	43	3.50	62.29	-	74	-11.71	Pk	Vertical
17797	36.84	10.99	43.95	43	3.50	48.28	Ę	54	-5.72	AV	Vertical
17788	52.54	11.81	43.69	44	4.60	63.44	-	74	-10.56	Pk	Horizonta
17788	34.83	11.81	43.69	44	4.60	45.73	Į	54	-8.27	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

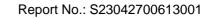
The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$


Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model No.:	Virso SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model No.:	Virso SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model No.:	Virso SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number)

DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

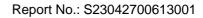
7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup


Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model No.:	Virso SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)		Virso SRX
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

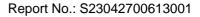
The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz


Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	2.4GHz Wireless Microphone System Receiver for Sony(Receiver)	Model No.:	Virso SRX
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Printed antenna (Gain: 1.52 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

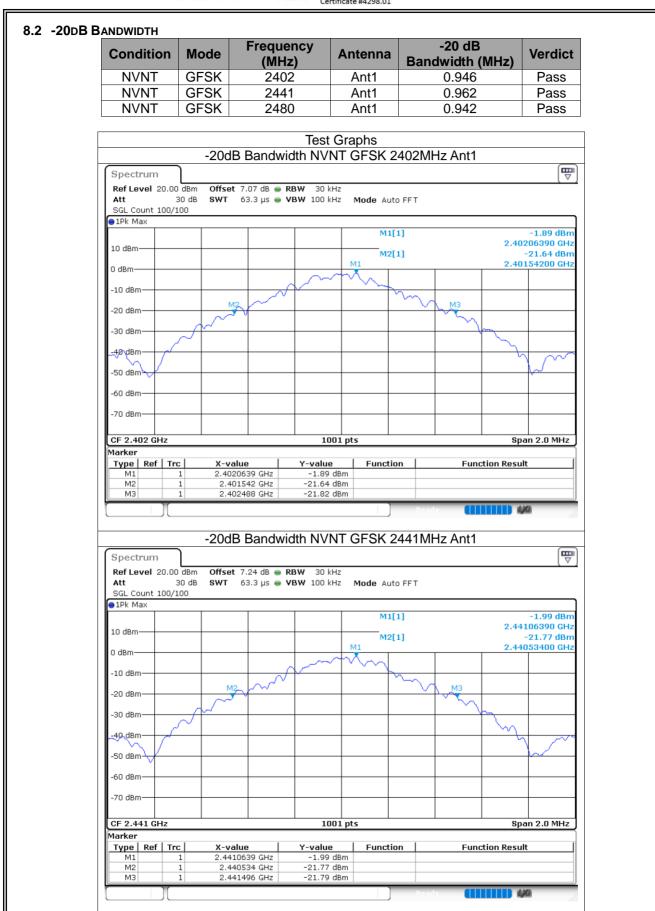
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

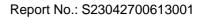
8 TEST RESULTS

8.1 MAXIMUM CONDUCTED OUTPUT POWER

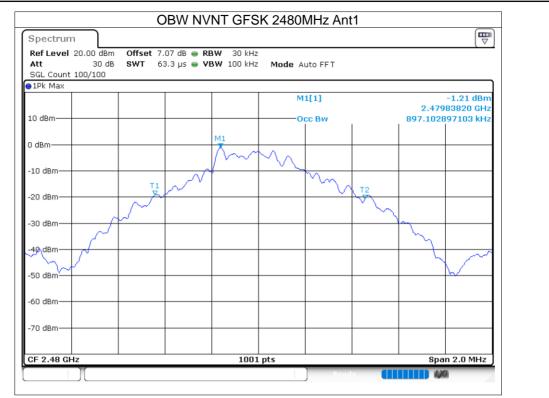
NTEK 北测®

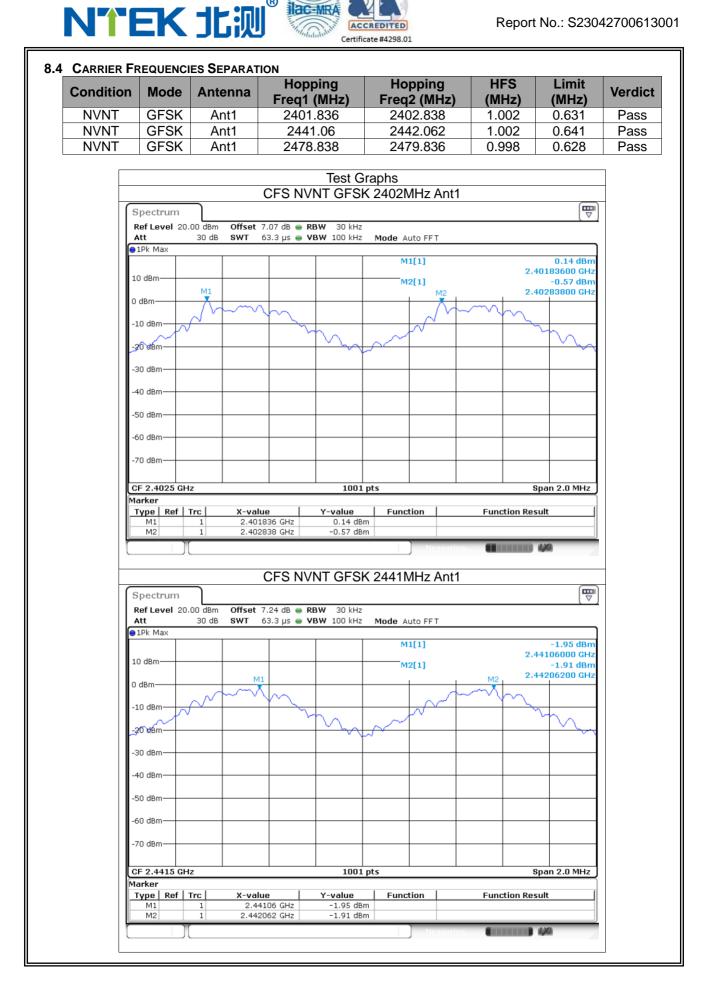
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	GFSK	2402	Ant1	1.58	21	Pass
NVNT	GFSK	2441	Ant1	1.51	21	Pass
NVNT	GFSK	2480	Ant1	1.22	21	Pass


ACCREDITED Certificate #4298.01


			Braphs	. 14	
	P	ower NVNT GF	SK 2402MHz Ar		m
Spectrum					∀
Ref Level 20.00 d Att 30 SGL Count 100/100	dB SWT	07 dB 👄 RBW 2 MHz 1 ms 👄 VBW 2 MHz	Mode Auto Sweep		
●1Pk Max					
			M1[1]	1.58 d 2.40206490 d	
10 dBm			M1		
0 dBm					
-10 dBm					_
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.402 GHz		100:	L pts	Span 5.0 MF	Hz
			Rea		

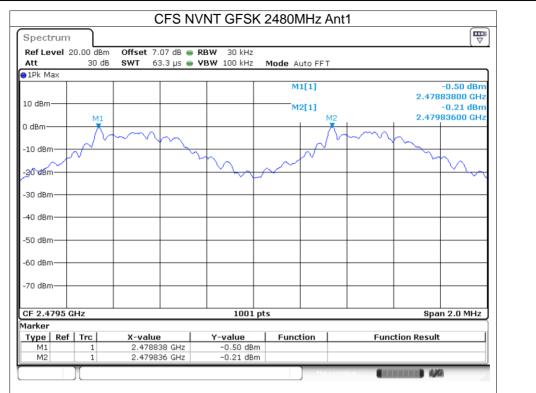
Spectrur	n				SK 2441M			
	 20.00 dBm	Offset	7.24 dB 🔵 RB	W 2 MHz				(∨)
Att	30 dB	SWT			Mode Auto 9	Gweep		
SGL Count	100/100							
1Pk Max			1		M1[1	1		1.51 dBm
							2.4410	05000 GHz
10 dBm								
D dBm					M1			
-10 dBm							 	
-20 dBm—								
-30 dBm								
-40 dBm								
-50 dBm							 	
-60 dBm								
-70 dBm								
CF 2.441				1001				1 5.0 MHz
0. 2.1.12				1001		_	opu.	
Spectrur Ref Level	n				SK 2480M	Hz Ant1	- 1942	
Ref Level Att	20.00 dBm 30 dB			W 2 MHz	SK 2480M		aya	
Ref Level	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz				
Ref Level Att SGL Count	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz		Gweep		1.22 dBm
Ref Level Att SGL Count	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz	Mode Auto S	Gweep	 2.4799	
Ref Level Att SGL Count 1Pk Max	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	 2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20.00 dBm 30 dB	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	2.4799	1.22 dBm
Ref Level Att SGL Count SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 100/100	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep		1.22 dBm 97000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 100/100	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep	Spar	1.22 dBm 97000 GHz
Ref Level Att SGL Count SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 100/100	Offset	7.07 dB 👄 RB	W 2 MHz W 2 MHz	Mode Auto S	Gweep		1.22 dBm 97000 GHz

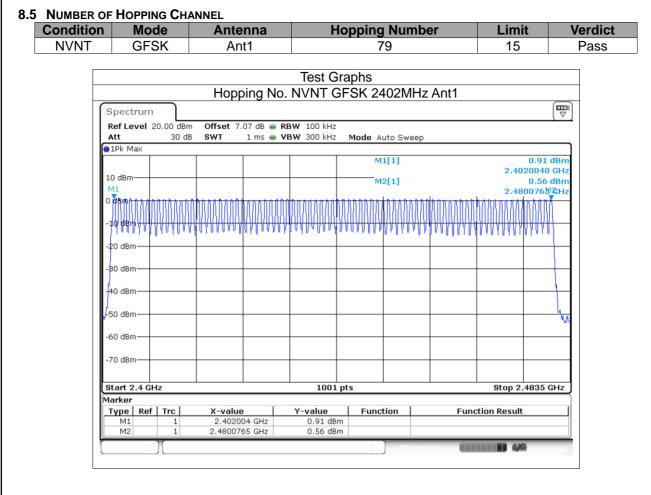

Spectrum				(₩)
Ref Level 20.00 dBm Offset 7.07 dB 👄	RBW 30 kHz			
Att 30 dB SWT 63.3 µs 👄	VBW 100 kHz	Mode Auto FFT		
6GL Count 100/100				
1Pk Max				
		M1[1]	-0	.98 dBm
0 dBm			2.47983	820 GHz
		M2[1]		.79 dBm
dBm	M1		2.47954	000 GHz
	m			
10 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
M2 ~~~	V	1 m	мз	
20 dBm		¥	₩ √₹	
30 dBm			+ $+$ $+$	
			1 m	
40 dBm				~~~
50 dBm				1
50 dBm				
70 dBm				
EF 2.48 GHz	1001			
	1001 pt	S	Span 2	2.0 MHz
arker				
Type Ref Trc X-value M1 1 2.4798382 GHz	Y-value	Function	Function Result	
M1 1 2.4798382 GHz M2 1 2.47954 GHz	-0.98 dBm -20.79 dBm			
M3 1 2.47954 GH2	-20.65 dBm			

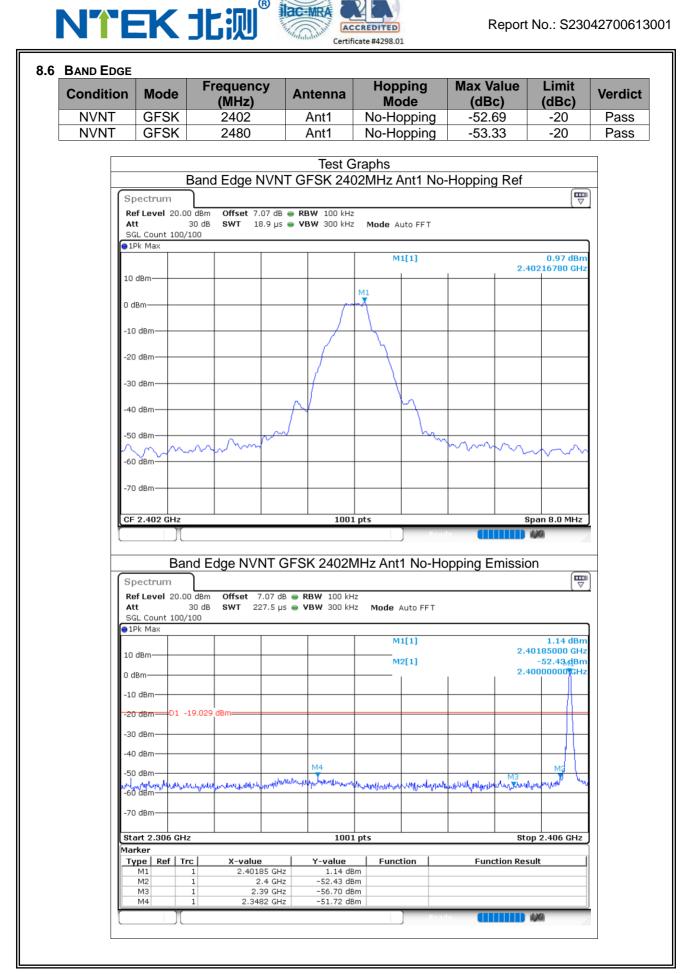


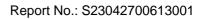
R

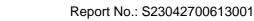
AC-MR

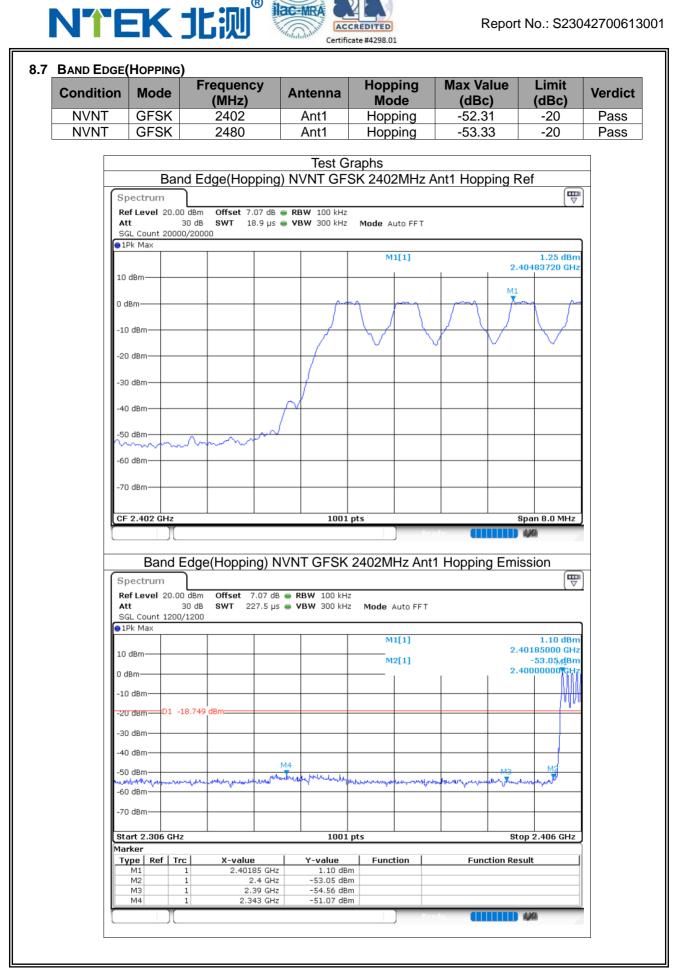




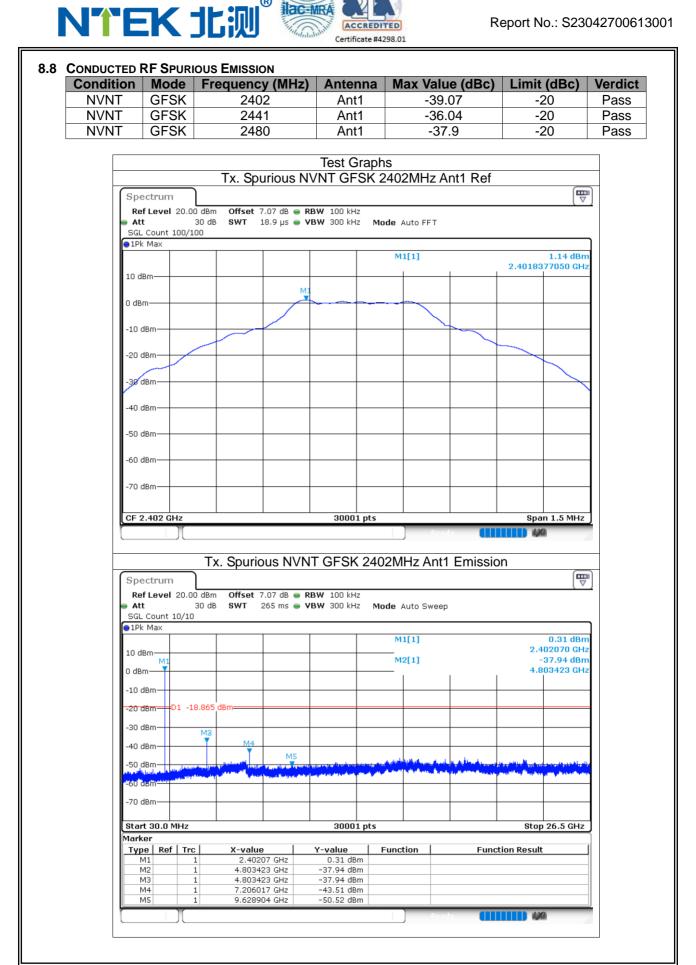

AC-MR



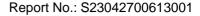


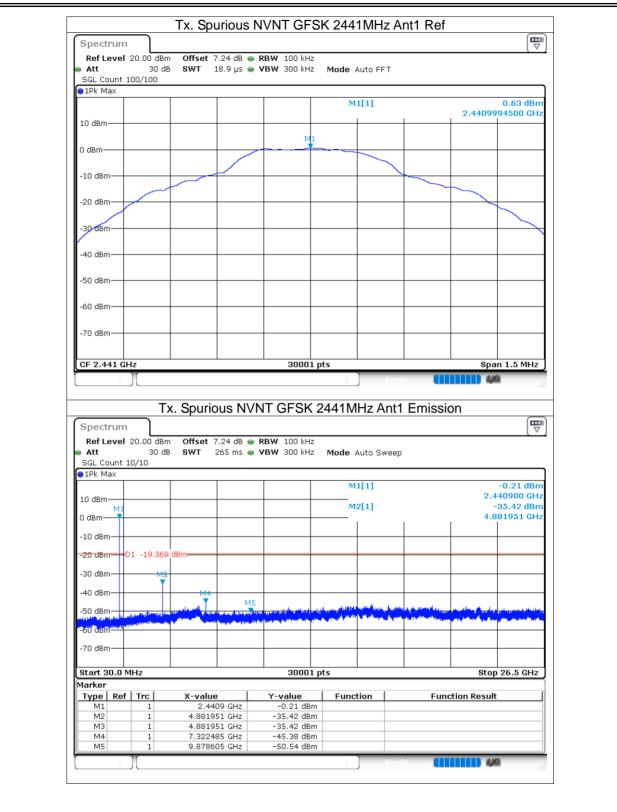

Iac-MR

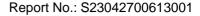
SGL Count 100/10	db SWT 1		BW 100 kHz BW 300 kHz		uto FFT			
●1Pk Max					1[1]			0.36 dBn
				IVI	1[1]		2.479	84020 GH
10 dBm								
0 dBm			M1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
				$\langle \rangle$				
-10 dBm								
-20 dBm								
20 00111								
-30 dBm			1/					
-40 dBm				<u> </u>	\wedge			
and abili								
-50 dBm		[m/			<u> </u>	h	<u> </u>	
-60 dBm	men .					$ \sim $	$ $ $\sim \sim \sim$	m
-60 dBm								
-70 dBm								
CF 2.48 GHz			1001	pts		1	Spa	n 8.0 MHz
	d Edge NV	NT GFS	K 2480N) Poor 1 No-Ho	opping E	mission	
Band Spectrum Ref Level 20.00 (Att 30	dBm Offset 3) dB SWT 23	7.07 dB 👄 I	K 2480N RBW 100 kH: VBW 300 kH:	/Hz Ant		opping E	mission	
Band Spectrum Ref Level 20.00	dBm Offset 3) dB SWT 23	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant		opping E	mission	
Band Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPk Max	dBm Offset 3) dB SWT 23	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /		ppping E		0.28 dBn
Band Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10	dBm Offset 3) dB SWT 23	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT	ppping E	2.480	0.28 dBn 05000 GH 54.97 dBn
Band Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 IPk Max 10 dBm	dBm Offset 3) dB SWT 23	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT	ppping E	2.480	0.28 dBn 05000 GH
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPk Max 10 dBm M1	dBm Offset 3) dB SWT 23	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT	ppping E	2.480	0.28 dBn 05000 GH 54.97 dBn
Band Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 IPk Max 10 dBm M1 0 dBm	dBm Offset 7 0 dB SWT 2: 00	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT	ppping E	2.480	0.28 dBn 05000 GH 54.97 dBn
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 IPk Max 10 dBm -10 dBm -20 dBm D1 -19	dBm Offset 7 0 dB SWT 2: 00	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT	ppping E	2.480	0.28 dBn 05000 GH 54.97 dBn
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -10 dBm -20 cBm D1 -19 -30 dBm	dBm Offset 7 0 dB SWT 2: 00	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT	ppping E	2.480	0.28 dBn 05000 GH 54.97 dBn
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7 0 dB SWT 2: 00	7.07 dB 👄 I	RBW 100 kH:	/Hz Ant ^z Mode /	Auto FFT		2.480	0.28 dBn 05000 GH 54.97 dBn
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -10 dBm -20 cBm D1 -19 -30 dBm	dBm Offset 7 0 dB SWT 22 00 .639 dBm	7.07 dB • 1 27.5 μs • 1	RBW 100 kH: VBW 300 kH:	/Hz Ant	Auto FFT 1[1] 2[1]		2.480 - 2.483	0.28 dBn 05000 GH 54.97 dBn 50000 GH
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPK Max 10 dBm -10 dBm -20 cBm -20 cBm -40 dBm -50 d	dBm Offset 7 0 dB SWT 22 00 .639 dBm	7.07 dB • 1 27.5 μs • 1	RBW 100 kH:	/Hz Ant	Auto FFT 1[1] 2[1]		2.480 - 2.483	0.28 dBn 05000 GH 54.97 dBn
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 d	dBm Offset 7 0 dB SWT 22 00 .639 dBm	7.07 dB • 1 27.5 μs • 1	RBW 100 kH: VBW 300 kH:	/Hz Ant	Auto FFT 1[1] 2[1]		2.480 - 2.483	0.28 dBn 05000 GH 54.97 dBn 50000 GH
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	dBm Offset 7 0 dB SWT 22 00 .639 dBm	7.07 dB • 1 27.5 μs • 1	RBW 100 kH; VBW 300 kH;	/Hz Ant ² Mode / M M	Auto FFT 1[1] 2[1]		2.480 - 2.483 	0.28 dBn 05000 GH 54.97 dBn 50000 GH
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPK Max 10 dBm -10 dBm -20 cBm -20 cBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm	dBm Offset 7 0 dB SWT 22 00 .639 dBm	7.07 dB • 1 27.5 μs • 1	RBW 100 kH: VBW 300 kH:	/Hz Ant ² Mode / M M	Auto FFT 1[1] 2[1]		2.480 - 2.483 	0.28 dBn 05000 GH 54.97 dBn 50000 GH
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 IPk Max 10 dBm -10 dBm -20 cBm -20 cBm -10 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc	dBm Offset) 0 dB SWT 2: 0 .639 dBm .639 dBm	7.07 dB • 1 27.5 μs • 1	RBW 100 kH; YBW 300 kH; YBW 1001 YBW 1001	/Hz Ant	Auto FFT 1[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		2.480 - 2.483 	0.28 dBn 05000 GH 54.97 dBn 50000 GH
Banc Ref Level 20.00 (Att 30) Spectrum Ref Level 20.00 (Att 30) SGL Count 100/10 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type M1 M2	dBm Offset ↑ 0 dB SWT 2: 0 .639 dBm .639 dBm .630	7.07 dB • 1 27.5 μs • 1 27.5 μs • 1	RBW 100 kH: /BW 300 kH: //BW 300 kH: ////////////////////////////////////	/Hz Ant 2 Mode / M M M M M M M M M M M M M	Auto FFT 1[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		2.480 - 2.483 	0.28 dBn 05000 GH 54.97 dBn 50000 GH
Banc Spectrum Ref Level 20.00 (Att 30 SGL Count 100/10 PIPK Max 10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc M1 1	dBm Offset 0 dB 0 SWT 0 22 0 39 .639 dBm .639 dBm .639	7.07 dB • 1 27.5 μs • 1 27.5 μs • 1	RBW 100 kH; VBW 300 kH; VI VI VI VI	/Hz Ant	Auto FFT 1[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		2.480 - 2.483 	0.28 dBn 05000 GH 54.97 dBn 50000 GH



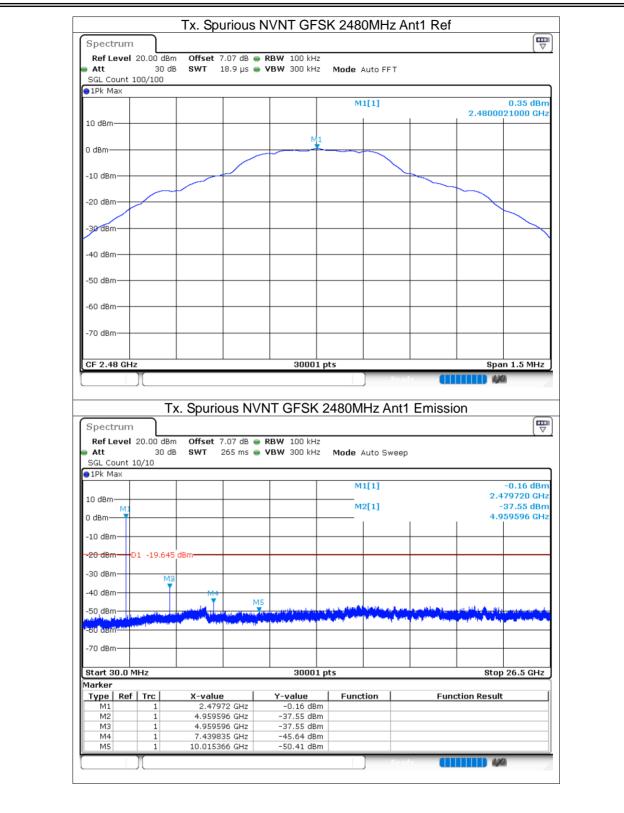
Iac-MR

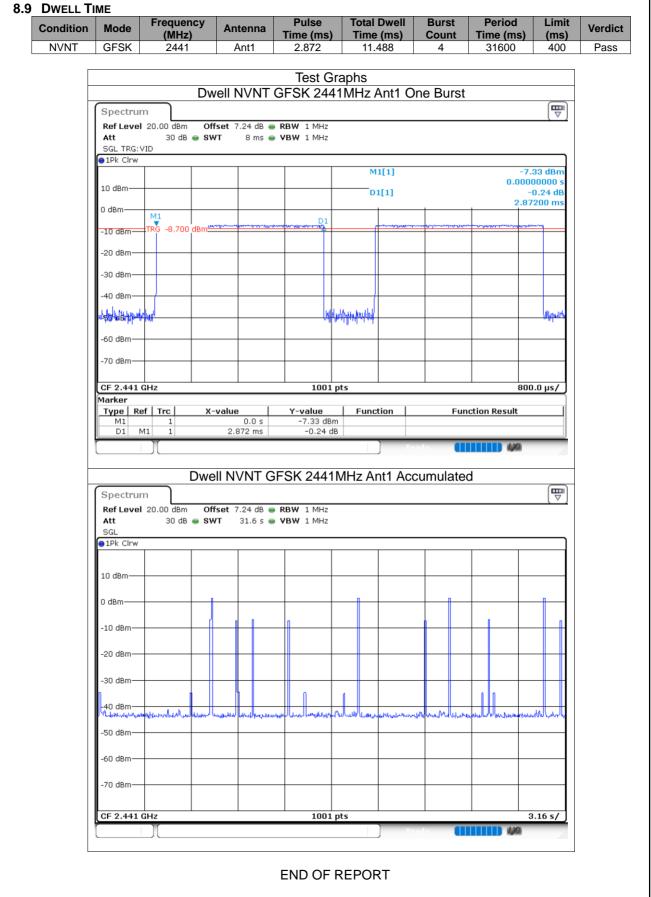

ACCREDITED


Att SGL Count	20000/2000	0							
●1Pk Max					м	1[1]			0.64 dBn
10 dBm								2.479	83220 GH
				M1					
∿0√dBm	m n	1	1	1 /1					
-10 dBm	<u> </u>	$/ \downarrow$		\mathbb{R}					
	\sim	Í	M	$ \vee $	\sim				
-20 dBm—									
-30 dBm									
-40 dBm						\sim			
-50 dBm						<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	
-60 dBm									
-70 dBm									
CE 9 49 C	17			1001					
Spectrun	nd Edge	Offset 7	7.07 dB 👄 I	IT GFSK	2480M		Hopping		ion
Ba Spectrun Ref Level Att	nd Edge	Offset 7	7.07 dB 👄 I	IT GFSK	2480M		Hopping		ion
Ba Spectrun Ref Level Att SGL Count ● 1Pk Max	nd Edge	Offset 7	7.07 dB 👄 I	IT GFSK	2480M		Hoppin	g Emiss	0.57 dBm
Ba Spectrun Ref Level Att SGL Count	nd Edge	Offset 7	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT	Hoppin	g Emiss	0.57 dBm 85000 GH2 54.76 dBm
Ba Spectrun Ref Level Att SGL Count ● 1Pk Max	nd Edge	Offset 7	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT 1[1]	Hoppin	g Emiss	0.57 dBm 85000 GH2
Ba Spectrun Ref Level Att SGL Count 9 1Pk Max 10 dBm 10 dBm 10 dBm	nd Edge	Offset 7	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT 1[1]	Hoppin	g Emiss	0.57 dBm 85000 GH2 54.76 dBm
Ba Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm	nd Edge	Offset 7 SWT 22	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT 1[1]	Hoppin	g Emiss	0.57 dBm 85000 GH2 54.76 dBm
Ba Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm	nd Edge 20.00 dBm 30 dB 1200/1200	Offset 7 SWT 22	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT 1[1]	Hoppin	g Emiss	0.57 dBm 85000 GH2 54.76 dBm
Ba Spectrun Ref Level Att SGL Count SGL Count SGL Count 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBm-	nd Edge 20.00 dBm 30 dB 1200/1200	Offset 7 SWT 22	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT 1[1]	Hoppin	g Emiss	0.57 dBm 85000 GH2 54.76 dBm
Ba Spectrun Ref Level Att SGL Count • 1Pk Max 10 dBm	nd Edge 20.00 dBm 30 dB 1200/1200	Offset 7 SWT 22	7.07 dB 👄 I		2480M	Auto FFT 1[1] 2[1]		2.479 2.483	0.57 dBm 85000 GH2 54.76 dBm 50000 GH2
Ba Spectrun Ref Level Att SGL Count SGL Count I D dBm I PICB I D dBm -20 cBm -20 cBm -30 cBm -40 dBm	nd Edge 20.00 dBm 30 dB 1200/1200	Offset 7 SWT 22	7.07 dB 👄 I	IT GFSK	2480M	Auto FFT 1[1]	Hoppin	g Emiss	0.57 dBm 85000 GH2 54.76 dBm
Ba Spectrun Ref Level Att SGL Count ID dBm- ID dBm- ID dBm- -20 cBm -30 cBm- -30 cBm- -50 dBm2-	nd Edge 20.00 dBm 30 dB 1200/1200	Offset 7 SWT 22	7.07 dB 👄 I		2480M	Auto FFT 1[1] 2[1]		2.479 2.483	0.57 dBm 85000 GH2 54.76 dBm 50000 GH2
Ba Spectrun Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	nd Edge 20.00 dBm 30 dB 1200/1200 01 -19.363	Offset 7 SWT 22	7.07 dB 👄 I		2480M	Auto FF T		2.479 2.483	0.57 dBm 85000 GH2 54.76 dBm 50000 GH2
Ba Spectrun Ref Level Att SGL Count ID dBm ID dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm	nd Edge 20.00 dBm 30 dB 1200/1200	Offset 7 SWT 22	7.07 dB 👄 I		2480M	Auto FF T		2.479 2.483	0.57 dBm 85000 GH2 54.76 dBm 50000 GH2
Ba Spectrun Ref Level Att SGL Count SGL Count ID dBm ID dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm Type Re	nd Edge 20.00 dBm 30 dB 1200/1200 	dBm M4M0 Wm wm	27.5 μs • 1	IT GFSK	2480M	Auto FFT 1[1] 2[1]	land a contraction	2.479 2.483	0.57 dBn 85000 GH2 54.76 dBn 50000 GH2
Ba Spectrun Ref Level Att SGL Count 91Pk Max 10 dBm 10 dBm -20 uBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.47 Marker Type M1 M2	nd Edge 20.00 dBm 20.00 dBm 30 dB 1200/1200 	Offset 7 SWT 22 dBm dBm M4 M4 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	27.5 μs • 1 27.5 μs • 1	IT GFSK RBW 100 kHz yBW 300 kHz 300 kHz 100	2480M	Auto FFT 1[1] 2[1]	land a contraction	2.479 2.483	0.57 dBn 85000 GH2 54.76 dBn 50000 GH2
Ba Spectrun Ref Level Att SGL Count ID dBm ID dBm -00 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm Ref Level Start 2.470 Marker Type Re M1	nd Edge 20.00 dBm 30 dB 1200/1200 •D1 -19.363	Offset 7 SWT 22 dBm- dBm- M440 M440 M440 M440 M440 M440 M440 M44	27.5 μs • 1 27.5 μs • 1	IT GFSK RBW 100 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 100 k	2480M	Auto FFT 1[1] 2[1]	land a contraction	2.479 2.483	0.57 dBn 85000 GH2 54.76 dBn 50000 GH2



AC-MR





Report No.: S23042700613001

