

TEST REPORT

of

FCC Part 15 Subpart C AND CANADA RSS-210

New Application; Class I PC; Class II PC

Product : **Diamond Kinetics SwingTracker**

Brand: **Diamond Kinetics**

Model: **DKST01**

Model Difference: **N/A**

FCC ID: **2ABWR-DKST01**

IC: **12312A-DKST01**

FCC Rule Part: **§15.247, Cat: DSS**

IC Rule Part: **RSS-210 issue 8:2010, Annex 8**

Applicant: **Diamond Kinetics, Inc.**

Address: **700 River Avenue Suite 318, Pittsburgh,
Pennsylvania, United States**

Test Performed by:
International Standards Laboratory

<Lung-Tan LAB>

*Site Registration No.

BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

*Address:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd.

Lung-Tan Hsiang, Tao Yuan County 325, Taiwan

*Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: **ISL-14LR226FC**

Issue Date : **2014/09/30**

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

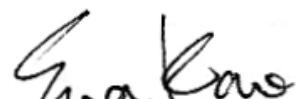
This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

VERIFICATION OF COMPLIANCE

Applicant: Diamond Kinetics, Inc.
Product Description: Diamond Kinetics SwingTracker
Brand Name: Diamond Kinetics
Model No.: DKST01
Model Difference: N/A
FCC ID: 2ABWR-DKST01
IC: 12312A-DKST01
Date of test: 2014/09/22 ~ 2014/09/30
Date of EUT Received: 2014/09/22

We hereby certify that:


All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:**Date:**

2014/09/30

*Dion Chang / Engineer***Prepared By:****Date:**

2014/09/30

*Eva Kao / Technical Supervisor***Approved By:****Date:**

2014/09/30

Vincent Su / Technical Manager

Version

Version No.	Date	Description
00	2014/09/30	Initial creation of document

Table of Contents

1. GENERAL INFORMATION	6
1.1. Product Description	6
1.2. Related Submittal(s) / Grant (s)	7
1.3. Test Methodology	7
1.4. Test Facility.....	7
1.5. Special Accessories.....	7
1.6. Equipment Modifications.....	7
2. SYSTEM TEST CONFIGURATION.....	8
2.1. EUT Configuration	8
2.2. EUT Exercise	8
2.3. Test Procedure.....	8
2.4. Configuration of Tested System.....	9
3. SUMMARY OF TEST RESULTS	10
4. DESCRIPTION OF TEST MODES	10
5. AC POWER LINE CONDUCTED EMISSION TEST	11
5.1. Standard Applicable:	11
5.2. Measurement Equipment Used:.....	11
5.3. EUT Setup:.....	11
5.4. Measurement Procedure:	12
5.5. Measurement Result:	12
6. PEAK OUTPUT POWER MEASUREMENT.....	15
6.1. Standard Applicable:	15
6.2. Measurement Equipment Used:.....	15
6.3. Test Set-up:	16
6.4. Measurement Procedure:	16
6.5. Measurement Result:	17
7. 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT.....	18
7.1. Standard Applicable:	18
7.2. Measurement Equipment Used:.....	19
7.3. Test SET-UP:.....	20
7.4. Measurement Procedure:	21
7.5. Field Strength Calculation	21
7.6. Measurement Result:	21
8. SPURIOUS EMISSION TEST	29
8.1. Standard Applicable:	29
8.2. Measurement Equipment Used:.....	29
8.3. Test SET-UP:.....	29
8.4. Measurement Procedure:	30
8.5. Field Strength Calculation	30
8.6. Measurement Result:	30

9. FREQUENCY SEPARATION	40
9.1. Standard Applicable:	40
9.2. Measurement Equipment Used:	40
9.3. Test Set-up:	40
9.4. Measurement Procedure:	40
9.5. Measurement Result:	40
10. NUMBER OF HOPPING FREQUENCY	42
10.1. Standard Applicable:	42
10.2. Measurement Equipment Used:	42
10.3. Test Set-up:	42
10.4. Measurement Procedure:	42
10.5. Measurement Result:	42
11. TIME OF OCCUPANCY (DWELL TIME)	44
11.1. Standard Applicable:	44
11.2. Measurement Equipment Used:	44
11.3. Test Set-up:	44
11.4. Measurement Procedure:	44
11.5. Measurement Result:	45
12. 20dB Bandwidth & 99% Bandwidth	51
12.1. Standard Applicable:	51
12.2. Measurement Equipment Used:	51
12.3. Test Set-up:	51
12.4. Measurement Procedure:	51
12.5. Measurement Result:	52
13. ANTENNA REQUIREMENT	65
13.1. Standard Applicable:	65
13.2. Antenna Connected Construction:	65
14. RF EXPOSURE	66
14.1. Standard Applicable	66
14.2. Measurement Result:	67

1. GENERAL INFORMATION

1.1. Product Description

General:

Product Name	Diamond Kinetics SwingTracker
Brand Name	Diamond Kinetics
Model Name	DKST01
Model Difference	N/A
USB port	One provided for battery charger
Power Supply	3.7Vdc from lithium polymer cell or 5Vdc from USB host
VOIP	N/A

Bluetooth:

Bluetooth Version	V2.1 + EDR (GFSK + $\pi/4$ DQPSK + 8DPSK)
Frequency Range	2402 – 2480MHz
Channel number	79 channels
Modulation type	Frequency Hopping Spread Spectrum
Max Measured Transmit Power	-3.78 (Peak)
Dwell Time	<= 0.4s
Antenna Designation	Chip Antenna 0.5dBi

The EUT is compliance with Bluetooth EDR V2.1 Standard.

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2ABWR-DKST01** filing to comply with Section 15.247 of the FCC Part 15C, Subpart C Rules. And **IC: 12312A-DKST01** filing to comply with Industry Canada RSS-210 issue 8: 2010 Annex 8.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2009 and RSS-Gen: 2010. Radiated testing was performed at an antenna to EUT distance 3 meters.

Tested in accordance with FCC Public Notice DA 00-705

1.4. Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <Lung-Tan LAB> No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd., Lung-Tan Hsiang, Tao Yuan County 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2009. FCC Registration Number is: TW1036, Canada Registration Number: 4067B-3.

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

2. SYSTEM TEST CONFIGURATION

2.1. EUT Configuration

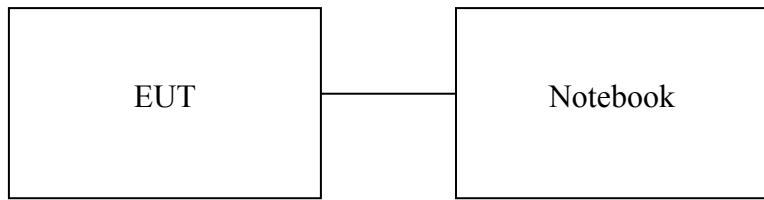
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT (Transmitter) was tested with a test program to fix the TX/RX frequency that was for the purpose of the measurements. For more information please see test data and APPENDIX 1 for set-up photographs.

2.3. Test Procedure

2.3.1 Conducted Emissions


The EUT is placed on a turn table which is 0.8 m above ground plane. According to the requirements in Section 7, 13 of ANSI C63.4-2009 and RSS-Gen:2010. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is placed on a turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” is still within the 3dB illumination BW of the measurement antenna. according to the requirements in Section 8 and 13 of ANSI C63.4-2009 and DA 00-705.

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System (Fixed channel)

Table 1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	Notebook	IBM	X40	NA	Non-shield	Non-shield

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207(a)/ RSS-Gen §7.2.4	AC Power line Conducted Emission	Compliant
§15.247(b)(1)/ RSS-210 issue 8,§A8.4(2)	Peak Output Power	Compliant
§15.247(d) RSS-210 issue 8,§A8.5	100 KHz Bandwidth Of Frequency Band Edges	Compliant
§15.247(c) RSS-Gen §7.2.5 RSS-210 issue 8,§A2.9	TX Spurious Emission	Compliant
§15.247(a)(1)/ RSS-210 issue 8,§A8.1(b)	Frequency Separation	Compliant
§15.247(a)(1)(iii)/ RSS-210 issue 8,§A8.1(d)	Number of hopping frequency	Compliant
§15.247(a)(1)(ii)/ RSS-210 issue 8,§A8.1(d)	Time of Occupancy	Compliant
§15.247(a)(1) RSS-Gen §4.6.1, RSS-210 issue 8,§A8.1(b)	20dB Bandwidth & 99% Power Bandwidth	Compliant
§15.203, §15.247(c)/ RSS-GEN 7.1.4, RSS-210 issue 8,§A8.4	Antenna Requirement	Compliant
§2.1093 RSS 102 Issue 4	RF EXPOSURE	Compliant

4. DESCRIPTION OF TEST MODES

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low (2402MHz)、mid (2441MHz) and high (2480MHz) with each modulation were chosen for full testing.

The worst case BDR mode was reported for Radiated Emission.

5. AC POWER LINE CONDUCTED EMISSION TEST

5.1. Standard Applicable:

According to §15.207 and RSS-Gen §7.2.2, frequency range within 150KHz to 30MHz shall not exceed the Limit table as below.

Frequency range MHz	Limits dB(uV)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Note

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2. Measurement Equipment Used:

Conducted Emission Test Site					
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Conduction 04-1 Cable	WOKEN	CFD 300-NL	Conduction 04 -1	07/24/2014	07/23/2015
EMI Receiver 16	Rohde & Schwarz	ESCI	101221	05/08/2014	05/07/2015
LISN 18	ROHDE & SCHWARZ	ENV216	101424	03/13/2014	03/12/2015
LISN 19	ROHDE & SCHWARZ	ENV216	101425	03/13/2014	03/12/2015

5.3. EUT Setup:

1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2009.
2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
3. The LISN was connected with 120Vac/60Hz power source.

5.4. Measurement Procedure:

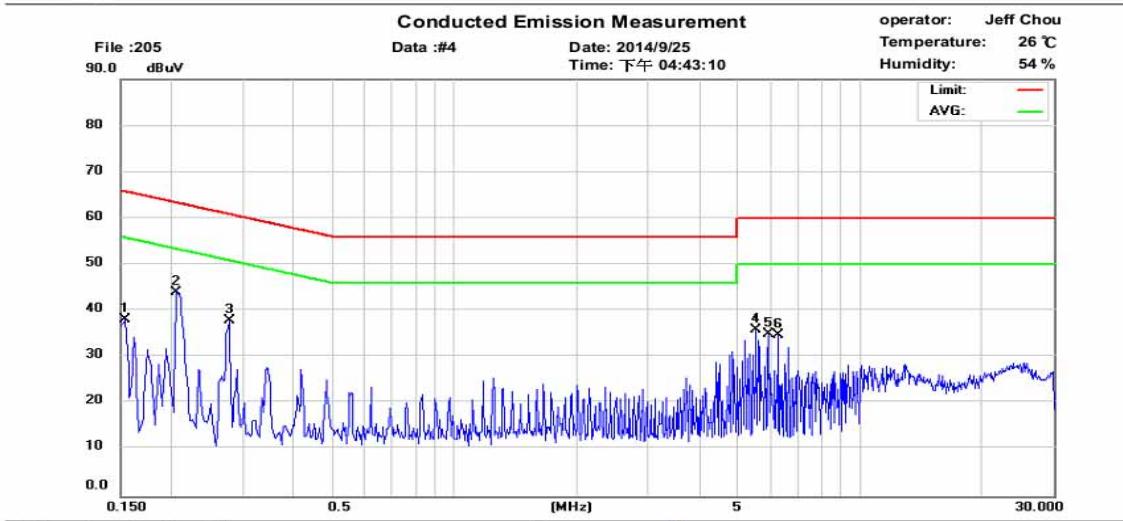
1. The EUT was placed on a table which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

5.5. Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Operation Mode	Test Date:	2014/09/25
Test By:	Dino		



Site: Conduction 04 **Phase:** **L1**
Limit: Conduction **Power:** **AC 110V/60Hz**
Company: Dimound **Witness:**
EUT Model: BT 3.0
Execute Program:
Note:

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.170	9.60	42.57	64.96	-22.39	33.11	54.96	-21.85	
2	0.210	9.58	43.02	63.21	-20.19	31.00	53.21	-22.21	
3	0.274	9.58	35.33	61.00	-25.67	24.39	51.00	-26.61	
4	5.190	9.67	33.79	60.00	-26.21	24.26	50.00	-25.74	
5	5.610	9.67	35.70	60.00	-24.30	26.33	50.00	-23.67	
6	5.954	9.68	36.79	60.00	-23.21	27.09	50.00	-22.91	

Address: No.120, Lane 180, San Ho Tsuen, Hsin Ho Road, Lung-Tan Hsiang,
 Tao Yuan Conty, Taiwan R.O.C.
 Tel: 03-4071718

Site: Conduction 04

Phase: **N**

Limit: Conduction

Power: AC 110V/60Hz

Company: Dimound

Witness:

EUT Model: BT 3.0

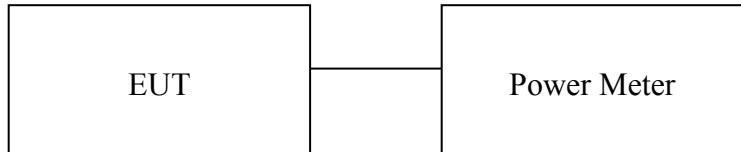
Execute Program:

Note:

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	Avg Emission (dBuV)	Avg Limit (dBuV)	Avg Margin (dB)	Note
1	0.154	9.60	42.62	65.78	-23.16	34.36	55.78	-21.42	
2	0.206	9.60	43.86	63.37	-19.51	31.72	53.37	-21.65	
3	0.278	9.60	37.82	60.88	-23.06	25.78	50.88	-25.10	
4	5.538	9.69	33.49	60.00	-26.51	23.41	50.00	-26.59	
5	5.958	9.70	32.29	60.00	-27.71	21.95	50.00	-28.05	
6	6.302	9.70	33.07	60.00	-26.93	23.37	50.00	-26.63	

6. PEAK OUTPUT POWER MEASUREMENT

6.1. Standard Applicable:


According to §15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1Watt. For all other frequency hopping systems in the 2400 – 2483.5MHz band: 0.125 Watts.

According to RSS-210 issue 8,§A8.4(2), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum conducted output power shall not exceed 1 W. For all other frequency hopping systems, the maximum peak conducted output power shall not exceed 0.125 W.

6.2. Measurement Equipment Used:

Conducted Emission Test Site					
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Power Meter 05	Anritsu	ML2495A	1116010	05/08/2014	05/07/2015
Power Sensor 05	Anritsu	MA2411B	34NKF50	05/08/2014	05/07/2015
Power Sensor 06	DARE	RPR3006W	13I00030SNO33	10/18/2013	10/17/2014
Power Sensor 07	DARE	RPR3006W	13I00030SNO34	10/18/2013	10/17/2014
Temperature Chamber	KSON	THS-B4H100	2287	03/17/2014	03/16/2015
DC Power supply	ABM	51850	N/A	07/16/2014	07/15/2015
AC Power supply	EXTECH	CFC105W	NA	12/19/2013	12/18/2014
Attenuator	Woken	Watt-65m3502	11051601	NA	NA
Splitter	MCLI	PS4-199	12465	12/27/2013	12/26/2014
Spectrum analyzer	Agilent	N9030A	MY51360021	05/02/2014	05/01/2015

6.3. .Test Set-up:

6.4. Measurement Procedure:

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter or spectrum. (Channel power function, RBW, VBW = 1MHz)
3. Record the max. reading.
4. Repeat above procedures until all frequency measured were complete.

6.5. Measurement Result:
BDR Mode

Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
2402.00	-3.78	0.00	-3.78	0.00042	1
2441.00	-7.78	0.00	-7.78	0.00017	1
2480.00	-4.80	0.00	-4.80	0.00033	1

EDR 2M Mode

Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
2402.00	-6.26	0.00	-6.26	0.00024	1
2441.00	-10.08	0.00	-10.08	0.00010	1
2480.00	-6.18	0.00	-6.18	0.00024	1

EDR 3M Mode

Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
2402.00	-5.58	0.00	-5.58	0.00028	1
2441.00	-9.48	0.00	-9.48	0.00011	1
2480.00	-6.12	0.00	-6.12	0.00024	1

Offset: 0.5dB

7. 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

7.1. Standard Applicable:

According to §15.247(d), in any 100 KHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

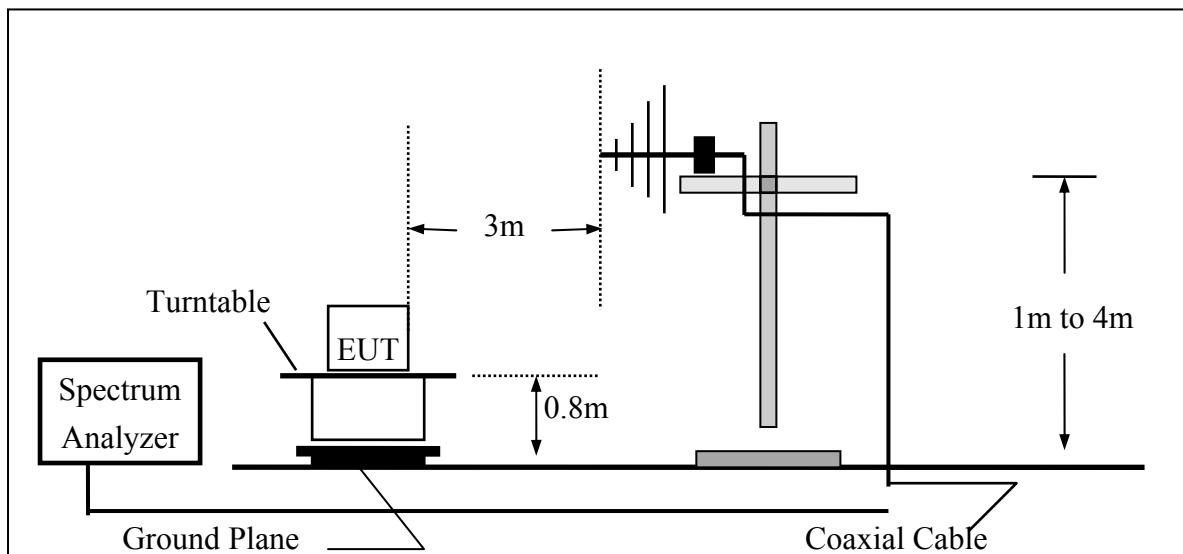
According to RSS-210 issue 8, §A8.5, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2. Measurement Equipment Used:
7.2.1. Conducted Emission at antenna port:

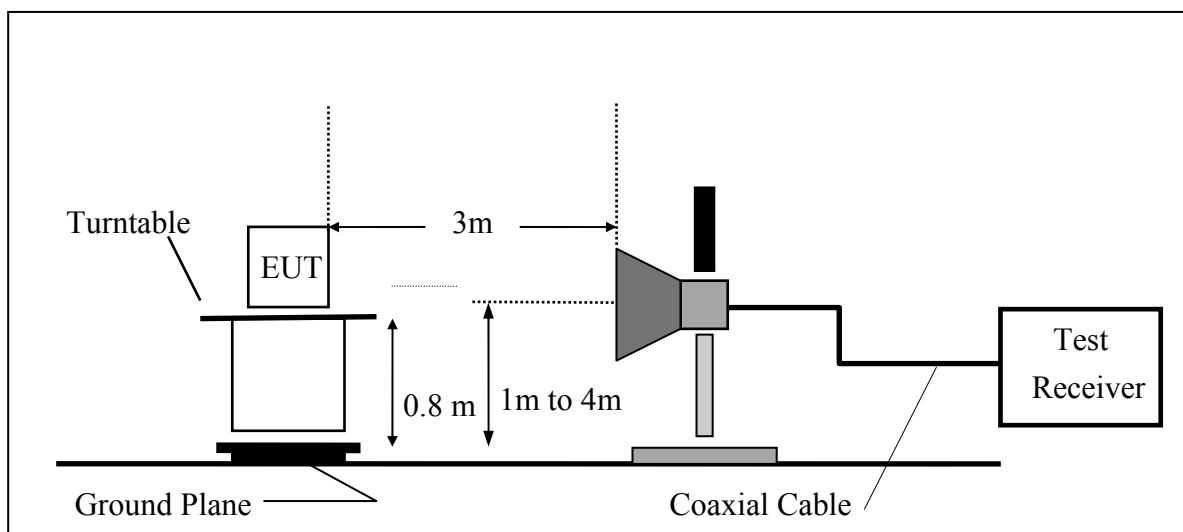
Refer to section 6.2 for details.

7.2.2. Radiated emission:

Chamber 14(966)					
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Spectrum Analyzer 21(26.5GHz)	Agilent	N9010A	MY49060537	07/29/2014	07/28/2015
Spectrum Analyzer 20(6.5GHz)	Agilent	E4443A	MY48250315	05/26/2014	05/25/2015
Spectrum Analyzer 22(43GHz)	R&S	FSU43	100143	05/07/2014	05/06/2015
Loop Antenna9K-30M	A.H.SYSTEM	SAS-564	294	03/07/2013	03/06/2015
Bilog Antenna30-1G	Schaffner	CBL 6112B	2756	01/08/2014	01/07/2015
Horn antenna1-18G(06)	EMCO	3117	0006665	11/04/2013	11/03/2014
Horn antenna26-40G(05)	Com-power	AH-640	100A	01/09/2013	01/08/2015
Horn antenna18-26G(04)	Com-power	AH-826	081001	05/15/2013	05/14/2015
Preamplifier9-1000M	HP	8447D	NA	02/20/2014	02/19/2015
Preamplifier1-18G	MITEQ	AFS44-001018 00-25-10P-44	1329256	07/30/2014	07/29/2015
Preamplifier1-26G	EM	EM01M26G	NA	02/20/2014	02/19/2015
Preamplifier26-40G	MITEQ	JS-26004000-2 7-5A	818471	05/08/2013	05/07/2015
Cable1-18G	HUBER SUHNER	Sucoflex 106	NA	02/17/2014	02/16/2015
Cable UP to 1G	HUBER SUHNER	RG 214/U	NA	10/14/2013	10/13/2014
SUCOFLEX 1GHz~40GHz cable	HUBER SUHNER	Sucoflex 102	27963/2&3742 1/2	10/03/2013	10/02/2015
2.4G Filter	Micro-Tronics	Brm50702	76	12/27/2013	12/26/2014


7.3. Test SET-UP:

7.3.1. Conducted Emission at antenna port:


Refer to section 6.3 for details.

7.3.2. Radiated emission:

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Over 1 GHz

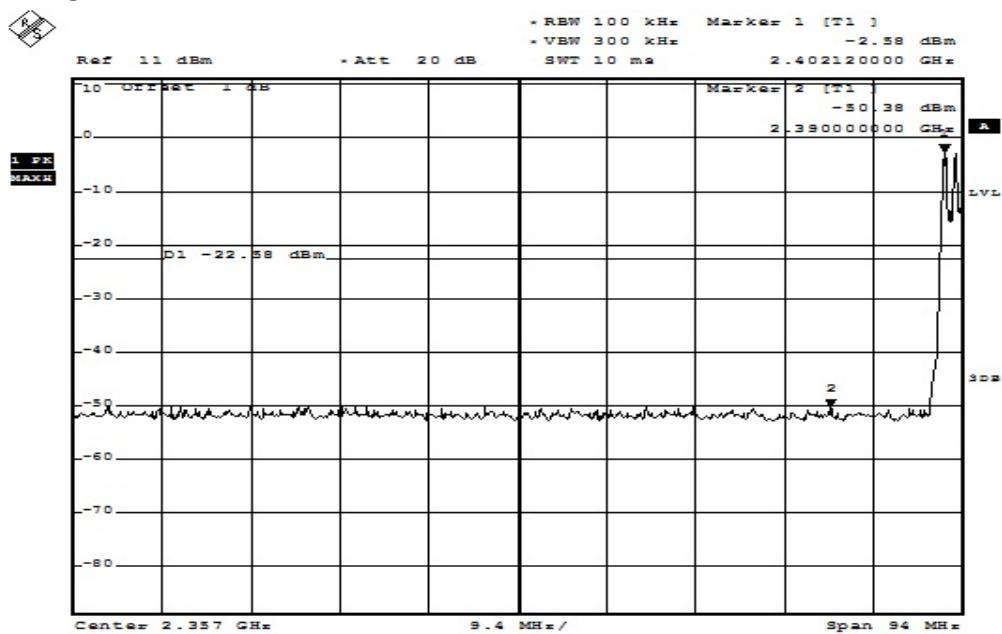
7.4. Measurement Procedure:

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW, VBW=100KHz, Span=25MHz, Sweep = auto
5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
6. Repeat above procedures until all frequency measured were complete.

7.5. Field Strength Calculation

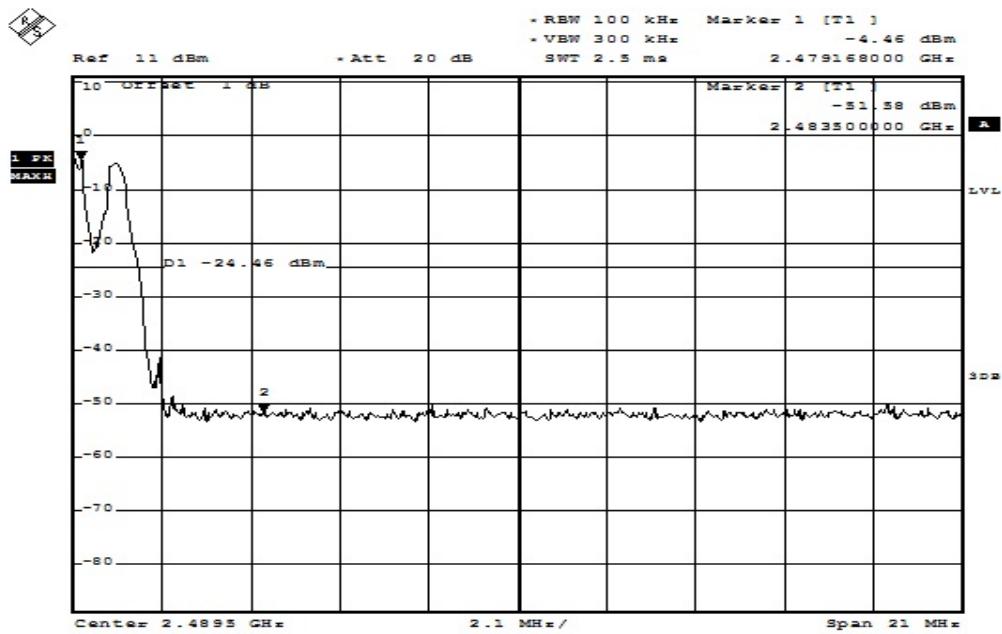
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS = RA + AF - CL - AG}$$


Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

7.6. Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.


BDR Hopping Mode

Band Edges Test Data CH-Low

Date: 24.SEP.2014 16:06:49

Band Edges Test Data CH-High

Date: 24.SEP.2014 16:10:20

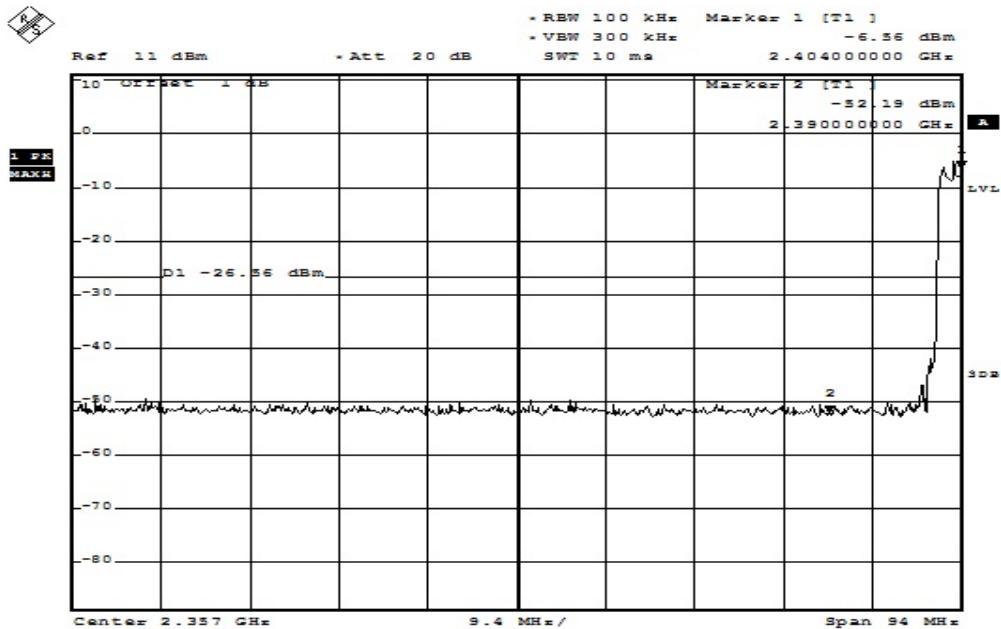
Radiated Emission: (BDR Hopping mode)

 Operation Mode TX CH Low
 Fundamental Frequency 2402 MHz
 Temperature 25 °C

 Test Date 2014/09/25
 Test By Dino
 Humidity 60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2390.00	53.13	-11.06	42.07	74.00	-31.93	Peak	VERTICAL
1	2390.00	54.59	-11.06	43.53	74.00	-30.47	Peak	HORIZONTAL

 Operation Mode TX CH High
 Fundamental Frequency 2480 MHz
 Temperature 25 °C


 Test Date 2014/09/25
 Test By Dino
 Humidity 60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2483.50	53.71	-10.83	42.88	74.00	-31.12	Peak	VERTICAL
1	2483.50	54.75	-10.83	43.92	74.00	-30.08	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 “F” denotes fundamental frequency; “H” denotes harmonics frequency. “S” denotes spurious frequency.
- 4 Measurement of data within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

EDR 2M Hopping Mode
Band Edges Test Data CH-Low

Date: 24.SEP.2014 16:05:36

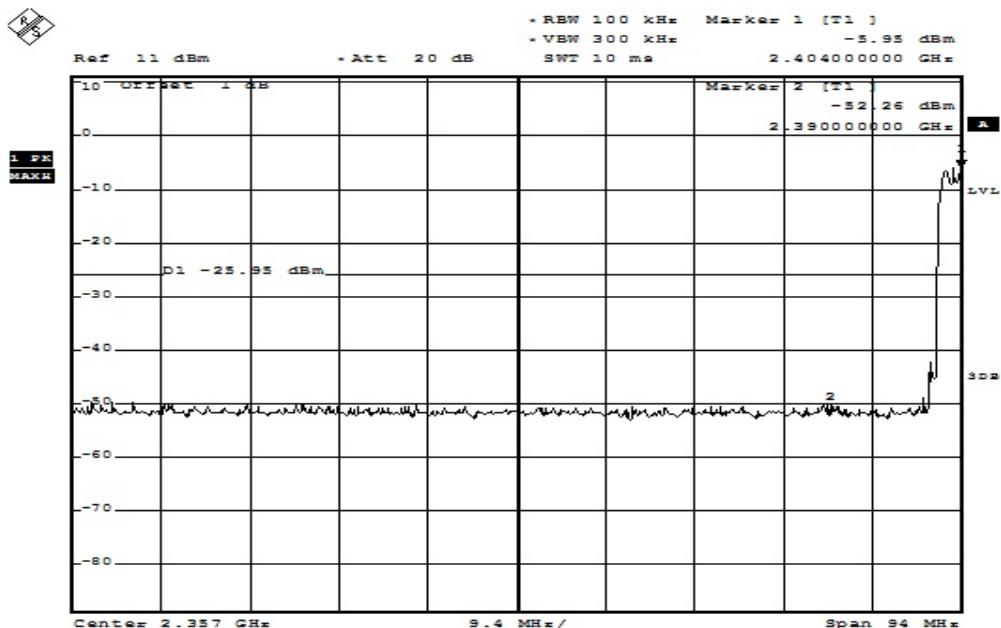
Band Edges Test Data CH-High

Date: 24.SEP.2014 16:04:42

Radiated Emission (EDR 2M Hopping mode):

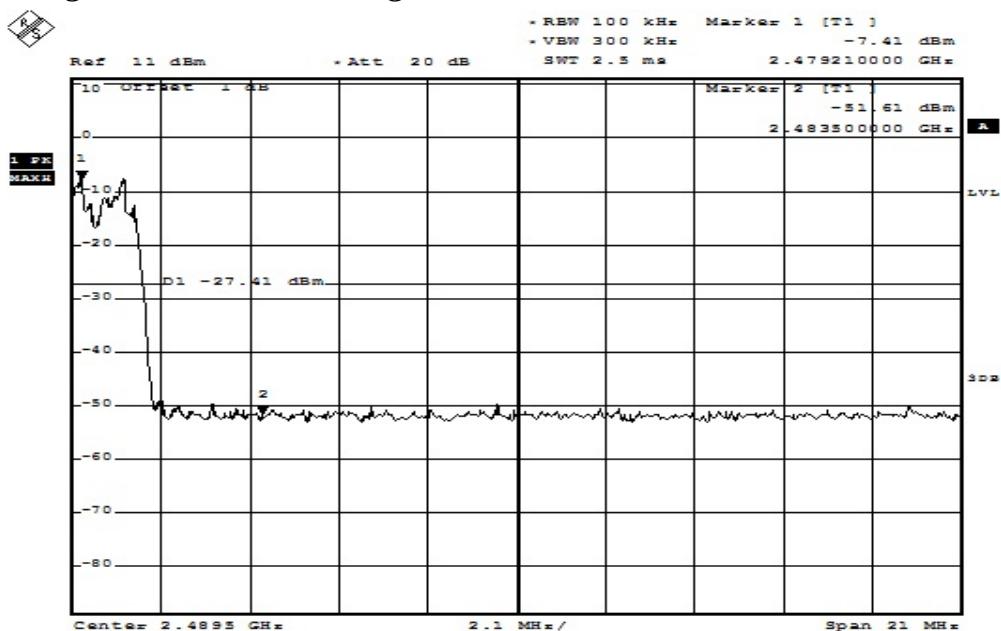
Operation Mode	TX CH Low	Test Date	2014/09/25
Fundamental Frequency	2402 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2390.00	54.27	-11.06	43.21	74.00	-30.79	Peak	VERTICAL
1	2390.00	52.63	-11.06	41.57	74.00	-32.43	Peak	HORIZONTAL


Operation Mode	TX CH High	Test Date	2014/09/25
Fundamental Frequency	2480 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2483.50	52.70	-10.83	41.87	74.00	-32.13	Peak	VERTICAL
1	2483.50	52.34	-10.83	41.51	74.00	-32.49	Peak	HORIZONTAL

Remark:


- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 "F" denotes fundamental frequency; "H" denotes harmonics frequency. "S" denotes spurious frequency.
- 4 Measurement of data within this frequency range shown " - " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

EDR 3M Hopping Mode
Band Edges Test Data CH-Low

Date: 24.SEP.2014 15:56:47

Band Edges Test Data CH-High

Date: 24.SEP.2014 15:57:54

Radiated Emission (EDR 3M Hopping mode):

Operation Mode	TX CH Low	Test Date	2014/09/25
Fundamental Frequency	2402 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2390.00	52.92	-11.06	41.86	74.00	-32.14	Peak	VERTICAL
1	2390.00	53.24	-11.06	42.18	74.00	-31.82	Peak	HORIZONTAL

Operation Mode	TX CH High	Test Date	2014/09/25
Fundamental Frequency	2480 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2483.50	52.96	-10.83	42.13	74.00	-31.87	Peak	VERTICAL
1	2483.50	52.46	-10.83	41.63	74.00	-32.37	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 “F” denotes fundamental frequency; “H” denotes harmonics frequency. “S” denotes spurious frequency.
- 4 Measurement of data within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Emission: BDR Non-Hopping mode (worst case)

Operation Mode	TX CH Low	Test Date	2014/09/25
Fundamental Frequency	2402 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2390.00	55.71	-11.06	44.65	74.00	-29.35	Peak	VERTICAL
1	2390.00	58.83	-11.06	47.77	74.00	-26.23	Peak	HORIZONTAL

Operation Mode	TX CH High	Test Date	2014/09/25
Fundamental Frequency	2480 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	2483.50	53.52	-10.83	42.69	74.00	-31.31	Peak	VERTICAL
2	2495.66	57.43	-10.80	46.63	74.00	-27.37	Peak	VERTICAL
1	2483.50	53.13	-10.83	42.30	74.00	-31.70	Peak	HORIZONTAL
2	2491.82	57.62	-10.83	46.79	74.00	-27.21	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 "F" denotes fundamental frequency; "H" denotes harmonics frequency. "S" denotes spurious frequency.
- 4 Measurement of data within this frequency range shown " - " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

8. SPURIOUS EMISSION TEST

8.1. Standard Applicable:

According to §15.247(d), all other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

According to RSS-Gen §7.2.5 and RSS-210 issue 8, §A8.5, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.2. Measurement Equipment Used:

8.2.1. Conducted Emission at antenna port:

Refer to section 6.2 for details.

8.2.2. Radiated emission:

Refer to section 7.2 for details.

8.3. Test SET-UP:

8.3.1. Conducted Emission at antenna port:

Refer to section 6.3 for details.

8.3.2. Radiated emission:

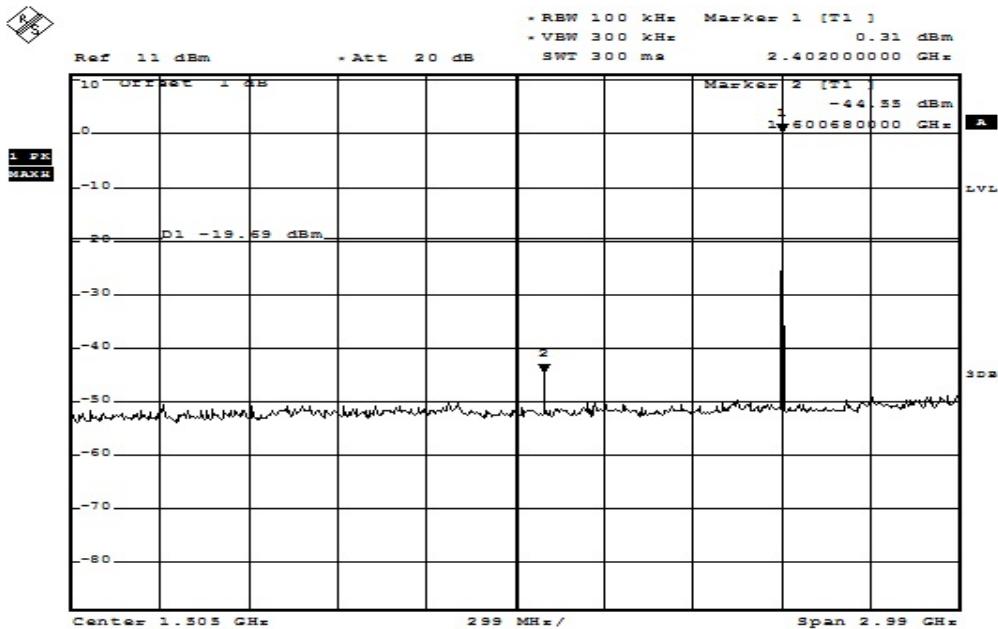
Refer to section 7.3 for details.

8.4. Measurement Procedure:

1. The EUT was placed on a turn table which is 0.8m above ground plane.
2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
4. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” is still within the 3dB illumination BW of the measurement antenna.
5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
7. Repeat above procedures until all frequency measured were complete.

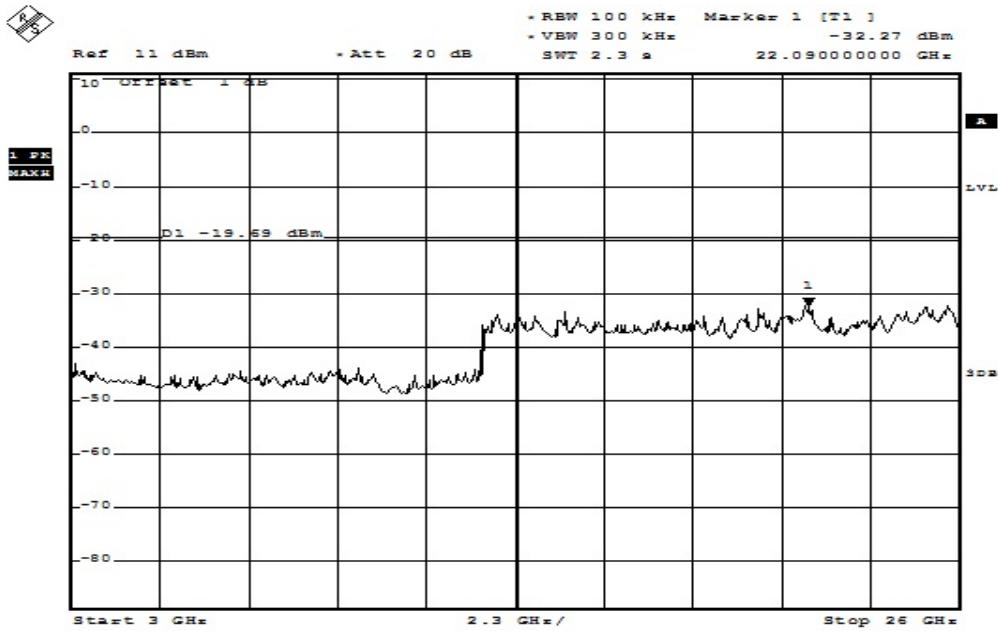
8.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

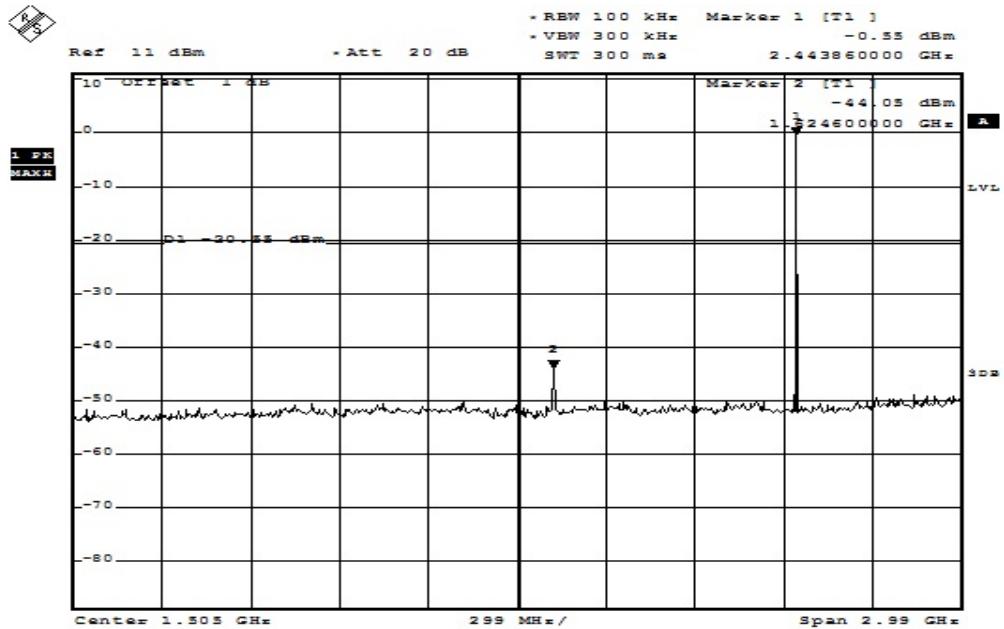

$$FS = RA + AF + CL - AG$$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

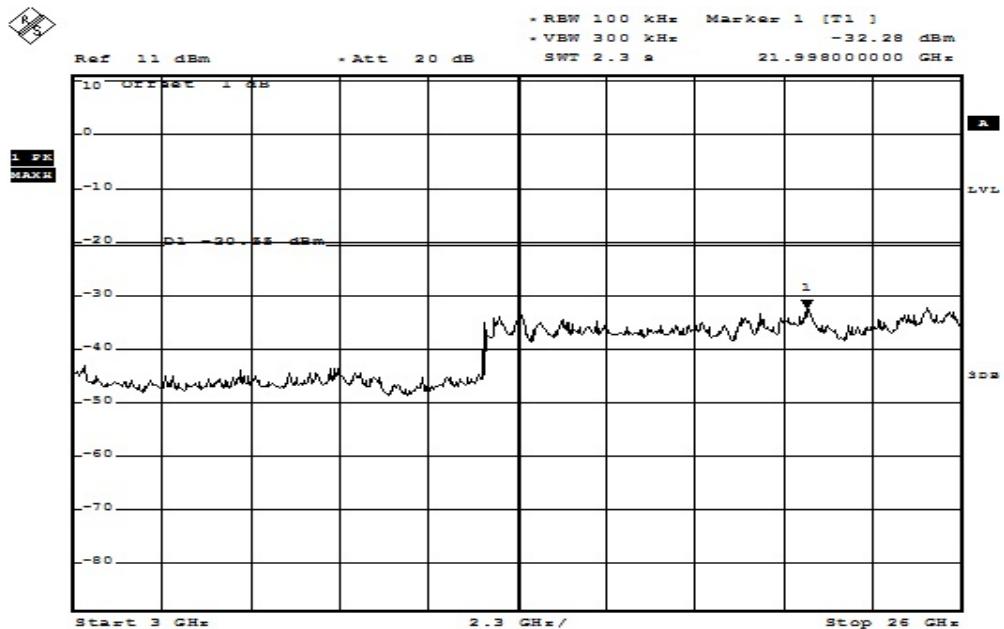
8.6. Measurement Result:


Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

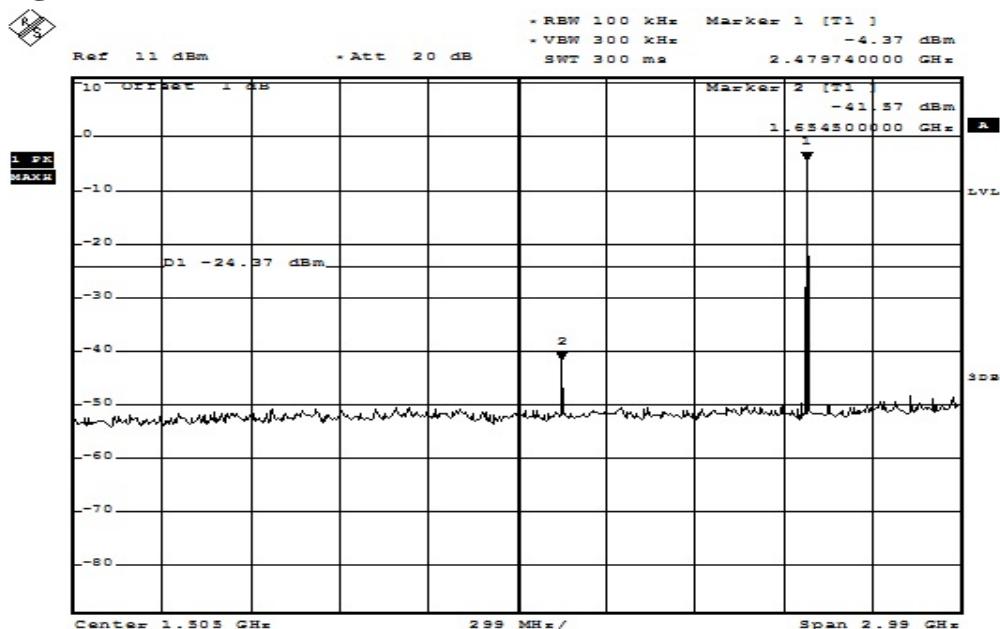
Conducted Spurious Emission Measurement Result (Worst case: BDR Mode)
Ch Low 30MHz – 3GHz


Date: 24.SEP.2014 16:28:24

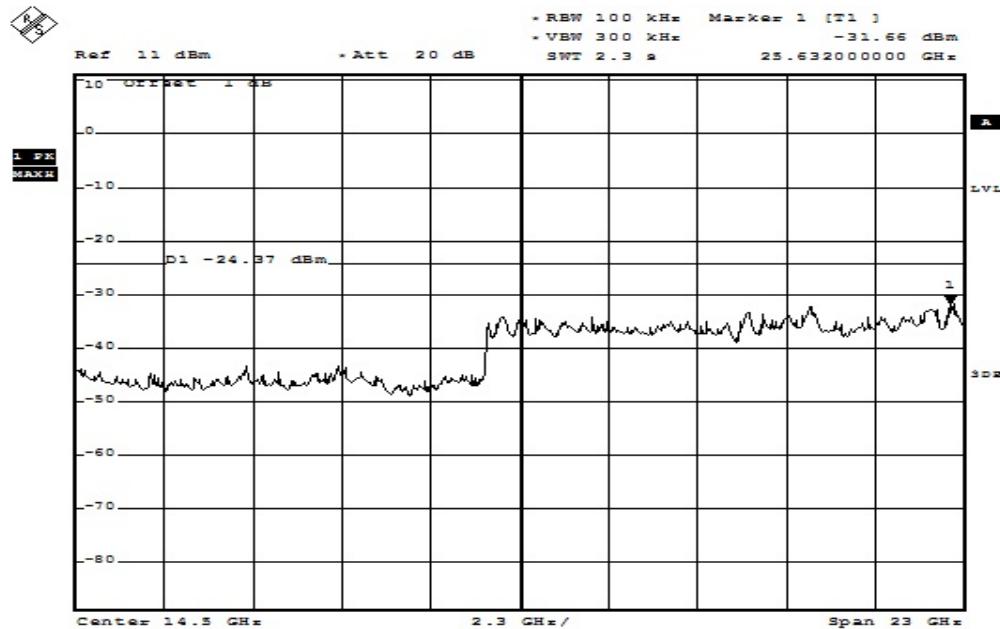
Ch Low 3GHz – 26.5GHz


Date: 24.SEP.2014 16:28:57

Ch Mid 30MHz – 3GHz


Date: 24.SEP.2014 16:26:42

Ch Mid 3GHz – 26.5GHz


Date: 24.SEP.2014 16:27:09

Ch High 30MHz – 3GHz

Date: 24.SEP.2014 16:30:06

Ch High 3GHz – 26.5GHz

Date: 24.SEP.2014 16:30:34

Radiated Spurious Emission Measurement Result: (below 1GHz) (Worst case: BDR Mode)

Operation Mode	TX CH Low	Test Date	2014/09/25
Fundamental Frequency	2402MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	48.43	45.82	-12.19	33.63	40.00	-6.37	Peak	VERTICAL
2	132.82	49.12	-13.30	35.82	43.50	-7.68	Peak	VERTICAL
3	275.41	51.93	-11.78	40.15	46.00	-5.85	Peak	VERTICAL
4	379.20	51.63	-9.67	41.96	46.00	-4.04	Peak	VERTICAL
5	491.72	48.05	-7.77	40.28	46.00	-5.72	Peak	VERTICAL
6	996.12	42.23	0.65	42.88	54.00	-11.12	Peak	VERTICAL
1	48.43	48.07	-12.19	35.88	40.00	-4.12	Peak	HORIZONTAL
2	107.60	48.44	-15.96	32.48	43.50	-11.02	Peak	HORIZONTAL
3	183.26	44.62	-13.97	30.65	43.50	-12.85	Peak	HORIZONTAL
4	450.01	48.37	-8.22	40.15	46.00	-5.85	Peak	HORIZONTAL
5	864.20	36.88	-1.51	35.37	46.00	-10.63	Peak	HORIZONTAL
6	948.59	39.26	0.10	39.36	46.00	-6.64	Peak	HORIZONTAL

Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak / QP detector mode.
- 4 Measurement result within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode	TX CH Mid	Test Date	2014/09/25
Fundamental Frequency	2441MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	99.84	51.69	-17.43	34.26	43.50	-9.24	Peak	VERTICAL
2	133.79	50.98	-13.19	37.79	43.50	-5.71	Peak	VERTICAL
3	275.41	54.37	-11.78	42.59	46.00	-3.41	Peak	VERTICAL
4	377.26	51.04	-9.70	41.34	46.00	-4.66	Peak	VERTICAL
5	455.83	50.29	-8.16	42.13	46.00	-3.87	Peak	VERTICAL
6	815.70	36.62	-2.29	34.33	46.00	-11.67	Peak	VERTICAL
1	40.67	48.56	-12.63	35.93	40.00	-4.07	Peak	HORIZONTAL
2	108.57	47.69	-15.79	31.90	43.50	-11.60	Peak	HORIZONTAL
3	377.26	43.67	-9.70	33.97	46.00	-12.03	Peak	HORIZONTAL
4	450.01	49.35	-8.22	41.13	46.00	-4.87	Peak	HORIZONTAL
5	650.80	41.30	-5.01	36.29	46.00	-9.71	Peak	HORIZONTAL
6	948.59	40.26	0.10	40.36	46.00	-5.64	Peak	HORIZONTAL

Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak / QP detector mode.
- 4 Measurement result within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode	TX CH High	Test Date	2014/09/25
Fundamental Frequency	2480MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	99.84	56.95	-17.43	39.52	43.50	-3.98	Peak	VERTICAL
2	135.73	49.18	-12.96	36.22	43.50	-7.28	Peak	VERTICAL
3	300.63	53.03	-11.08	41.95	46.00	-4.05	Peak	VERTICAL
4	380.17	50.45	-9.64	40.81	46.00	-5.19	Peak	VERTICAL
5	455.83	48.39	-8.16	40.23	46.00	-5.77	Peak	VERTICAL
6	995.15	41.46	0.64	42.10	54.00	-11.90	Peak	VERTICAL
1	39.70	47.05	-12.70	34.35	40.00	-5.65	Peak	HORIZONTAL
2	99.84	50.10	-17.43	32.67	43.50	-10.83	Peak	HORIZONTAL
3	450.01	48.35	-8.22	40.13	46.00	-5.87	Peak	HORIZONTAL
4	504.33	47.34	-7.61	39.73	46.00	-6.27	Peak	HORIZONTAL
5	650.80	43.13	-5.01	38.12	46.00	-7.88	Peak	HORIZONTAL
6	960.23	39.73	0.25	39.98	54.00	-14.02	Peak	HORIZONTAL

Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak / QP detector mode.
- 4 Measurement result within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Low	Test Date	2014/09/25
Fundamental Frequency	2402 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	4801.00	46.34	-1.91	44.43	74.00	-29.57	Peak	VERTICAL
2	6411.00	41.46	3.16	44.62	74.00	-29.38	Peak	VERTICAL
3	7206.00	44.99	5.12	50.11	74.00	-23.89	Peak	VERTICAL
1	4804.00	45.75	-1.90	43.85	74.00	-30.15	Peak	HORIZONTAL
2	6411.00	41.09	3.16	44.25	74.00	-29.75	Peak	HORIZONTAL
3	7206.00	45.64	5.12	50.76	74.00	-23.24	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 "F" denotes fundamental frequency; "H" denotes harmonics frequency. "S" denotes spurious frequency.
- 4 Measurement of data within this frequency range shown " - " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Mid	Test Date	2014/09/25
Fundamental Frequency	2441 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	4882.00	50.21	-1.61	48.60	74.00	-25.40	Peak	VERTICAL
2	6509.00	42.23	3.54	45.77	74.00	-28.23	Peak	VERTICAL
3	7323.00	43.05	5.25	48.30	74.00	-25.70	Peak	VERTICAL
1	4882.00	49.86	-1.61	48.25	74.00	-25.75	Peak	HORIZONTAL
2	6509.00	41.15	3.54	44.69	74.00	-29.31	Peak	HORIZONTAL
3	7321.00	46.24	5.25	51.49	74.00	-22.51	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 "F" denotes fundamental frequency; "H" denotes harmonics frequency. "S" denotes spurious frequency.
- 4 Measurement of data within this frequency range shown " - " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH High	Test Date	2014/09/25
Fundamental Frequency	2480 MHz	Test By	Dino
Temperature	25 °C	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	Pol V/H
1	4960.00	51.75	-1.30	50.45	74.00	-23.55	Peak	VERTICAL
2	6614.00	40.81	3.83	44.64	74.00	-29.36	Peak	VERTICAL
3	7440.00	41.68	5.38	47.06	74.00	-26.94	Peak	VERTICAL
1	4960.00	48.97	-1.30	47.67	74.00	-26.33	Peak	HORIZONTAL
2	6614.00	39.49	3.83	43.32	74.00	-30.68	Peak	HORIZONTAL
3	7440.00	45.87	5.38	51.25	74.00	-22.75	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 "F" denotes fundamental frequency; "H" denotes harmonics frequency. "S" denotes spurious frequency.
- 4 Measurement of data within this frequency range shown " - " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 6 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

9. FREQUENCY SEPARATION

9.1. Standard Applicable:

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 20dB bandwidth of the hopping channel, whichever is greater.

According to RSS 210 issue 8, A8.1(b), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

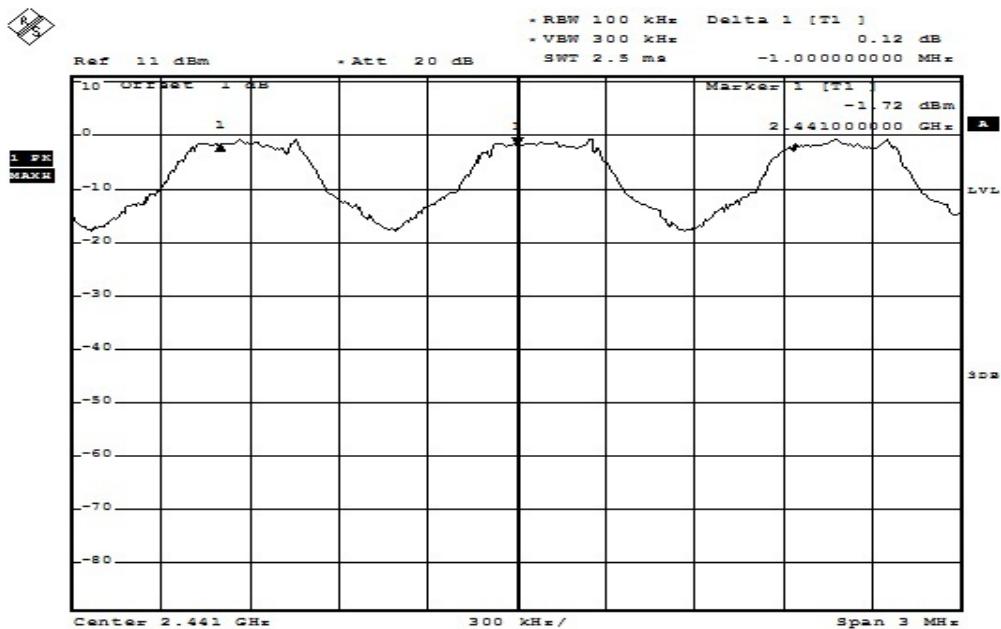
9.2. Measurement Equipment Used:

Refer to section 6.2 for details.

9.3. Test Set-up:

Refer to section 6.3 for details.

9.4. Measurement Procedure:


1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = middle of hopping channel .
4. Set the spectrum analyzer as RBW,VBW=100KHz, Adjust Span to 3.0 MHz, Sweep = auto.
5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

9.5. Measurement Result:

Channel separation (MHz)	Limit	Result
1	$\geq 25\text{KHz}$ or 2/3 times 20dB bandwidth	PASS

Note: Refer to next page for plots.

Frequency Separation Test Data

Date: 24.SEP.2014 15:30:40

10. NUMBER OF HOPPING FREQUENCY

10.1. Standard Applicable:

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

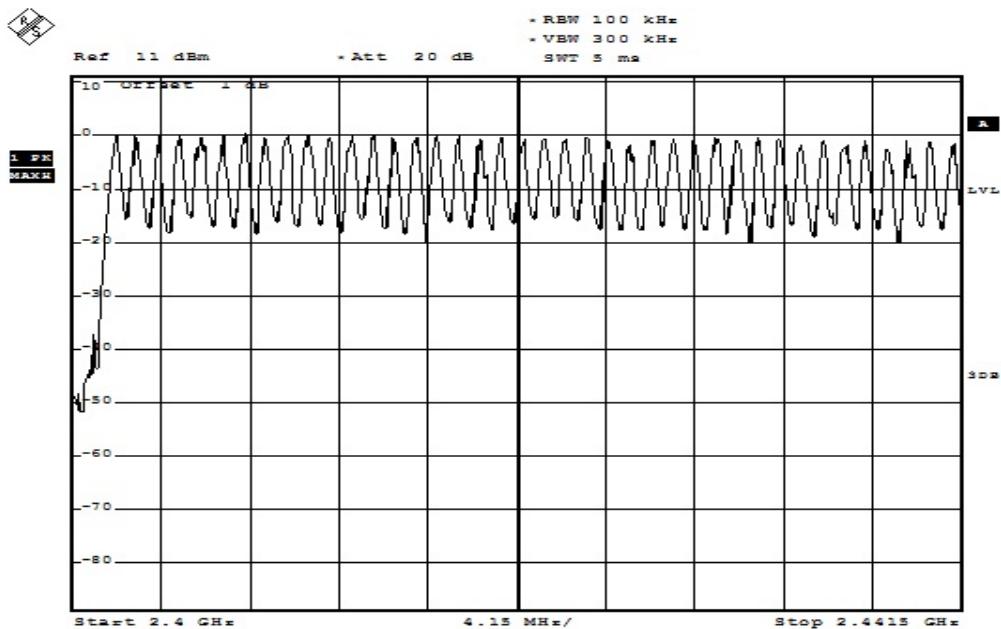
According to RSS-210 issue 8,§A8.1(d), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum conducted output power shall not exceed 1 W. For all other frequency hopping systems, the maximum peak conducted output power shall not exceed 0.125 W.

10.2. Measurement Equipment Used:

Refer to section 6.2 for details.

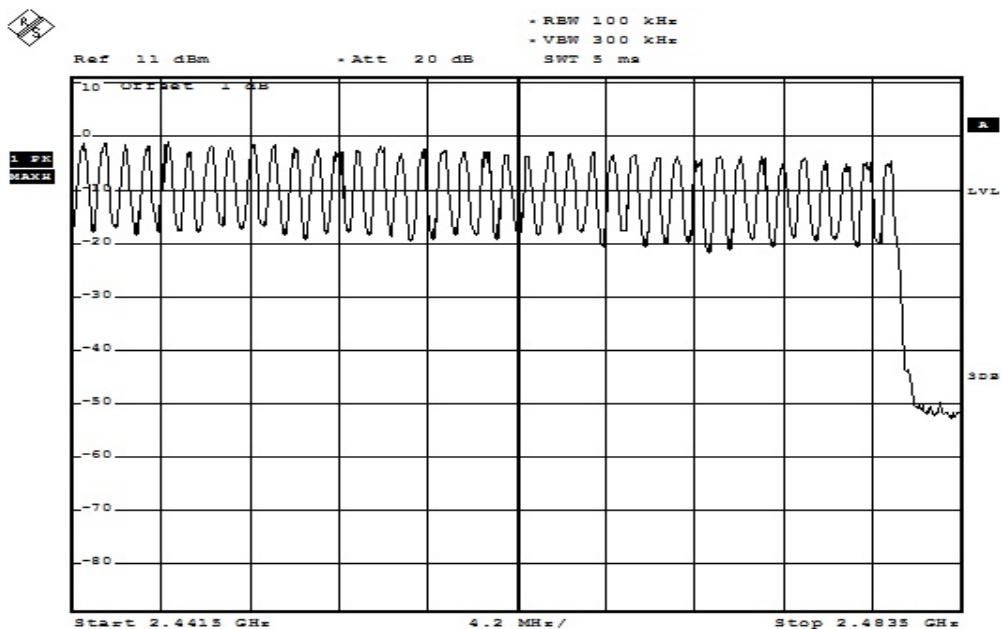
10.3. Test Set-up:

Refer to section 6.3 for details.


10.4. Measurement Procedure:

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set spectrum analyzer Start=2400MHz, Stop = 2441MHz and Start=2441MHz, Stop = 2483.5MHz, Sweep = auto.
4. Set the spectrum analyzer as RBW=300KHz, VBW=1MHz
5. Max hold, view and count how many channel in the band.

10.5. Measurement Result:


Note: Refer to next page for plots.

**Channel Number
2.4 GHz – 2.441GHz**

Date: 24.SEP.2014 15:23:46

2.441 GHz – 2.4835GHz

Date: 24.SEP.2014 15:27:50

11. TIME OF OCCUPANCY (DWELL TIME)

11.1. Standard Applicable:

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 seconds multiplied by the number of hopping channel employed.

According to RSS-210 issue 8,§A8.1(d), Frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

11.2. Measurement Equipment Used:

Refer to section 6.2 for details.

11.3. Test Set-up:

Refer to section 6.3 for details.

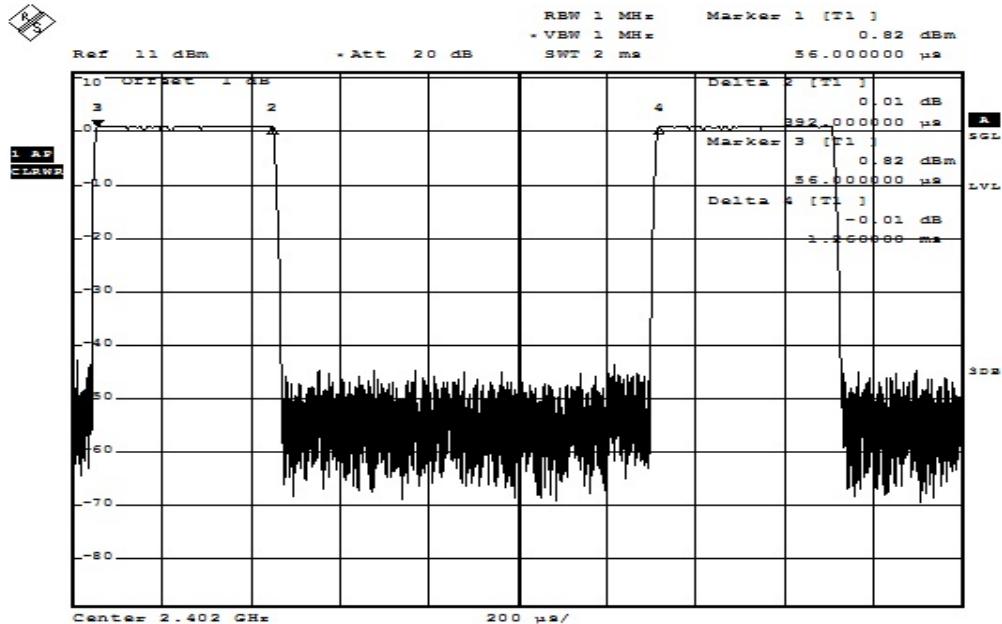
11.4. Measurement Procedure:

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW / VBW =1MHz, Span = 0Hz , Adjust Sweep = 2.5ms.
5. Repeat above procedures until all frequency measured were complete.

11.5. Measurement Result:

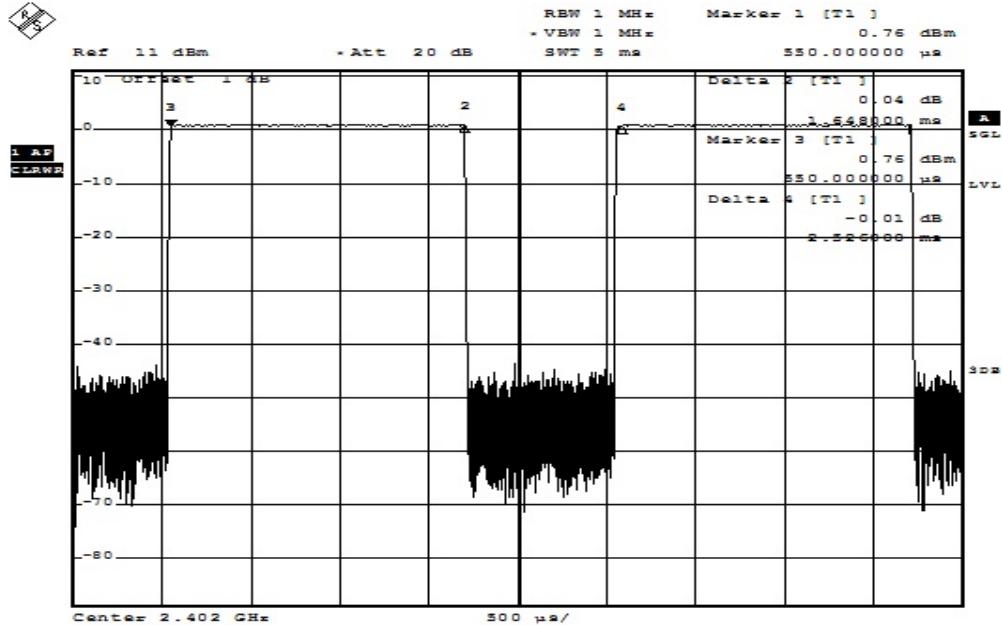
A period time = $0.4 \text{ (ms)} * 79 = 31.6 \text{ (s)}$

CH Low	DH1 time slot	= $0.392 \text{ (ms)} * (1600/2/79) * 31.6 =$	125.44	(ms)
	DH3 time slot	= $1.648 \text{ (ms)} * (1600/4/79) * 31.6 =$	263.68	(ms)
	DH5 time slot	= $2.928 \text{ (ms)} * (1600/6/79) * 31.6 =$	312.32	(ms)

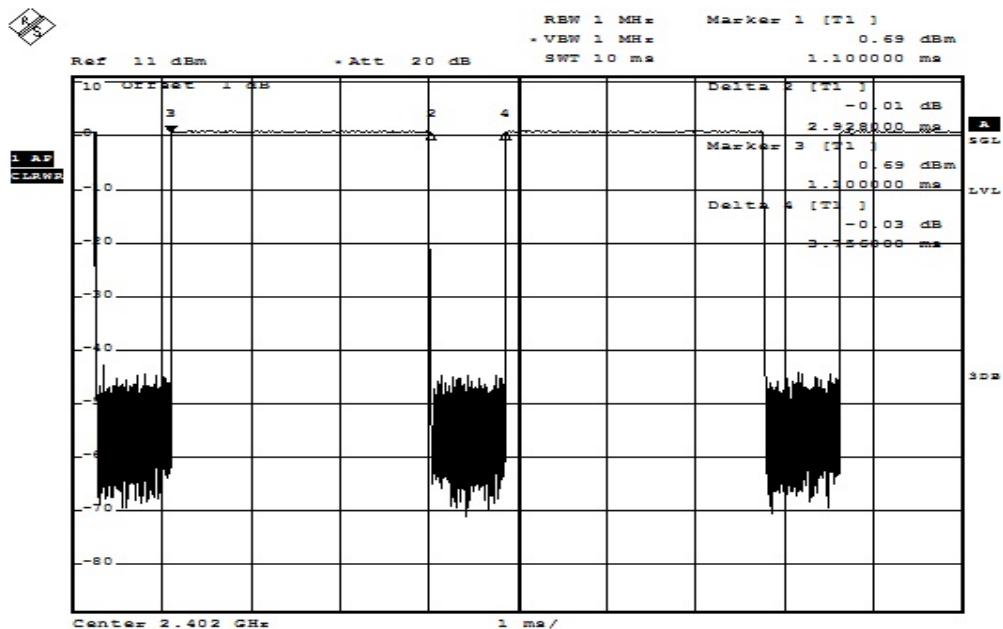

CH Mid	DH1 time slot	= $0.392 \text{ (ms)} * (1600/2/79) * 31.6 =$	125.44	(ms)
	DH3 time slot	= $1.628 \text{ (ms)} * (1600/4/79) * 31.6 =$	260.48	(ms)
	DH5 time slot	= $2.908 \text{ (ms)} * (1600/6/79) * 31.6 =$	310.19	(ms)

CH High	DH1 time slot	= $0.392 \text{ (ms)} * (1600/2/79) * 31.6 =$	125.44	(ms)
	DH3 time slot	= $1.648 \text{ (ms)} * (1600/4/79) * 31.6 =$	263.68	(ms)
	DH5 time slot	= $2.888 \text{ (ms)} * (1600/6/79) * 31.6 =$	308.05	(ms)

Note: Refer to next page for plots.

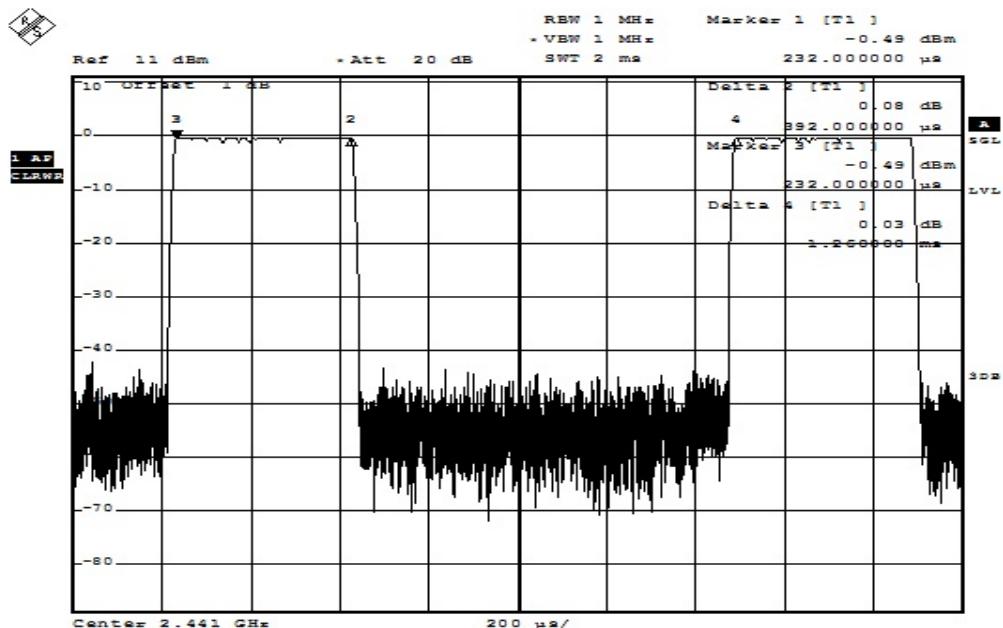

Low Channel

DH1

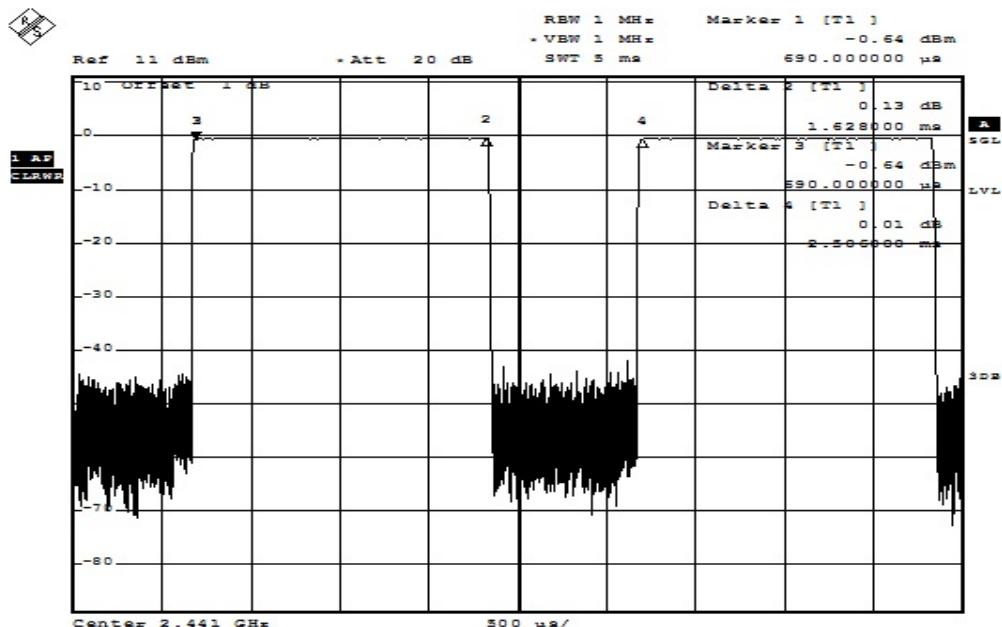

Date: 24.SEP.2014 16:36:47

DH3

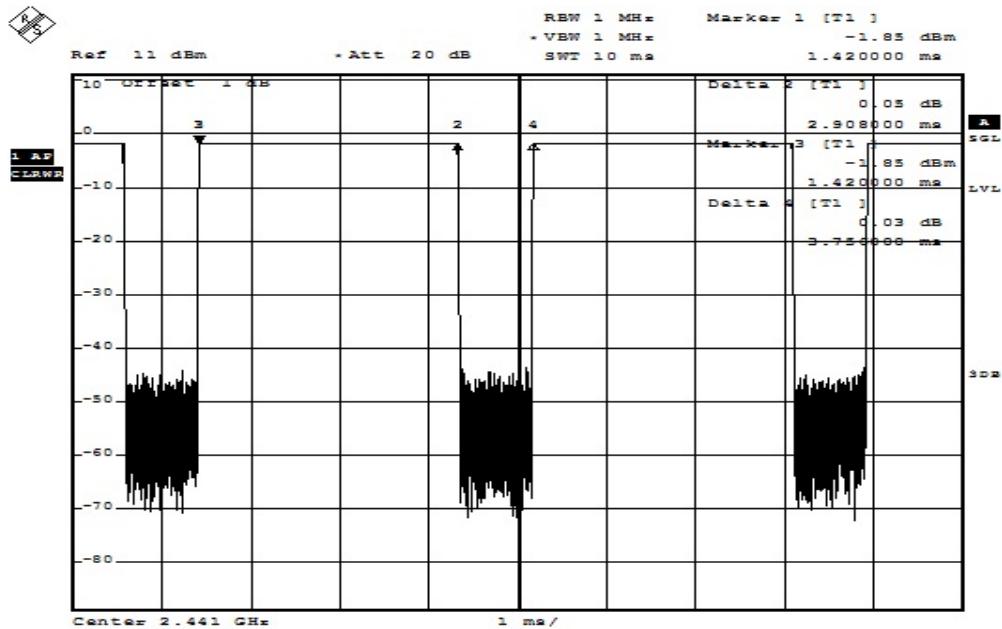
Date: 24.SEP.2014 16:39:39


DH5

Date: 24.SEP.2014 16:45:16

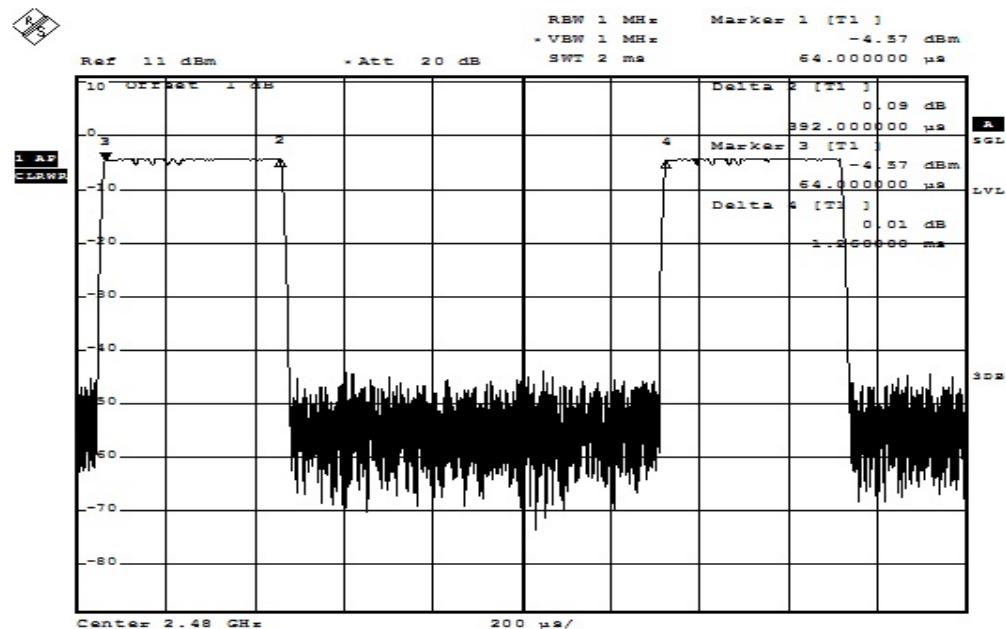

Mid Channel

DH1

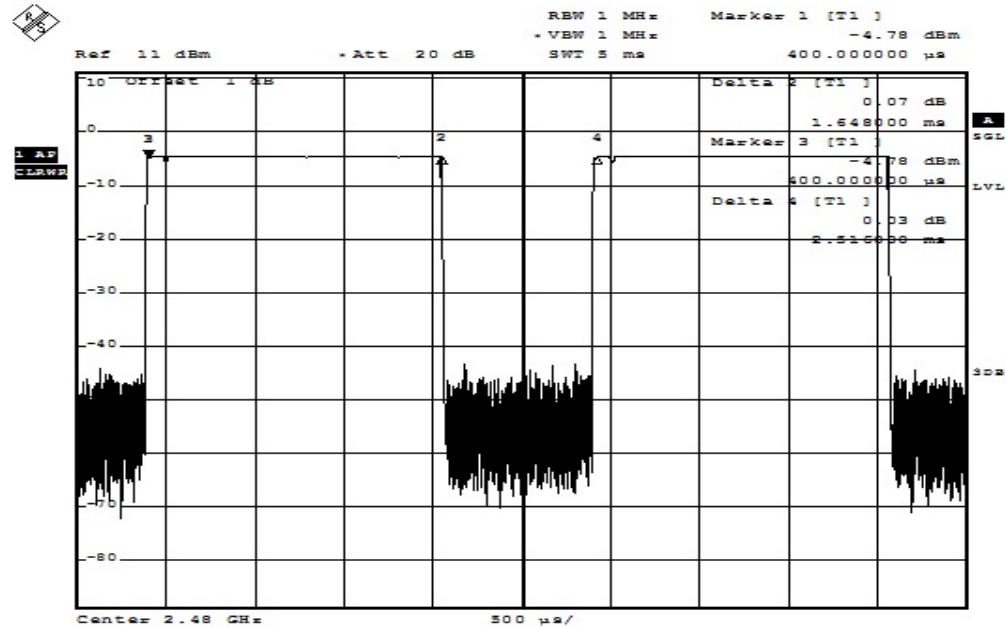

Date: 24.SEP.2014 16:35:32

DH3

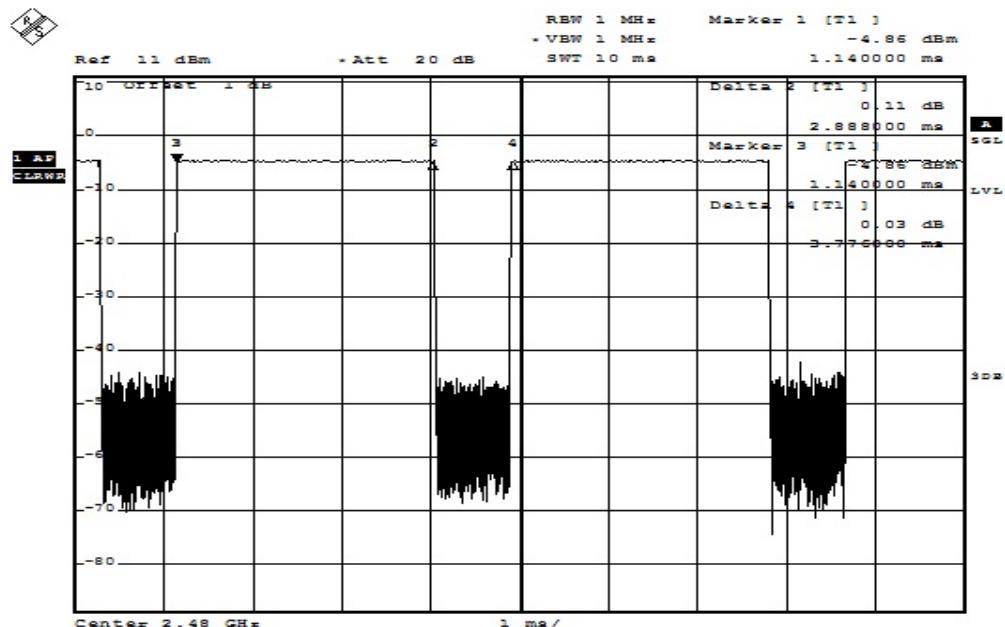
Date: 24.SEP.2014 16:40:43


DH5

Date: 24.SEP.2014 16:44:30


High Channel

DH1


Date: 24.SEP.2014 16:34:28

DH3

Date: 24.SEP.2014 16:41:47

DH5

Date: 24.SEP.2014 16:43:14

12. 20dB Bandwidth & 99% Bandwidth

12.1. Standard Applicable:

According to §15.247(a)(1), and RSS210 A8.1(b) for frequency hopping systems operating in the 2400MHz-2483.5 MHz no limit for 20dB bandwidth.

12.2. Measurement Equipment Used:

Refer to section 6.2 for details.

12.3. Test Set-up:

Refer to section 6.3 for details.

12.4. Measurement Procedure:

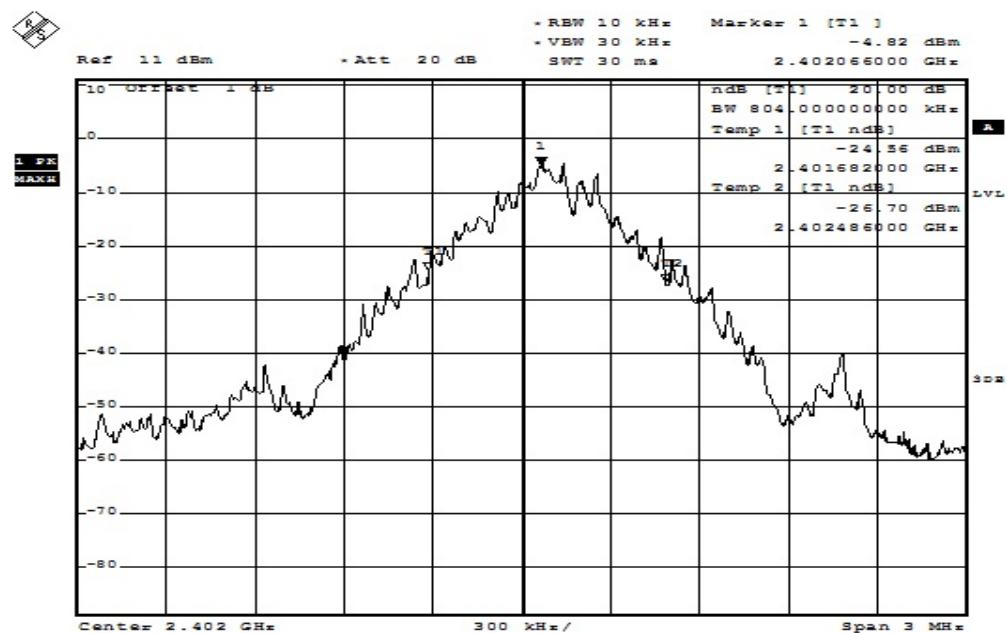
1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW=10KHz (1 % of Bandwidth.), Span= 3MHz, Sweep=auto
4. Mark the peak frequency and -20dB (upper and lower) frequency.
5. Repeat above procedures until all frequency measured were complete.

12.5. Measurement Result:
BDR Mode

CH	20dB Bandwidth (MHz)	99% Bandwidth (MHz)
Lower	0.804	0.858
Mid	0.768	0.858
Higher	0.804	0.858

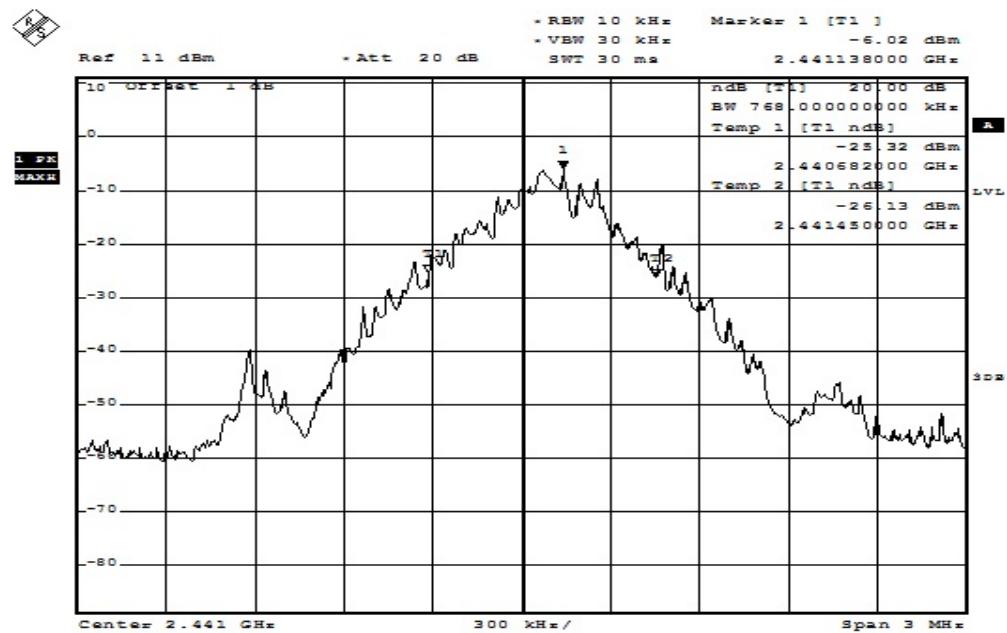
EDR 2M Mode

CH	20dB Bandwidth (MHz)	2/3* 20dB Bandwidth (MHz)	99% Bandwidth (MHz)
Lower	1.218	0.812	1.170
Mid	1.23	0.820	1.170
Higher	1.23	0.820	1.170

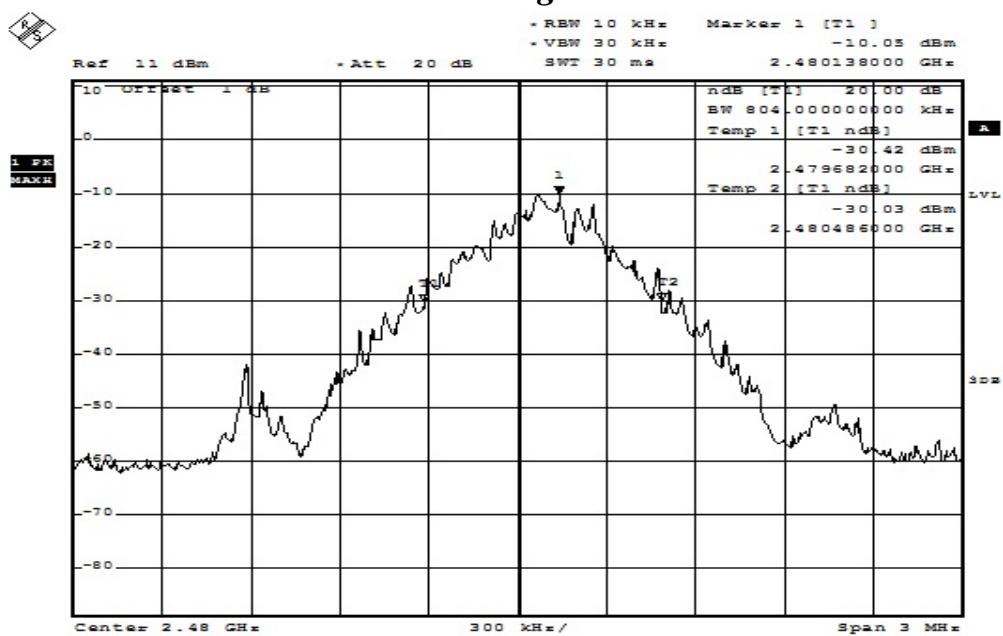

**EDR 3M
Mode**

CH	20dB Bandwidth (MHz)	2/3* 20dB Bandwidth (MHz)	99% Bandwidth (MHz)
Lower	1.224	0.816	1.164
Mid	1.254	0.836	1.164
Higher	1.26	0.840	1.164

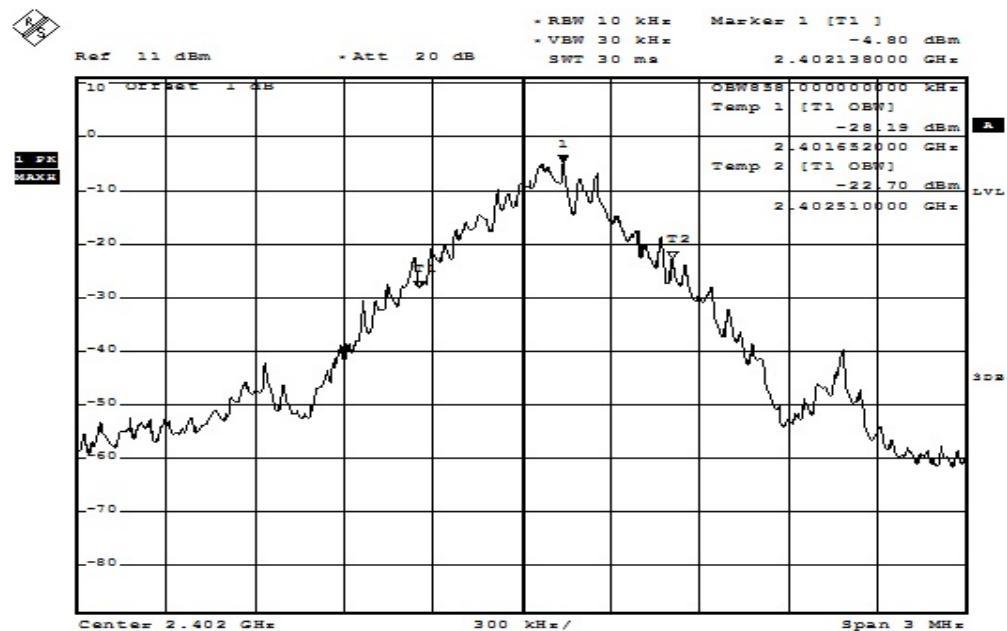
Note: Refer to next page for plots.


BDR Mode

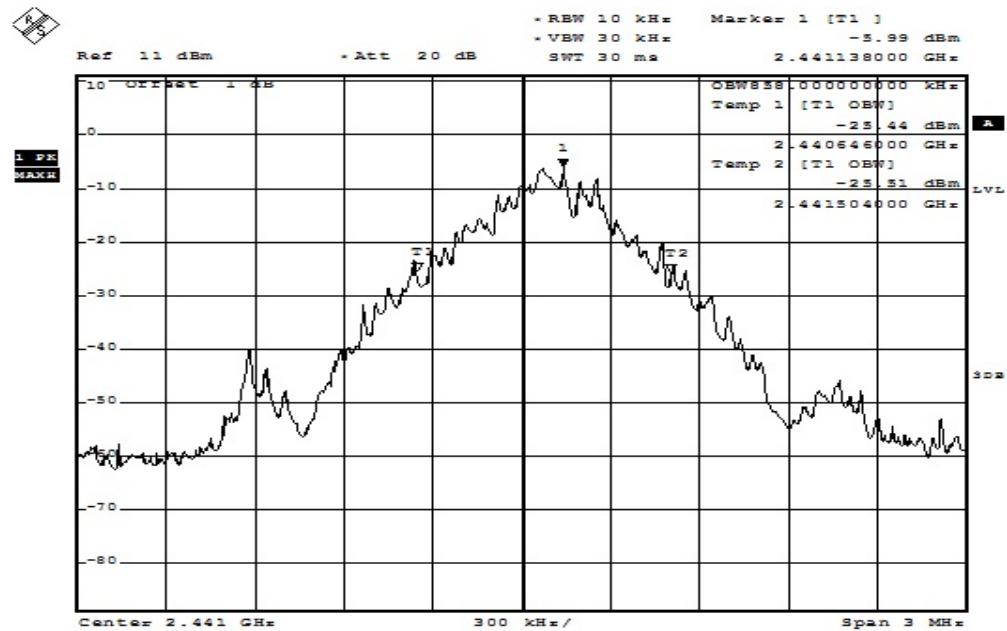
20dB Bandwidth Test Data CH-Low


Date: 24.SEP.2014 15:38:48

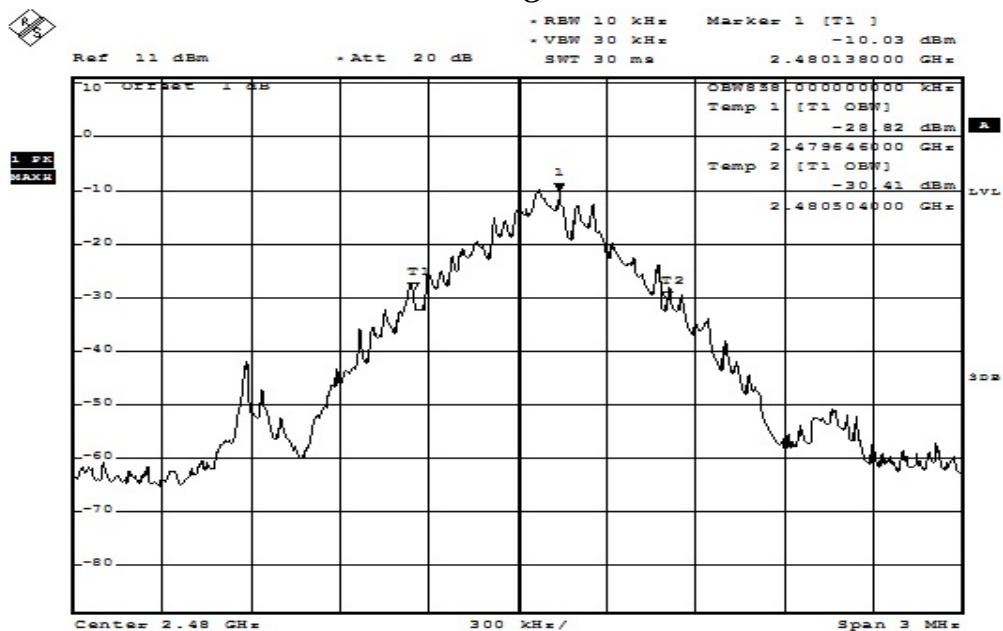
20dB Bandwidth Test Data CH-Mid



Date: 24.SEP.2014 15:39:52


20dB Bandwidth Test Data CH-High

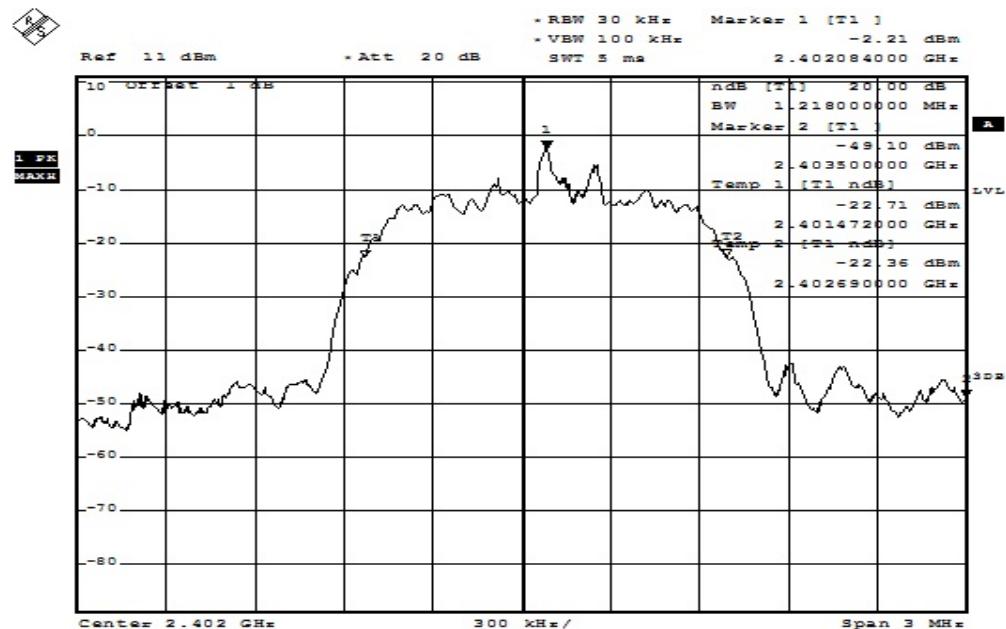
Date: 24.SEP.2014 15:40:47


BDR Mode
99% Bandwidth Test Data CH-Low

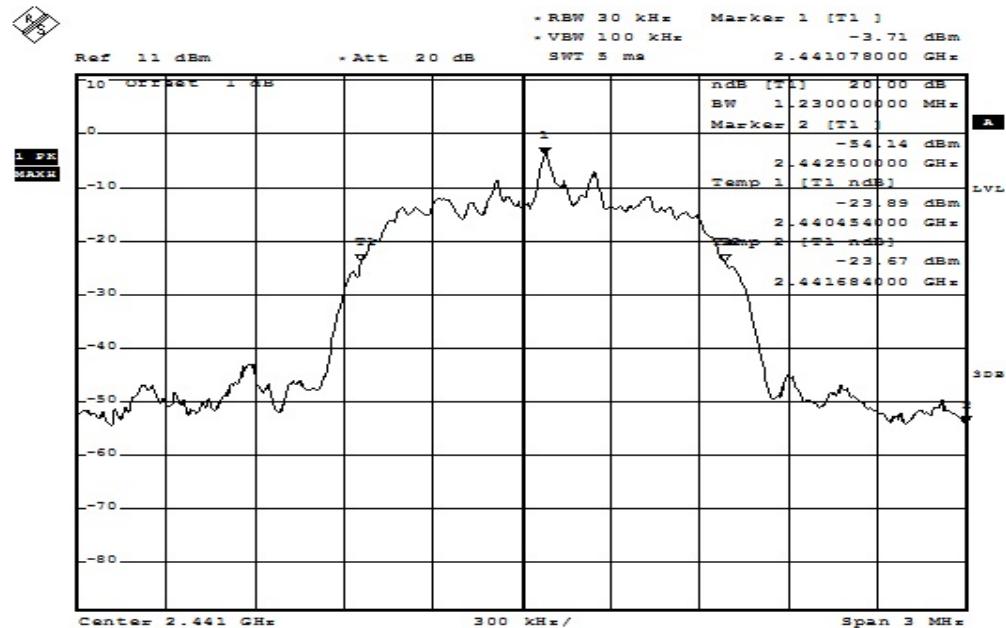
Date: 24.SEP.2014 15:42:35

99% Bandwidth Test Data CH-Mid

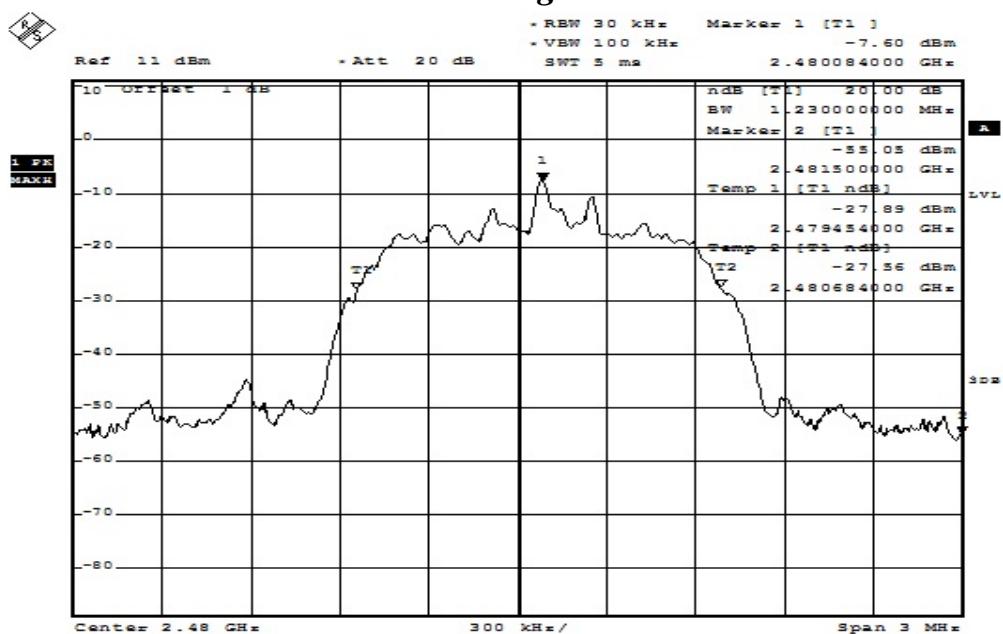
Date: 24.SEP.2014 15:42:02


99% Bandwidth Test Data CH-High

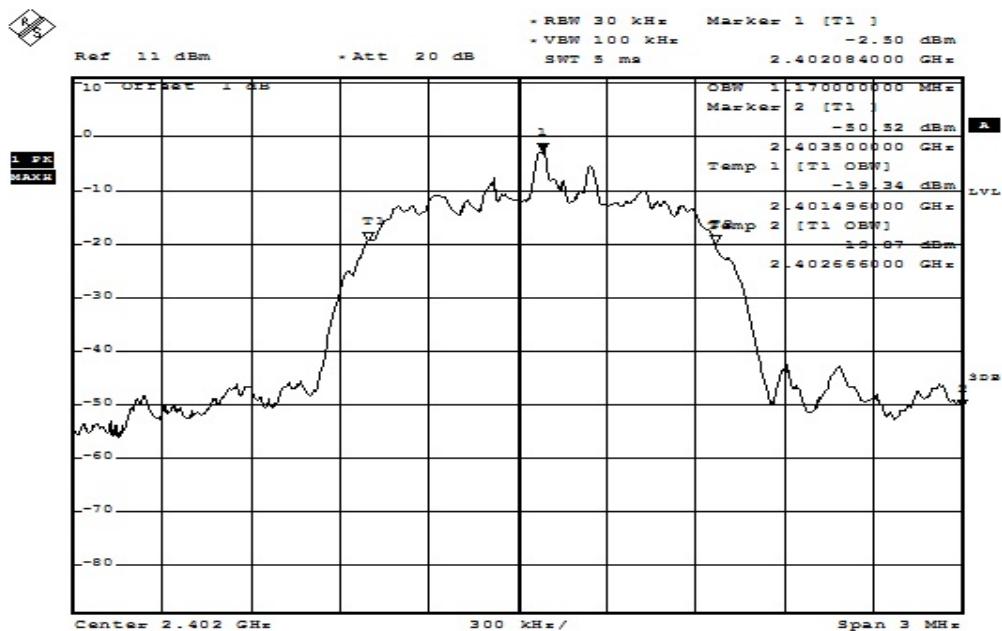
Date: 24.SEP.2014 15:41:21


EDR 2M Mode

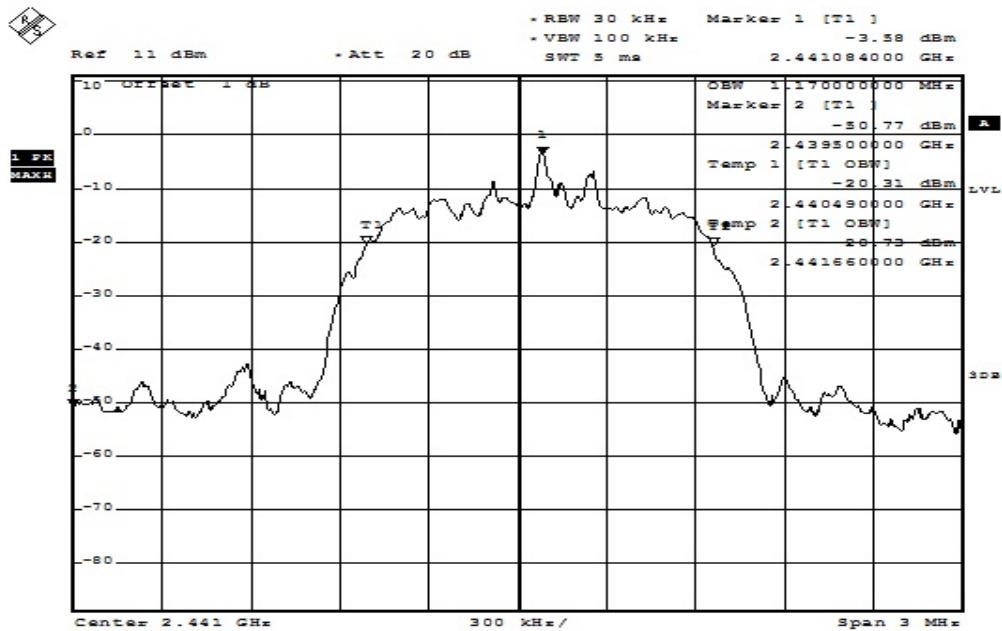
20dB Bandwidth Test Data CH-Low


Date: 24.SEP.2014 16:13:58

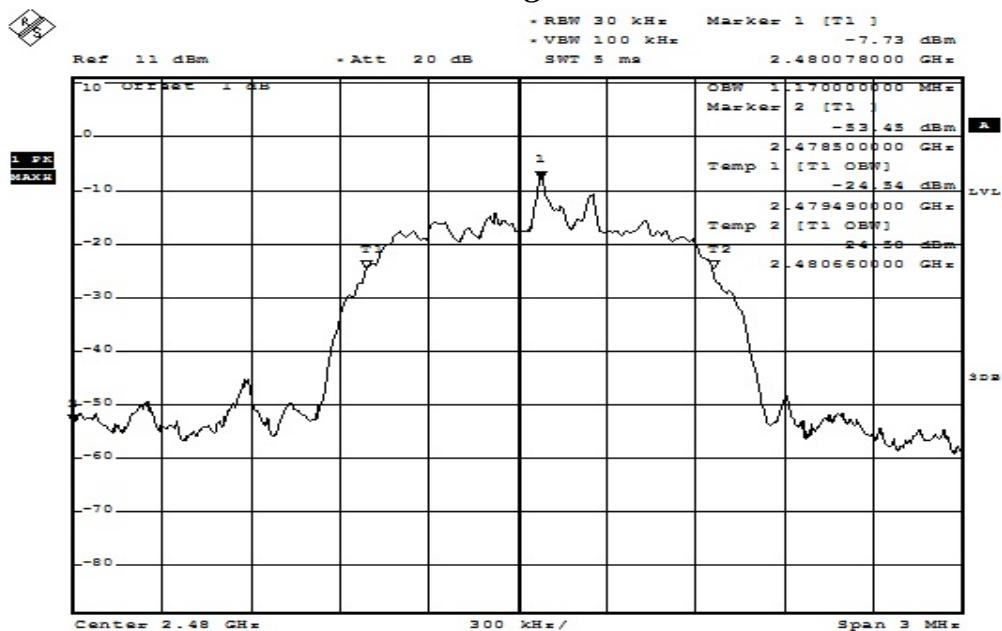
20dB Bandwidth Test Data CH-Mid


Date: 24.SEP.2014 16:13:33

20dB Bandwidth Test Data CH-High

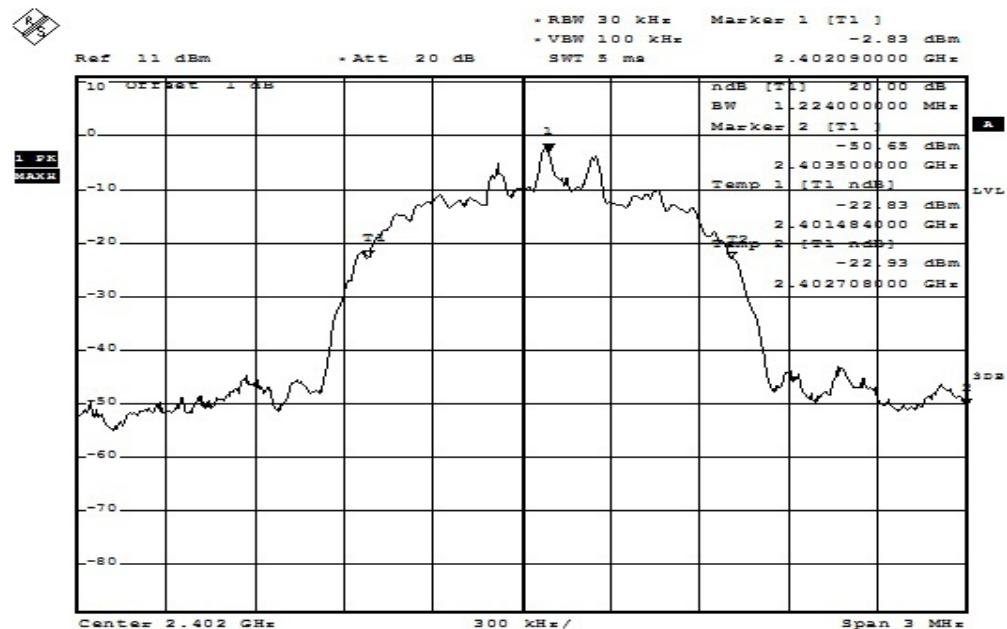

Date: 24.SEP.2014 16:13:03

EDR 2M Mode
99% Bandwidth Test Data CH-Low

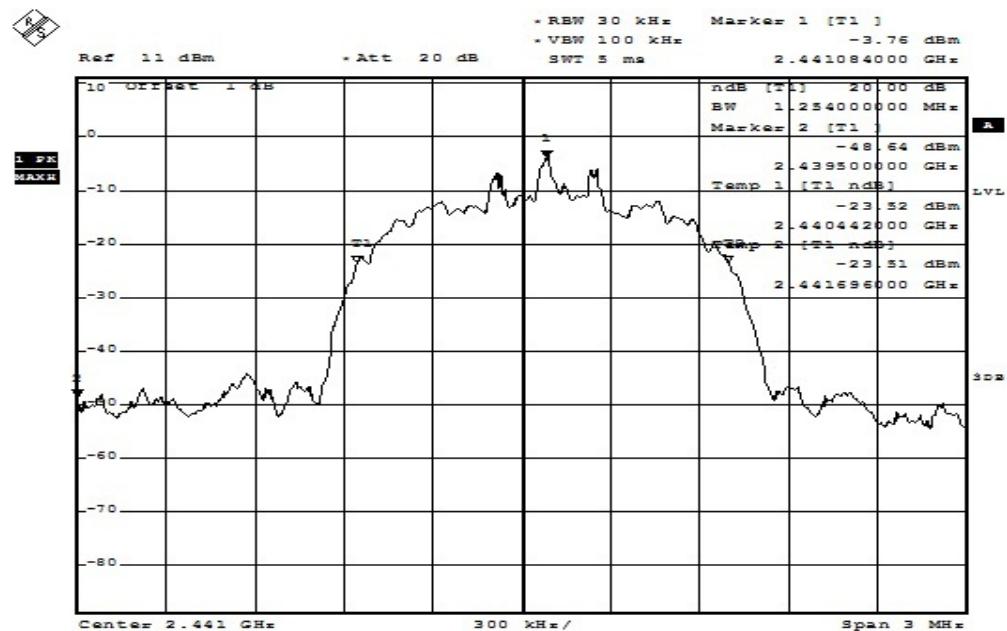

Date: 24.SEP.2014 16:15:30

99% Bandwidth Test Data CH-Mid

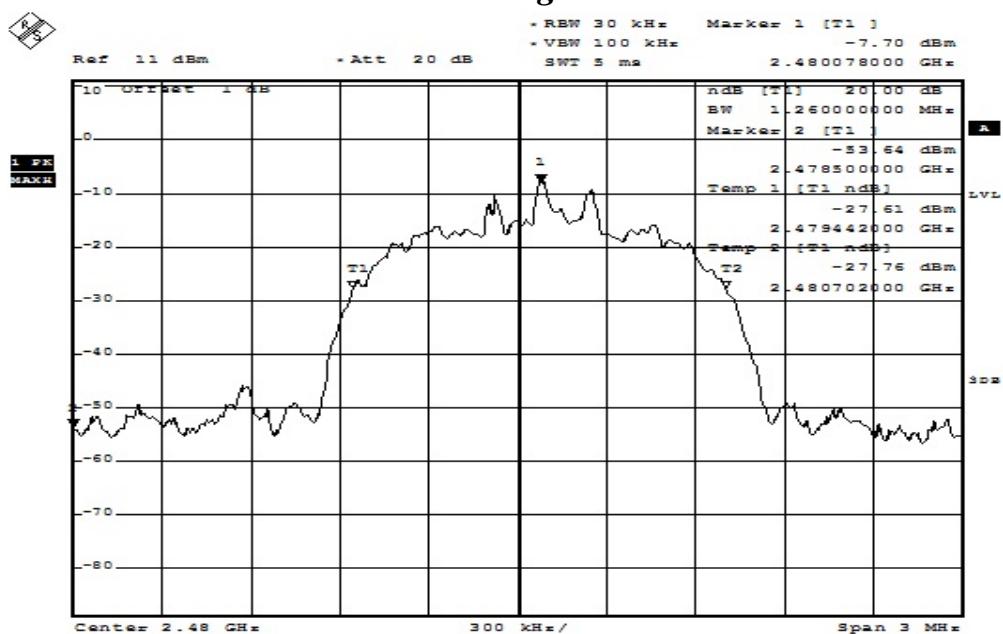
Date: 24.SEP.2014 16:15:59


99% Bandwidth Test Data CH-High

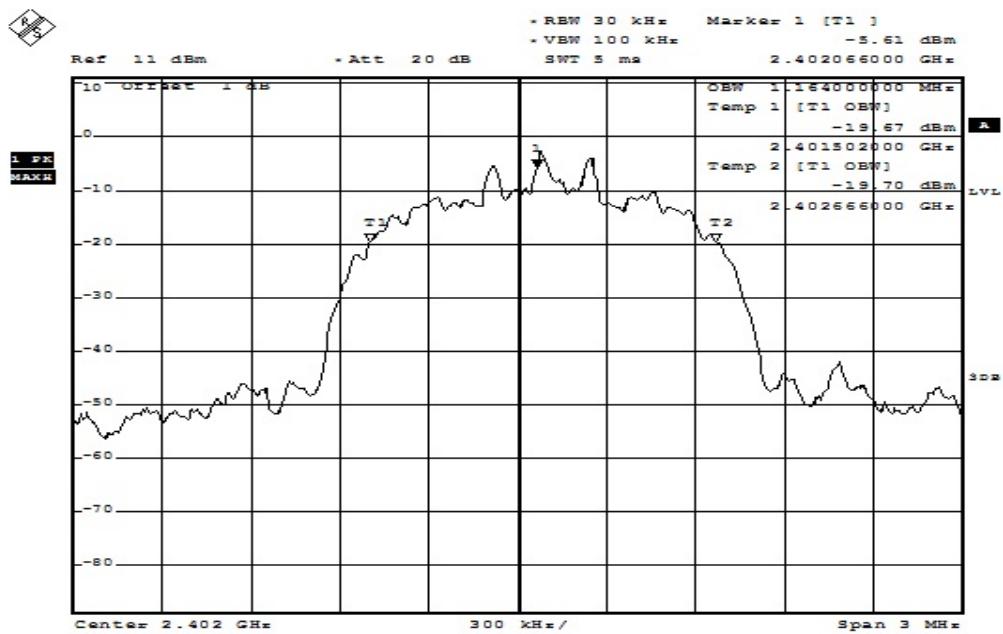
Date: 24.SEP.2014 16:16:25


EDR 3M Mode

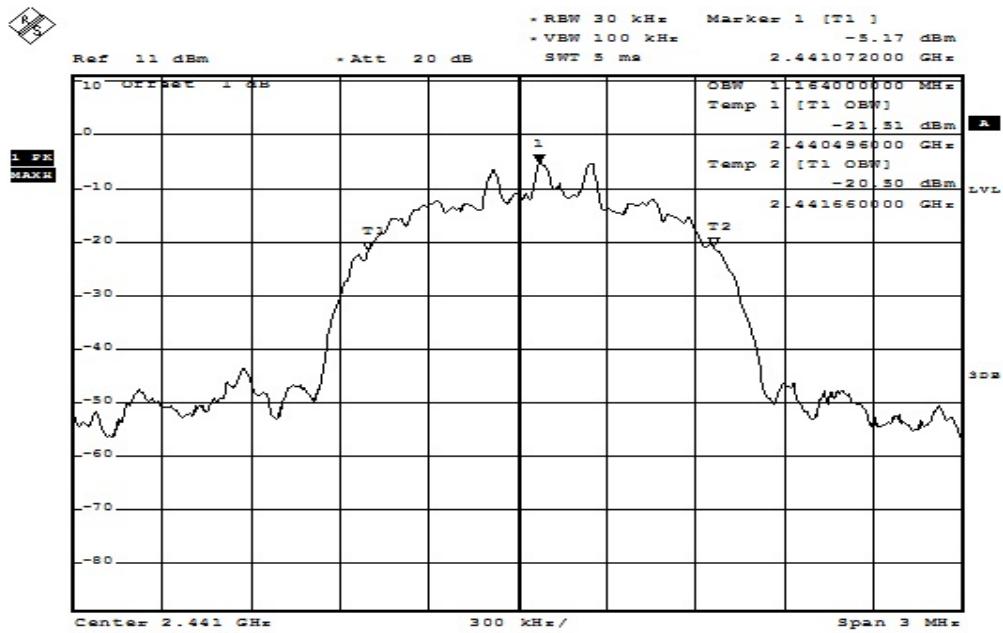
20dB Bandwidth Test Data CH-Low


Date: 24.SEP.2014 16:20:58

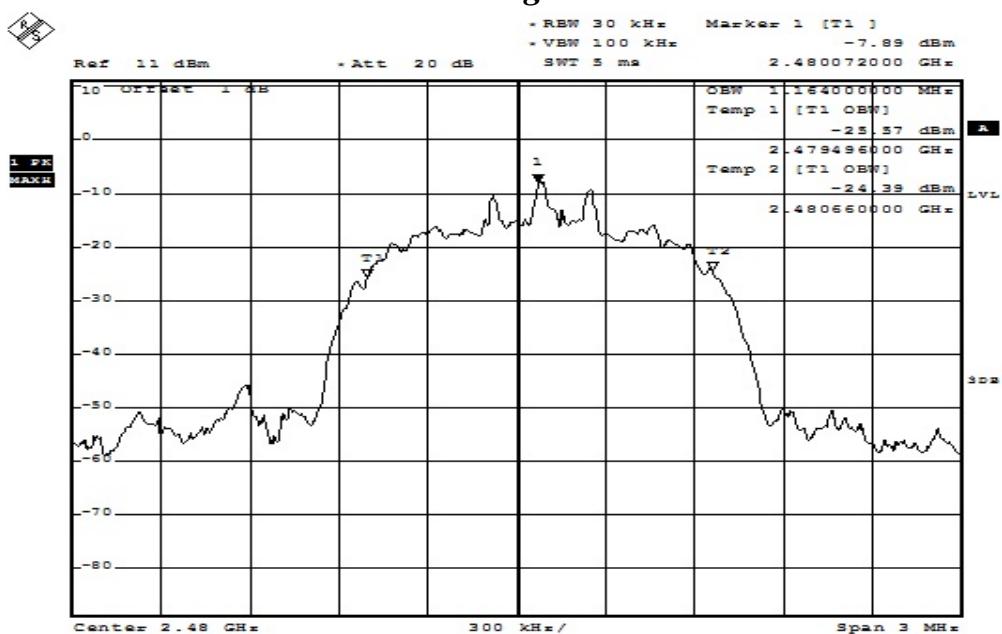
20dB Bandwidth Test Data CH-Mid


Date: 24.SEP.2014 16:21:23

20dB Bandwidth Test Data CH-High


Date: 24.SEP.2014 16:21:49

EDR 3M Mode
99% Bandwidth Test Data CH-Low


Date: 24.SEP.2014 15:50:35

99% Bandwidth Test Data CH-Mid

Date: 24.SEP.2014 15:50:00

99% Bandwidth Test Data CH-High

Date: 24.SEP.2014 15:49:28

13. ANTENNA REQUIREMENT

13.1. Standard Applicable:

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device.

And according to §15.247(c), if transmitting antennas of directional gain greater than 6dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to RSS-GEN 7.1.2, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

13.2. Antenna Connected Construction:

The directional gains of antenna used for transmitting is 0.5dBi, and the antenna type is chip antenna which is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

14. RF EXPOSURE

14.1. Standard Applicable

According to §2.1093 this is a Portable device.

For the radiation source included into the device the output power is taken from a corresponding RF test report. If needed the output power is converted to source based, time-average out power. Finally the output power is compared to FCC and IC low power SAR evaluation exemption level.

FCC SAR test exclusion:

According to KDB 447498 D01 General RF Exposure Guidance v05r02, Appendix A requirement, “The equation and threshold in section 4.3.1 must be applied to determine SAR test exclusion.”

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.²³ The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander (see 5) of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops & tablets etc.²⁴

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, 25 where}$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation 26
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

IC Exemption from Routine Evaluation Limits – SAR Evaluation: RSS 102 Issue 4

SAR evaluation is required if the separation distance between the user and the radiating element of the device is less than or equal to 20 cm, except when the device operates as follows:

above 2.2 GHz and up to 3 GHz inclusively, and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use and 100 mW for controlled use;

14.2. Measurement Result:

FCC:

Frequency (MHz)	Max power (dBm)	tune-up tolerance(dB)	Max power (mW)	Min Distance (mm)	Result	Limit (3.0 @ 1g SAR)
2402	-3.78	2	0.663743	5.00	0.205739	3.0
2440	-7.78	2	0.264241	5.00	0.082551	3.0
2480	-4.80	2	0.524807	5.00	0.165294	3.0

$$\text{Max Power(mW)} = 10^{((\text{Max Power(dBm)} + \text{Tune-up tolerance(dB)})/10)}$$

$$\text{Result} = \text{Max Power (mW)} / \text{min. distance(mm)} * \sqrt{f(\text{GHz})}$$

IC:

The Measured Max. conducted output power is -3.78dBm (0.419 mW), e.i.r.p. output power is -3.28dBm (0.47 mW), which is lower than the threshold power level 20mW in RSS 102 issue 4.

The SAR measurement is not necessary.