

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1506RSU01702 Report Version: Issue Date: 07-04-2015

RF Exposure Evaluation Declaration

FCC ID: 2ABX8SH-000000009

APPLICANT: Zhejiang shenghui lighting Co., Ltd. Shanghai Branch

Application Type: Certification

Product: Wireless Subwoofer Adapter

Model No.: C01-BR30NA AMP

Brand Name: sengled

FCC Classification: Unlicensed National Information Infrastructure (UNII)

Reviewed By : Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

Page Number: 1 of 5

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2ABX8SH-000000009

Revision History

Report No.	Version	Description	Issue Date
1506RSU01702	Rev. 01	Initial report	07-04-2015

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Wireless Subwoofer Adapter	
Model No.	C01-BR30NA AMP	
Frequency Range	5150~5250MHz, 5725~5850MHz	
Type of Modulation	QPSK	

1.2. Operation Frequency / Channel list

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	5180 MHz	02	5210 MHz	03	5240 MHz
04	5736 MHz	05	5762 MHz	06	5814 MHz

1.3. Antenna Description

Antenna No.	Antenna Type	Frequency	Manufacturer	Tx Paths	Max
		Band			Peak Gain
		(GHz)			(dBi)
Antonno A	DCB Antonno	UNII-1	- SMSC Inc.	1	3
Antenna A	PCB Antenna	UNII-3		1	3.2
Antonno P	PCB Antenna	UNII-1	SMSC Inc.	1	3
Antenna B		UNII-3		1	3.2

FCC ID: 2ABX8SH-000000009 Page Number: 3 of 5

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time			
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)			
	(A) Limits for Occupational/ Control Exposures						
300-1500			f/300	6			
1500-100,000			5	6			
(B) Limits for General Population/ Uncontrolled Exposures							
300-1500			f/1500	6			
1500-100,000			1	30			

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

FCC ID: 2ABX8SH-000000009 Page Number: 4 of 5

Report No.: 1506RSU01702

2.2. Test Result of RF Exposure Evaluation

Product	Wireless Subwoofer Adapter
Test Item	RF Exposure Evaluation

Antenna Gain: Refer to Clause 1.2 of antenna description.

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
QPSK	5150 ~ 5250	12.34	0.0068	1
QPSK	5725 ~ 5850	13.18	0.0086	1

CONCULISON:

The Max Power Density at R $(20 \text{ cm}) = 0.0086 \text{mW/cm}^2 < 1 \text{mW/cm}^2$. So the EUT complies with the requirement.