

Page 1 of 59

Product **Trade mark** Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

- LED Video Light 2
- Godox
- VL150, VLC150 - 21
- N/A
- EED32M00004501
- : 2ABYN003
- May 29, 2020
- 47 CFR Part 15Subpart C
- Prepared for:

: PASS

Godox Photo Equipment Co., Ltd . 1st to 4th Floor, Building 2/lst to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Compiled by: mark Sunlight Sun Mark Chen Sunlight Sun Reviewed by: Approved by Nane, Xm lugar Sam Chuang Ware Xin May 29, 2020 Date: Check No.:2447612317 **Report Seal**

2 Version

	Version No.		Date		Description	on	
-	00	Ma	ay 29, 2020		Original		
(j))				(J)		

3 Test Summary

Test Item Test Requirement Test method Result 47 CFR Part 15Subpart C Section **Antenna Requirement** ANSI C63.10-2013 PASS 15.203/15.247 (c) AC Power Line Conducted 47 CFR Part 15Subpart C Section ANSI C63.10-2013 PASS Emission 15.207 **Conducted Peak Output** 47 CFR Part 15Subpart C Section ANSI C63.10-2013 PASS Power 15.247 (b)(3) 47 CFR Part 15Subpart C Section 6dB Occupied Bandwidth ANSI C63.10-2013 PASS 15.247 (a)(2) 47 CFR Part 15Subpart C Section PASS **Power Spectral Density** ANSI C63.10-2013 15.247 (e) Band-edge for RF 47 CFR Part 15Subpart C Section ANSI C63.10-2013 PASS **Conducted Emissions** 15.247(d) 47 CFR Part 15Subpart C Section **RF Conducted Spurious** PASS ANSI C63.10-2013 Emissions 15.247(d) **Radiated Spurious** 47 CFR Part 15Subpart C Section ANSI C63.10-2013 PASS Emissions 15.205/15.209 **Restricted bands around** 47 CFR Part 15Subpart C Section fundamental frequency ANSI C63.10-2013 PASS 15.205/15.209 (Radiated Emission)

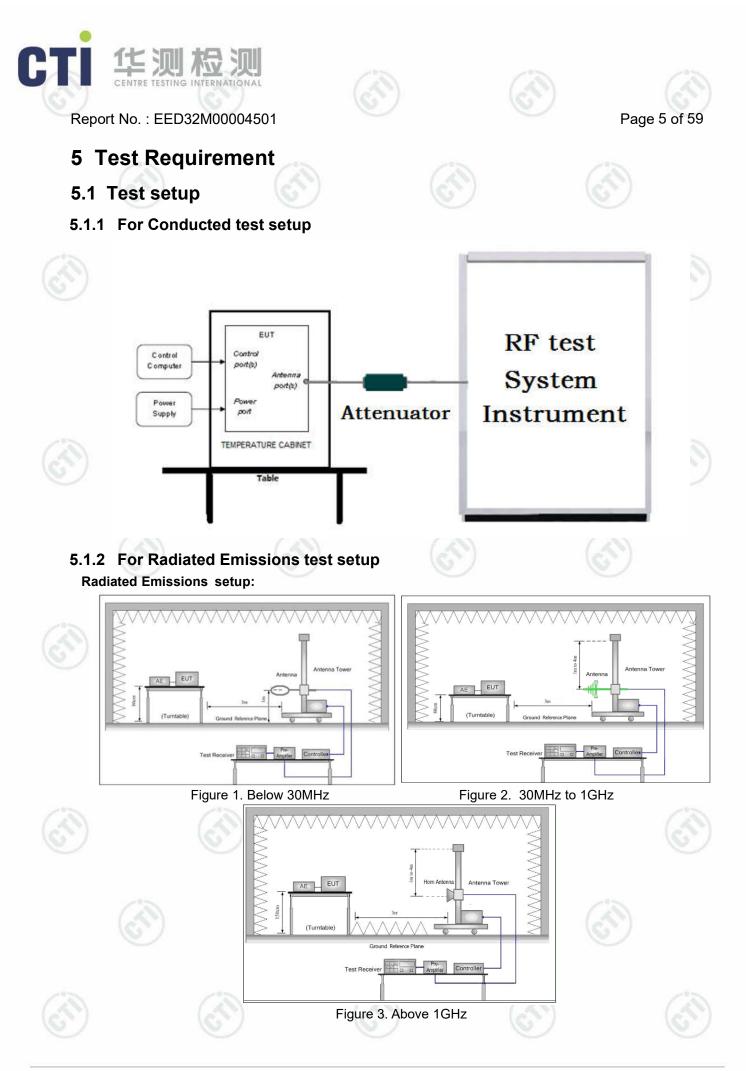
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

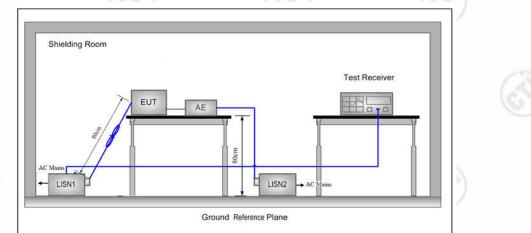
The tested sample(s) and the sample information are provided by the client.

Model No.: VL150, VLC150

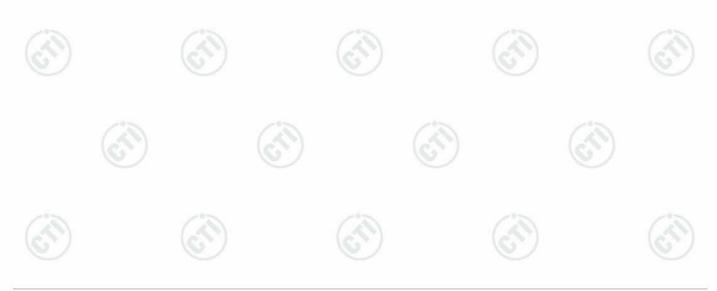
Only the model VL150 was tested, The product model of our LED video light/ LED Video Light is: VL150. Because the product can be divided into three parts: LED light, control box and adapter, the separate model of the control box is: VLC150, in which the Bluetooth wireless module of the product is embedded in the control box VLC150.



4 Content				
1 COVER PAGE				
2 VERSION		<u> </u>		
3 TEST SUMMARY				
4 CONTENT			••••••	
5 TEST REQUIREMENT				
 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test 5.1.3 For Conducted Emissions test 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 	t setup est setup	<u></u>		
6 GENERAL INFORMATION				
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECT 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD 6.8 OTHER INFORMATION REQUESTED 6.9 MEASUREMENT UNCERTAINTY (955) 	TIVE TO THIS STANDARD CONDITIONS BY THE CUSTOMER			
7 EQUIPMENT LIST				1
8 RADIO TECHNICAL REQUIREMEN				
EUT DUTY CYCLE Appendix A): 6dB Occupied Band Appendix B): Conducted Peak Ou Appendix C): Band-edge for RF C Appendix D): RF Conducted Spur Appendix E): Power Spectral Den Appendix F): Antenna Requireme Appendix G): AC Power Line Con Appendix H): Restricted bands an	Iwidth utput Power Conducted Emissions rious Emissions nsity ent nducted Emission			1 1 2 2 2 2 2 2 3 3 3
Appendix I) Radiated Spurious Er				
PHOTOGRAPHS OF TEST SETUP				
PHOTOGRAPHS OF EUT CONSTRUC	CTIONAL DETAILS		•••••	



5.1.3 For Conducted Emissions test setup


5.2 Test Environment

Operating Environment:	6	\odot	6
Temperature:	23.0 °C		
Humidity:	54 % RH	media tak	
Atmospheric Pressure:	1010 mbar		
10 m	197.79		8 - J.L.

5.3 Test Condition

Test channel:

12	Test Mode	Tx/Rx	1	RF Channel	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Test Mode		Low(L)	Middle(M)	High(H)
C	0501/		Channel 1	Channel 20	Channel 40
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting moderate.	e with all kind of m	odulation and a	all kind of data
	(\mathbb{C}^{n})	G	(0)	6	7

General Information 6

6.1 Client Information

Applicant:	Godox Photo Equipment Co., Ltd .
Address of Applicant:	1st to 4th Floor, Building 2/lst to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China
Manufacturer:	Godox Photo Equipment Co., Ltd .
Address of Manufacturer:	1st to 4th Floor, Building 2/lst to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China
Factory:	Godox Photo Equipment Co., Ltd .
Address of Factory:	1st to 4th Floor, Building 2/lst to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China

6.2 General Description of EUT

Product Name:	LED Video Light					
Model No.(EUT):	VL150, VLC150					
Test Model No:	VL150					
Trade mark:	Godox	(\mathbf{c})	(\mathbf{c})	G		
EUT Supports Radios application:	BT 4.1 Single m	BT 4.1 Single mode, 2402MHz to 2480MHz				
Power Supply:	Adapter	Input:AC100V-240)V(50/60HZ)/2A Out	put:DC16.8V 10A		
G	Lithium Battery	DC14.4V		<u>s</u>)		
Sample Received Date:	Jan. 06, 2020					
Sample tested Date:	Jan. 06, 2020 to	Apr. 01, 2020				
	•	-0-	-8-	~0~		

Page 7 of 59

6.3 Product Specification subjective to this standard

Operation Frequency:		2402MH	z~2480MHz							
Bluetooth Version:		4.1								
Modulation	Technique:	DSSS	DSSS							
Modulation	Туре:	GFSK					13			
Number of	Channel:	40	6		(67)		6			
Test Power	Grade:	Default	\sim		\smile		\sim			
Test Softwa	are of EUT:	Setup_S	martRF_Studi	o_7-2.6.1.ex	e					
Antenna Ty	vpe and Gain:	Type: ex Gain:5 d	ternal whip an Bi	tenna)	(A))			
Test Voltag	e:	DC 3.3V	/	J	/	V	6			
Operation F	requency eac	h of channe	9			1				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz			
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz			
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz			
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz			
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz			
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz			
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz			
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz			
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz			
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz			

6.4 Description of Support Units

The EUT has been tested with associated equipment below. 1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied b
Notebook	DELL	DELL 3490	CE&FCC	DELL
	(c))	(3)	(25)	(č
				1

CTI

华测 检

Report No. : EED32M00004501

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
9		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Onumieuro emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

1621	10	2.1	0.3	16				
RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019 02-17-2020	02-29-2020 02-16-2021			
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019 02-17-2020	02-29-2020 02-16-2021			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020			
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	$\underline{\circ}$		9			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4						
DC Power	Keysight	E3642A	MY56376072	03-01-2019 02-17-2020	02-29-2020 02-16-2021			
PC-1	Lenovo	R4960d						
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019 02-17-2020	02-29-2020 02-16-2021			
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019 02-17-2020	02-29-2020 02-16-2021			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3						

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020		
Temperature/ Humidity Indicator	Defu	TH128		06-14-2019	06-13-2020		
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020		
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020		

		Semi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112		- 6	2
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	100-	

Page 12 of 59

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019 03-05-2020	03-26-2020 03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019 03-05-2020	03-26-2020 03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019 03-05-2020	03-26-2020 03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019 01-09-2020	01-15-2020 01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
ully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		$\langle \langle \gamma \rangle$
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		_
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		(
Cable line	Times	EMC104-NMNM- 1000	SN160710	$\underline{\circ}$	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		A
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		<u>e</u>
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

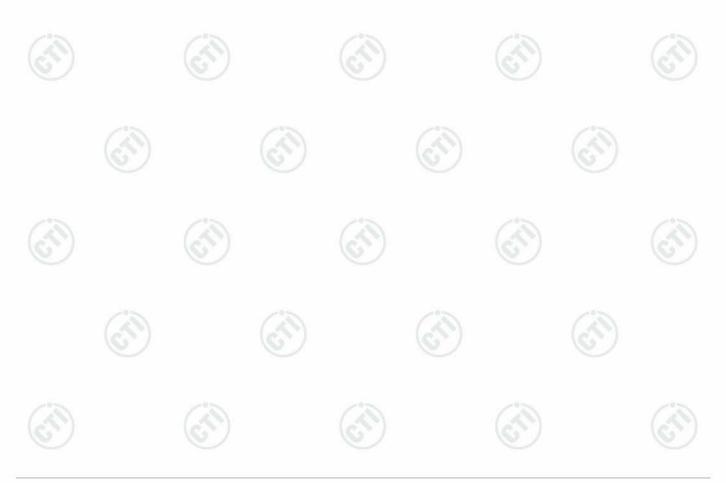
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
Toot E	Dooulto Lioti	

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



EUT DUTY CYCLE

	Duty (Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	1.000	1.000	100%

Kessini Spetrum Analyter - Swert Ma R4 R/ ID-0 0 00 Center Freq 2.402000000 G	HZ PNO: Fast +++ FGsin:Low NAtten: 30 dB	#Avg Type: RMS TRA	Frequency Frequency		
10 dBldlv Ref 20.00 dBm			Center Freq 2.402000000 GHz		
-20.0 -30.0 -40.0			Start Freq 2.402000000 GHz		
60.0 60.0 70.0			Stop Freq 2.402000000 GHz		(A)
Center 2.402000000 GHz Res BW 1.0 MHz INR MODE TRC SCL x	#VBW 1.0 MHz	Sweep 50.13 ms	(8001 pts) 1.000000 MHz		e la
2 3 4 5 6 7			Freq Offset 0 Hz		
9 9 10 11					
	It It<	Center Freq 2.40200000 GHz (FGainLow 10 dBldty 10 d	Image: Second	B B	Image: State of the state o

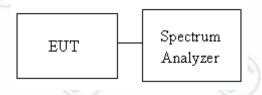
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

()		(2)
Limit	Shall be at least 500kHz	0


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

<u>Test Result</u>

6dB Bandwidth

	Mode	Channel	6dB Bandwidth [MHz]	Verdict
1	BLE	LCH	0.7172	PASS
Ś	BLE	МСН	0.7207	PASS
	BLE	НСН	0.7331	PASS

99%OBW

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0468	PASS
BLE	МСН	1.0569	PASS
BLE	НСН	1.0534	PASS

Test Graphs 6dB Bandwidth

Appendix B): Conducted Peak Output Power

<u>Test Limit</u>

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

🖂 Antenna not exceed 6 dBi : 30dBm	
5	Bi
Point-to-point operation	
	 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dB [Limit = 30 - (DG - 6)] Point-to-point operation

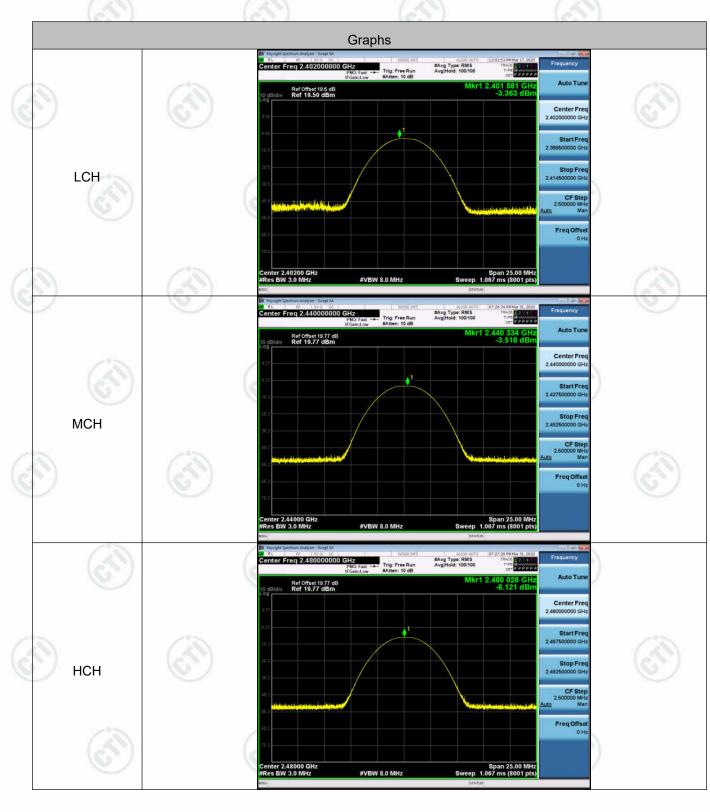
Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW \geq DTS bandwidth.
 - b) Set VBW≥[3×RBW].
 - c) Set span≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.
 - Test Setup

<u>Test Result</u>

Mode	С	hannel	C	Conduct Peal	k Power[dBn	n]	Verdict
BLE		LCH			363	\rightarrow	PASS
BLE		МСН		-3.	518		PASS
BLE		НСН		-6.	121		PASS


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Page 22 of 59

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-3.824	-59.152	-23.82	PASS
BLE	НСН	-7.128	-59.085	-27.13	PASS
Test Grap	ohs				

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

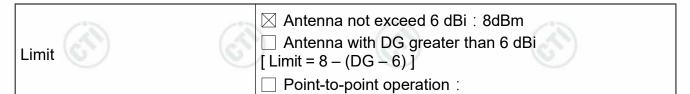
<u>Test Setup</u>

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.187	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	мсн	-9	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-7.037	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

	BLE_LCH_Graphs	-
(St)	Records Section analysis - Section Record Section	9
Pref/BLE/LCH	0.00 100 100 100 100 100 100 100	47 18 17 17 17
(JI)	 ctro Freq Offse 70:0 Span 4.000 MHz #Res BW 100 kHz #VBW 300 kHz Streep 1.067 ms (8001 pts) mic jttriu its its its its its its its its	42
	Center Freq 12.515000000 GHz IFGainLow #Atten: 20 dB	ne constant
D	Bef Offset 19.5 dB MKr1 23.908 GH2 10 dBt/dly Ref 10.00 dBm -45,185 dBm 10 cm -45,185 dBm -26 0 cm -26 -26	
Puw/BLE/LCH	Log Center Fre	42 14 14 14 14 14 14 14 14 14 14 14 14 14



Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.

Measure and record the result of power spectral density. in the test report.

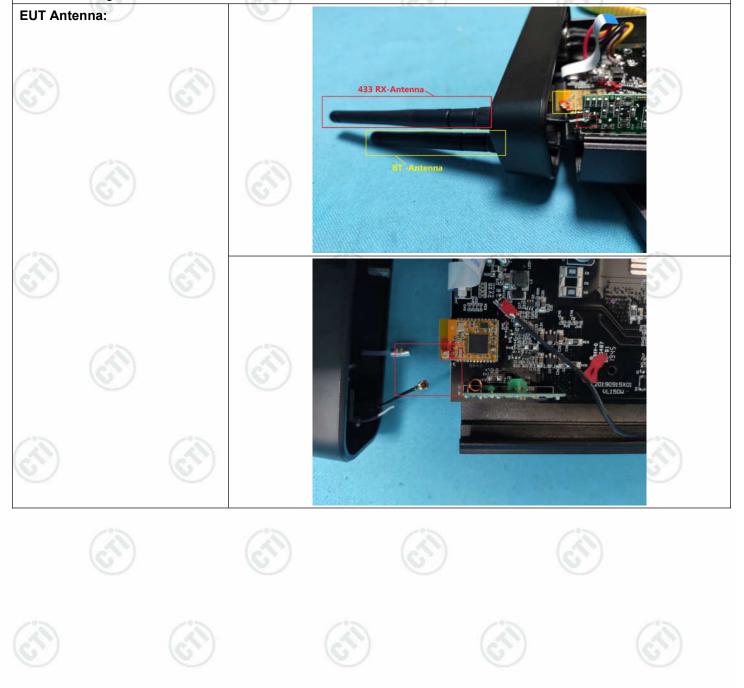
Test Setup

Page 29 of 59

Result Table

	Mode	C	hannel		PSD [dl	Bm]		Verdict
	BLE		LCH		-14.54	16	~	PASS
	BLE		MCH		-16.78			PASS
Ì	BLE	Ì	HCH	Ì	-16.98	32		PASS

Test Graphs

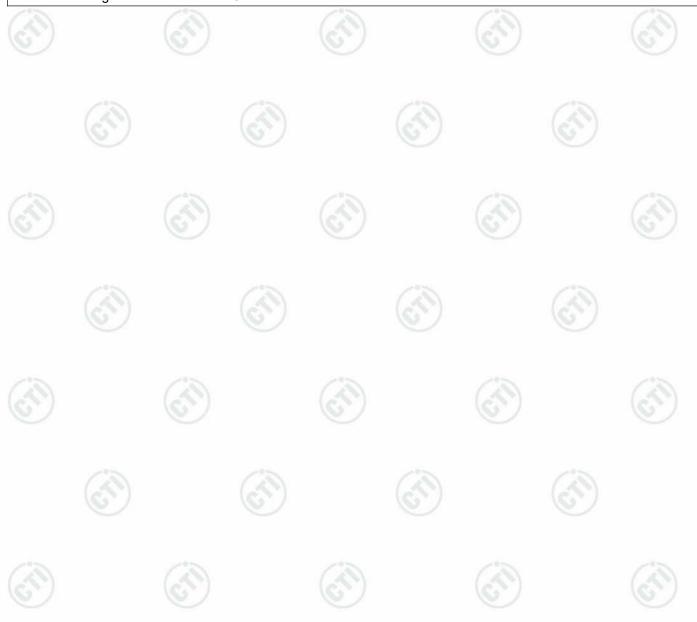

Appendix F): Antenna Requirement

15.203 requirement:

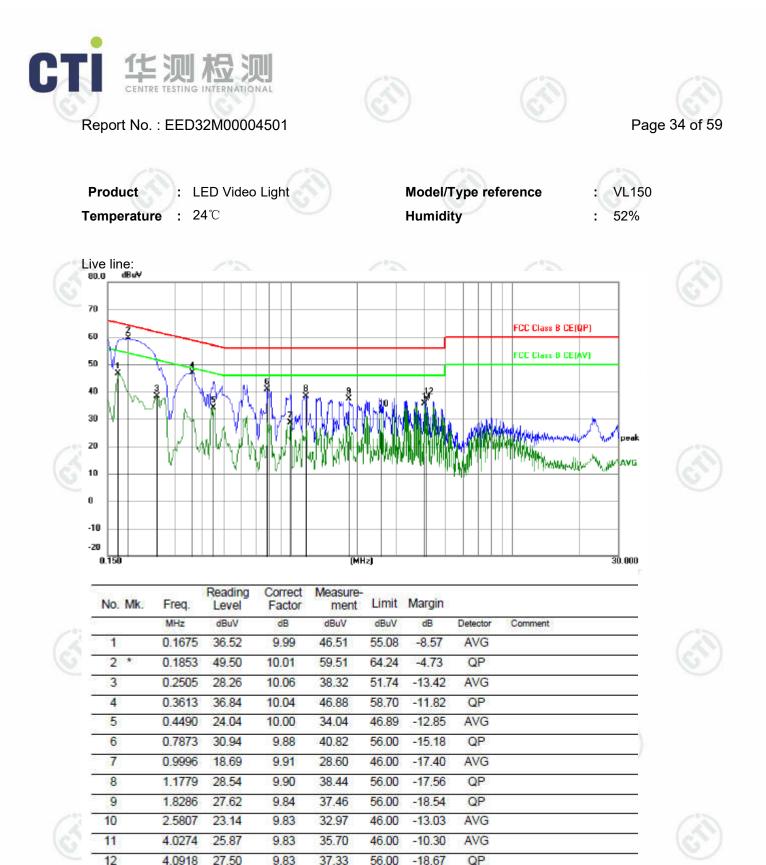
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.



The antenna type is external whip antenna with reverse SMA connector. It is compliant with the requirement for 15.203 The best case gain of the antenna is 5 dBi.

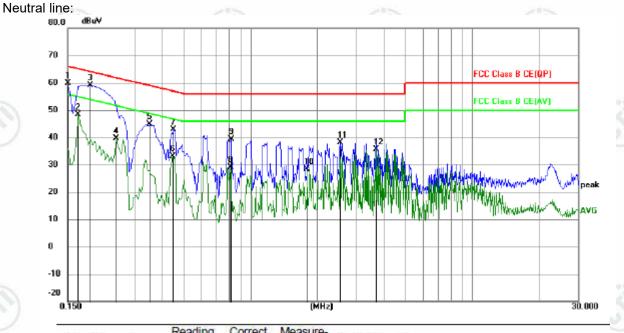


Appendix G): AC Power Line Conducted Emission

((22)	(2.2)		
Test Procedure:	Test frequency range :150KHz-	-30MHz		
	 The mains terminal disturban The EUT was connected to Stabilization Network) whic power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a se exceeded. 	AC power source throu h provides a 50Ω/50μH hits of the EUT were co ound reference plane in d. A multiple socket ou	igh a LISN 1 (Lind I + 5Ω linear imp connected to a sec in the same way a tlet strip was use	e Impedar edance. T cond LISN is the LISI id to conn
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangeme		
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT a LISN 2. 	h a vertical ground ref e vertical ground referent d to the horizontal grou he boundary of the un or LISNs mounted on etween the closest poin	nce plane. The ve nd reference plar it under test and top of the groun ts of the LISN 1 a	ertical grounter The LI bonded to The referent and the El
	5) In order to find the maximum of the interface cables r conducted measurement.			
Limit:		Limit (dB		
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	- (2)
	0.5-5	56	46	-07
	5-30	60	50	
	* The limit decreases linearly v			_ e range 0
	MHz to 0.50 MHz. NOTE : The lower limit is applic			c range 0

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

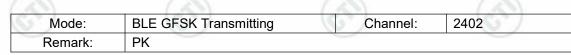


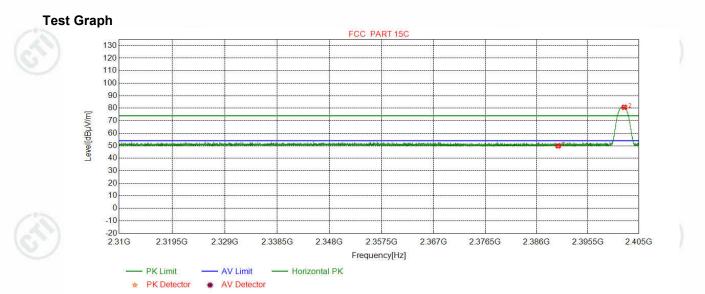
			Margin	Limit	Measure- ment	Correct Factor	Reading Level	Freq.	Mk.	No.
	Comment	Detector	dB	dBuV	dBuV	dB	dBuV	MHz		
		QP	-6.19	66.00	59.81	9.97	49.84	0.1500		1
		AVG	-6.77	55.08	48.31	9.99	38.32	0.1675	9	2
		QP	-5.02	64.03	59.01	10.01	49.00	0.1901	*	3
		AVG	-12.27	51.82	39.55	10.06	29.49	0.2480	8	4
		QP	-14.09	58.92	44.83	10.05	34.78	0.3519		5
- 2		AVG	-13.69	46.94	33.25	10.00	23.25	0.4466	11	6
- 6		QP	-13.94	56.89	42.95	10.00	32.95	0.4490		7
_		AVG	-16.96	46.00	29.04	9.91	19.13	0.8129	68	8
		QP	-16.58	56.00	39.42	9.91	29.51	0.8173	1	9
		AVG	-17.58	46.00	28.42	9.85	18.57	1.8000	12	10
		QP	-17.96	56.00	38.04	9.83	28.21	2.5400		11
		AVG	-10.44	46.00	35.56	9.83	25.73	3,7000	10	12

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

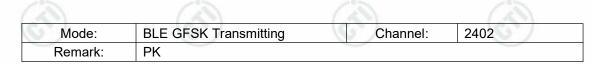
Appendix H): Restricted bands around fundamental frequency (Radiated)

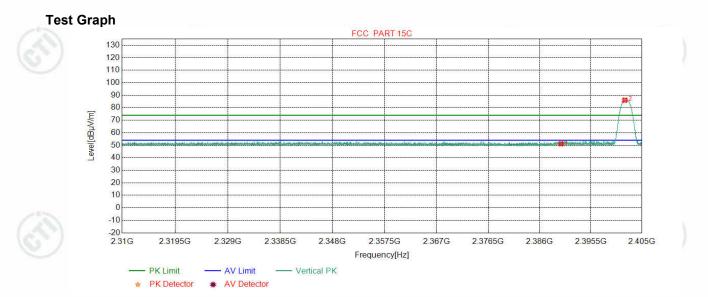

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak	1MHz	3MHz	Peak	
0	Above 1GHz	Peak	1MHz	10Hz	Average	-
Test Procedure:	 Below 1GHz test procede Test method Refer as KDE a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximul polarizations of the an d. For each suspected en the antenna was tuned was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim 	ure as below: 3 558074 D01 v0 on the top of a ro choic camber. Th of the highest ra eters away from to p of a variable-h varied from one m value of the find tenna are set to mission, the EUT d to heights from prees to 360 degreen was set to Pe	14, Section tating table ne table wa adiation. the interfer neight ante meter to for eld strengtl make the r ⁻ was arran 1 meter to rees to find	12.1 e 0.8 meter is rotated 3 ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters a the maxin	rs above the 360 degrees ving antenna above the gra- izontal and v ent. worst case ar and the rotata num reading.	a, w our vert nd t able
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	npliance. Also m rum analyzer plo	easure any	emission:	s in the restri	
	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highesi rmed in X, tis position	rom Semi- meter to 1 ter). Y, Z axis p ing which i	s in the restri ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	dula nam ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl powest channel , t ements are perfo id found the X ax ures until all frequ	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highes rmed in X, tis position	emission for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri- ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dula nam ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri- ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete. mark	dula nam ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the k i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency	npliance. Also m rum analyzer plo channel ure as below: ve is the test site hber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequency Limit (dBµV/	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, dis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restri- ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dula nam ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	s in the restri- ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark eak Value	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m rrum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl powest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restri- ower and mod Anechoic Ch .5 meter(Ab oositioning for t is worse cas as complete. mark eak Value eak Value	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	npliance. Also m rrum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	s in the restri- ower and mod Anechoic Ch .5 meter(Abd oositioning for t is worse cas as complete. mark eak Value eak Value eak Value	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m rrum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0 54.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m))))	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	s in the restri- ower and mod Anechoic Ch .5 meter(Abd oositioning for t is worse cas as complete. mark eak Value eak Value eak Value eak Value	dula nam ove r



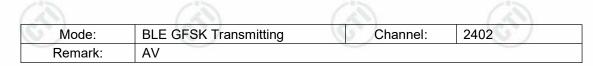
Test plot as follows:

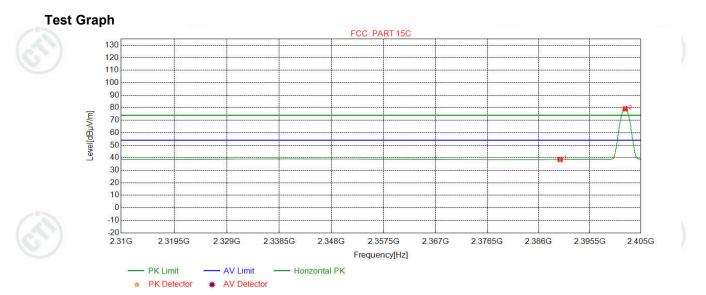
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.37	49.87	74.00	24.13	Pass	Horizontal
2	2402.2892	32.26	13.31	-43.12	78.30	80.75	74.00	-6.75	Pass	Horizontal
1.0	N	1.	1	•						1



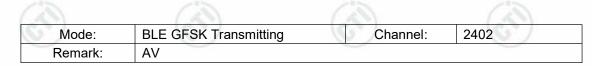


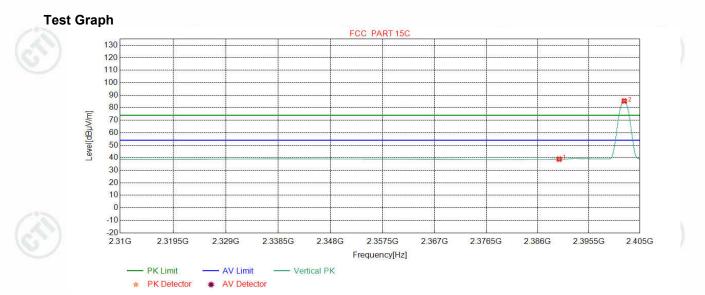
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.68	51.18	74.00	22.82	Pass	Vertical
2	2401.8205	32.26	13.31	-43.12	83.56	86.01	74.00	-12.01	Pass	Vertical
12	N	10	1				(1)			



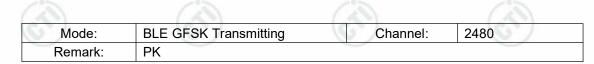


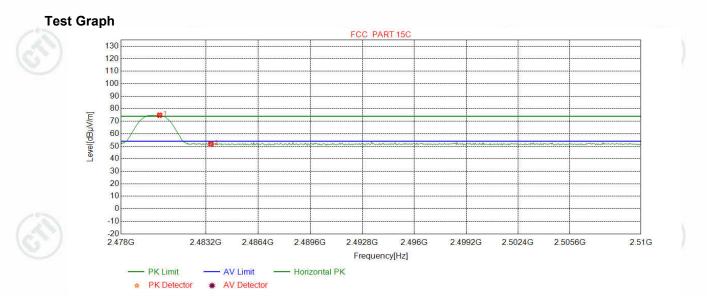
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Horizontal
2	2402.0801	32.26	13.31	-43.12	76.70	79.15	54.00	-25.15	Pass	Horizontal
12	A	10	1				(1)			



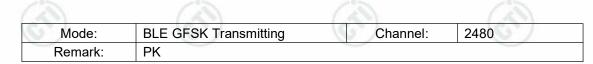


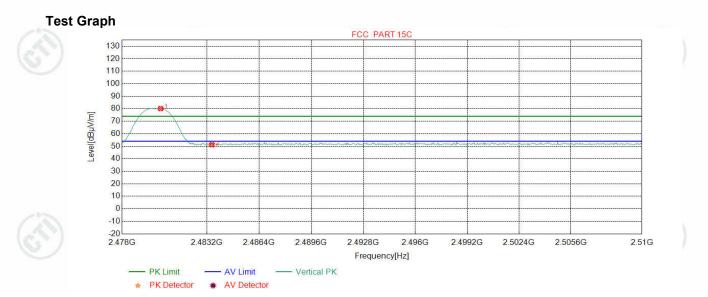
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.40	38.90	54.00	15.10	Pass	Vertical
2	2402.0865	32.26	13.31	-43.12	82.93	85.38	54.00	-31.38	Pass	Vertical
12	N	1.1								



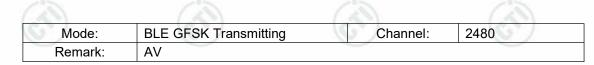


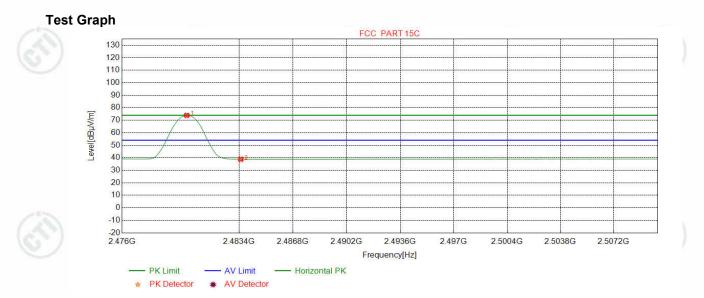
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	72.15	74.81	74.00	-0.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.01	51.66	74.00	22.34	Pass	Horizontal
12	N	10	1							



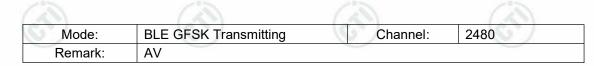


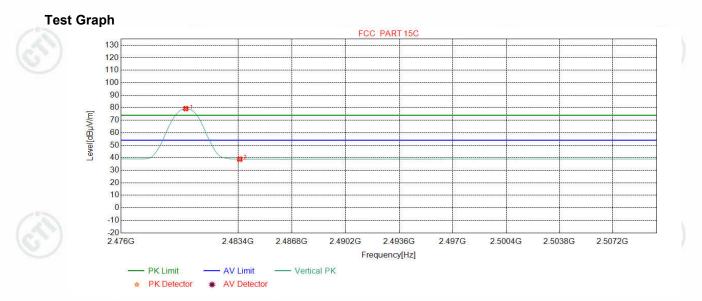
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	77.49	80.15	74.00	-6.15	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.57	51.22	74.00	22.78	Pass	Vertical
12	S	10	1				(1)			





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	71.22	73.88	54.00	-19.88	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.19	38.84	54.00	15.16	Pass	Horizontal
12	0	14	10		(1)		(1)			





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	76.63	79.29	54.00	-25.29	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.23	38.88	54.00	15.12	Pass	Vertical
1.0		1.1	12				1.0			

Note:

Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
 The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

0

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I) Radiated Spurious Emissions

	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(\mathcal{S})		Peak	1MHz	3MHz	Peak	
\sim	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	<u>.</u>					
d. For each suspect	ted emission, the EUT was a	arranged to its wo	orst case and	d then the a		
e. The test-receiver f. If the emission le stopped and the margin would be	eter to 4 meters (for the test otatable was turned from 0 d system was set to Peak De vel of the EUT in peak mode peak values of the EUT wou re-tested one by one using	egrees to 360 de tect Function and e was 10dB lower Ild be reported. C	grees to find I Specified E than the lin otherwise the	the maxim andwidth v hit specified emissions	a was tuned to h num reading. vith Maximum H I, then testing co that did not ha	heights 1 Iold Mode. ould be ve 10dB
e. The test-receiver f. If the emission le stopped and the	eter to 4 meters (for the test otatable was turned from 0 d system was set to Peak De vel of the EUT in peak mode peak values of the EUT wou re-tested one by one using	egrees to 360 de tect Function and e was 10dB lower Ild be reported. C	grees to find I Specified E than the lin otherwise the	the maxim andwidth v hit specified emissions	a was tuned to h num reading. vith Maximum H I, then testing co that did not ha	asurement ned to neights 1 fold Mode. ould be ve 10dB
 meter) and the role e. The test-receiver f. If the emission le stopped and the margin would be in a data sheet. Above 1GHz test pig. Different between change form tab h. Test the EUT in t 	eter to 4 meters (for the test otatable was turned from 0 d system was set to Peak De vel of the EUT in peak mode peak values of the EUT wou re-tested one by one using p rocedure as below: n above is the test site, chan le 0.8 meter to 1.5 meter(he lowest channel ,the midd	egrees to 360 de stect Function and e was 10dB lower Ild be reported. C peak, quasi-peak nge from Semi- Ar Above 18GHz th Ile channel ,the H	grees to find I Specified E than the lin therwise the or average nechoic Cha ie distance lighest chan	the maxim andwidth v it specified e emissions method as mber to ful s 1 meter nel	a was tuned to h num reading. vith Maximum H I, then testing c that did not ha specified and th ly Anechoic Cha and table is 1.5	asurement. ned to neights 1 Hold Mode. ould be ve 10dB hen reporte amber and meter).
 meter) and the role e. The test-receiver f. If the emission less stopped and the margin would be in a data sheet. Above 1GHz test per g. Different betweer change form tabh. Test the EUT in t i. The radiation me axis positioning was positioning was positioned by the store of the store	eter to 4 meters (for the test batable was turned from 0 d system was set to Peak De vel of the EUT in peak mode peak values of the EUT wou re-tested one by one using p rocedure as below: n above is the test site, chan ble 0.8 meter to 1.5 meter(he lowest channel ,the midd asurements are performed in which it is worse case.	egrees to 360 de stect Function and e was 10dB lower Ild be reported. C peak, quasi-peak nge from Semi- Ar Above 18GHz th Ile channel ,the H n X, Y, Z axis pos	grees to find d Specified E than the lin otherwise the or average nechoic Cha ne distance lighest chan sitioning for	the maxim andwidth v it specified e emissions method as mber to ful s 1 meter nel	a was tuned to h num reading. vith Maximum H I, then testing c that did not ha specified and th ly Anechoic Cha and table is 1.5	asurement. ned to neights 1 Hold Mode. ould be ve 10dB hen reporte amber and meter).
 meter) and the role e. The test-receiver f. If the emission less stopped and the margin would be in a data sheet. Above 1GHz test per g. Different betweer change form tabh. Test the EUT in t i. The radiation me axis positioning was positioning was positioned by the store of the store	eter to 4 meters (for the test obtatable was turned from 0 de system was set to Peak De vel of the EUT in peak mode peak values of the EUT wou re-tested one by one using p rocedure as below: In above is the test site, chan be 0.8 meter to 1.5 meter(he lowest channel ,the midd asurements are performed in which it is worse case. Decedures until all frequencie	egrees to 360 de stect Function and e was 10dB lower Ild be reported. C peak, quasi-peak nge from Semi- Ai Above 18GHz th lle channel ,the H n X, Y, Z axis pos es measured was	grees to find d Specified E than the lin otherwise the or average nechoic Cha ne distance lighest chan sitioning for	the maxim andwidth v it specified e emissions method as mber to ful s 1 meter nel	a was tuned to h num reading. vith Maximum H I, then testing c that did not ha specified and th ly Anechoic Cha and table is 1.5	asurement. ned to neights 1 Hold Mode. ould be ve 10dB hen reporte amber and meter). und the X

Frequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	0	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

peak emission level radiated by the device.

Report No. : EED32M00004501

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

		/			/	1					
Mode	e:		BLE G	SK Trans	smitting			Channel		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	144.6655	7.36	1.42	-32.00	57.91	34.69	43.50	8.81	Pass	Н	PK
2	192.7823	10.21	1.63	-31.95	50.74	30.63	43.50	12.87	Pass	Н	PK
3	360.0270	14.52	2.27	-31.84	43.77	28.72	46.00	17.28	Pass	Н	PK
4	467.9988	16.49	2.58	-31.87	41.72	28.92	46.00	17.08	Pass	Н	PK
5	610.0210	19.08	2.96	-32.06	40.21	30.19	46.00	15.81	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	36.64	31.99	54.00	22.01	Pass	Н	PK
7	44.2604	13.07	0.75	-31.66	50.67	32.83	40.00	7.17	Pass	V	PK
8	108.3838	10.92	1.23	-32.05	41.85	21.95	43.50	21.55	Pass	V	PK
9	144.6655	7.36	1.42	-32.00	51.97	28.75	43.50	14.75	Pass	V	PK
10	360.0270	14.52	2.27	-31.84	46.28	31.23	46.00	14.77	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	37.03	27.46	46.00	18.54	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	36.16	31.51	54.00	22.49	Pass	V	PK

Report No. : EED32M00004501

Transmitter Emission above 1GHz

Mode	e:		BLE G	FSK Tran	smitting			Channel:	el: 2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1798.0798	30.37	3.32	-42.72	59.67	50.64	74.00	23.36	Pass	Н	PK
2	2987.7988	33.18	4.51	-43.10	53.61	48.20	74.00	25.80	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	55.84	52.09	74.00	21.91	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	51.54	51.50	74.00	22.50	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.08	48.25	74.00	25.75	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.20	51.21	74.00	22.79	Pass	Н	PK
7	2199.9200	31.98	3.65	-43.16	57.98	50.45	74.00	23.55	Pass	V	PK
8	3064.0043	33.23	4.80	-43.11	49.96	44.88	74.00	29.12	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	57.86	54.11	74.00	19.89	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	55.41	55.37	74.00	18.63	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.60	48.77	74.00	25.23	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.80	51.81	74.00	22.19	Pass	V	PK

Mode:			BLE G	FSK Trans	mitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cabl e loss [dB]	Pream gain [dB]	Read ing [dBµ V]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1999.5000	31.70	3.47	-43.20	57.71	49.68	74.00	24.32	Pass	Н	PK
2	2845.1845	32.95	4.23	-43.10	56.21	50.29	74.00	23.71	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	55.76	52.26	74.00	21.74	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	52.80	52.93	74.00	21.07	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.57	48.90	74.00	25.10	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	45.62	50.81	74.00	23.19	Pass	Н	PK
7	1894.0894	31.00	3.42	-42.94	55.87	47.35	74.00	26.65	Pass	V	PK
8	2198.7199	31.98	3.65	-43.16	56.78	49.25	74.00	24.75	Pass	V	PK
9	4881.1254	34.50	4.80	-42.80	59.64	56.14	74.00	17.86	Pass	V	PK
10	7321.2881	36.42	5.85	-42.13	59.69	59.83	74.00	14.17	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	48.03	50.35	74.00	23.65	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	45.82	51.02	74.00	22.98	Pass	V	PK
13	4881.0767	34.50	4.80	-42.80	46.73	43.23	54.00	10.77	Pass	V	AV
14	7321.2395	36.42	5.85	-42.14	47.25	47.38	54.00	6.62	Pass	V	AV

Mode	e:		BLE G	GFSK Trai	nsmitting		Channel:		2480		
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1996.4997	31.68	3.47	-43.20	57.78	49.73	74.00	24.27	Pass	Н	PK
2	2950.3950	33.12	4.40	-43.10	51.64	46.06	74.00	27.94	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	56.09	52.61	74.00	21.39	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	53.04	53.32	74.00	20.68	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.91	49.37	74.00	24.63	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	48.39	53.89	74.00	20.11	Pass	н	PK
7	1597.4597	29.04	3.07	-42.90	58.16	47.37	74.00	26.63	Pass	V	PK
8	2192.5193	31.97	3.65	-43.16	56.88	49.34	74.00	24.66	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	59.79	56.31	74.00	17.69	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	58.27	58.55	74.00	15.45	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.10	48.56	74.00	25.44	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	47.50	53.00	74.00	21.00	Pass	V	PK
13	4961.0812	34.50	4.82	-42.80	46.79	43.31	54.00	10.69	Pass	V	AV
14	7440.2471	36.54	5.85	-42.11	51.84	52.12	54.00	1.88	Pass	V	AV

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.