

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 3 (DTS)

TEST REPORT

For

Cabinet lock

MODEL NUMBER: D6PN-20-0P, D6PN-20-0B, D6PN-30-0P, D6PN-30-0B

REPORT NUMBER: E01A23110826F00801

ISSUE DATE: June 18, 2024

FCC ID: 2ABVZ-D6PN30

IC: 11790A-D6PN30

Prepared for

Security People, Inc. dba Digilock

9 Willowbrook Ct., Petaluma, California 94954, United States

Prepared by

Guangdong GTG Testing Technology Co., Ltd.

1-2/F., Building A, and 1/F., Building B, No. 11, Zongbu 2nd Road, Songshan Lake High-Tech Industrial Development Zone, Dongguan, Guangdong, China

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products.

This report shall not be reproduced, except in full, without the written approval of Guangdong GTG Testing Technology Co., Ltd.

TRF No.: 01-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E01A23110826F00801 Page 2 of 29

Revision History

Rev.	Issue Date	Revisions	Revised By
VO	June 18, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
ANSI C63 10-2013 Clause		None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATT	ATTESTATION OF TEST RESULTS			
2. TES	T METHODOLOGY	6		
3. FAC	ILITIES AND ACCREDITATION	6		
4. CAL	IBRATION AND UNCERTAINTY	7		
4.1.	MEASURING INSTRUMENT CALIBRATION	7		
4.2.	MEASUREMENT UNCERTAINTY	7		
5. EQU	JIPMENT UNDER TEST	8		
5.1.	DESCRIPTION OF EUT	8		
5.2.	CHANNEL LIST	9		
5.3.	Maximum Peak Output Power	9		
<i>5.4.</i>	TEST CHANNEL CONFIGURATION	9		
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9		
<i>5.6</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	10		
5.7.	SUPPORT UNITS FOR SYSTEM TEST	10		
5.8.	SETUP DIAGRAM	10		
6. MEA	ASURING EQUIPMENT AND SOFTWARE USED	11		
7. ANT	ENNA PORT TEST RESULTS	12		
7.1.	Conducted Output Power	12		
7.2.	6dB Bandwidth and 99% Occupied Bandwidth	13		
7.3.	Power Spectral Density	15		
7.4.	Conducted Band edge and spurious emission	16		
7.5.	Duty Cycle	18		
8. RAD	NATED TEST RESULTS	19		
9. ANT	ENNA REQUIREMENT	25		
10.	AC POWER LINE CONDUCTED EMISSION	27		
11	BHOTOGRAPHS OF TEST CONFIGURATION	20		

REPORT NO.: E01A23110826F00801 Page 5 of 29

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Security People, Inc. dba Digilock

Address: 9 Willowbrook Ct., Petaluma, California 94954, United States

Manufacturer Information

Company Name: Security People, Inc. dba Digilock

Address: 9 Willowbrook Ct., Petaluma, California 94954, United States

EUT Information

Product Description: Cabinet lock

Model: D6PN-30-0B, D6PN-20-0P Series Model: D6PN-20-0B, D6PN-30-0P

Brand: Digilock April 23, 2024 Sample Received Date:

Sample Status: Normal

Sample ID: A23110826 007, A23110826 008 Date of Tested: April 24, 2024 to April 25, 2024

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 3 (DTS)	Pass		

Prepared By:

Checked By:

Rock Ning Project Engineer Testing Te

Approved By

Tiger Xu

Laboratory Manager

Dyson Dai

Laboratory Leader

Das

REPORT NO.: E01A23110826F00801 Page 6 of 29

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 3 (DTS)

3. FACILITIES AND ACCREDITATION

Test Location	Guangdong GTG Testing Technology Co., Ltd. 1-2/F., Building A, and 1/F., Building B, No. 11, Zongbu 2nd Road, Songshan Lake High-Tech Industrial Development Zone, Dongguan, Guangdong, China
Accreditation Certificate	A2LA (Certificate No.: 4422.01) Guangdong GTG Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1230) Guangdong GTG Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment subject to Supplier's Declaration of Conformity (SDoC) and Certification rules ISED (Company No.: 22768) Guangdong GTG Testing Technology Co., Ltd. has been registered and fully described in a report filed with ISED. The Company Number is 22768 and the test lab Conformity Assessment Body Identifier (CABID) is CN0079.

Note: All tests measurement facilities use to collect the measurement data except Radiated Immunity & Conducted Immunity are located at 1-2/F., Building A, and 1/F., Building B, No. 11, Zongbu 2nd Road, Songshan Lake High-Tech Industrial Development Zone, Dongguan, Guangdong, China.

REPORT NO.: E01A23110826F00801 Page 7 of 29

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
		9 kHz-30 MHz: ± 0.95 dB
Conducted Spurious Emission	1.96	30 MHz-1 GHz: ± 1.5 dB
Conducted Opunious Enhancem	1.00	1GHz-12.75GHz: ± 1.8 dB
		12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.36
Radiated emissions	9 kHz ~ 30 MHz	2	4.59
Radiated emissions	30 MHz ~ 1 GHz	2	4.26
Radiated emissions	1 GHz ~ 18 GHz	2	5.69
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E01A23110826F00801 Page 8 of 29

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Cabinet lock	
Model		D6PN-30-0B, D6PN-20-0P	
Series Model		D6PN-20-0B, D6PN-30-0P	
Difference		D6PN-20-0P, D6PN-20-0B: Common RFID + LEGIC Processor D6PN-30-0B, D6PN-30-0P: Common RFID + LEGIC Processor +HID SE protocol chip (The full test were performed on the model D6PN-30-0B, with additional differential tests added on model D6PN-20-0P)	
EUT Classification		Class B	
Hardware Version	n	V1.0	
Software Version		V1.0	
Ratings		DC 12V	
Davier County AC		/	
Power Supply DC		12V	
Note		1. Model D6PN-30-0B, D6PN-20-0P, D6PN-20-0B, D6PN-30-0P for FCC ID 2. Model D6PN-30-0B, D6PN-20-0P for IC	

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	5.0
Type of Modulation:	GFSK
Number of Channels:	40
Channel Separation:	2 MHz
Maximum Peak Power:	0.29 dBm
Antenna Type:	PCB Antenna
Antenna Gain:	-10.29dBi
EUT Test software:	nRF Connect for Desktop

REPORT NO.: E01A23110826F00801 Page 9 of 29

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/
10	2422	21	2444	32	2468	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
LE 1M	2402 ~ 2480	0-39[40]	0.29	-10.00

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
LE 1Mbps	CH 0(Low Channel), CH 19(MID Channel), CH 39(High Channel)	2402 MHz, 2440 MHz, 2480 MHz

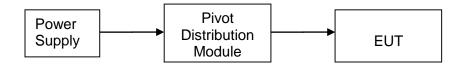
5.5. THE WORSE CASE POWER SETTING PARAMETER

The	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band				
Test Softwar	Test Software Version nRF Connect for Desktop				
Modulation	Transmit	Test Software setting value			
Type	Antenna Number	CH 0 CH 19 CH 39			
GFSK(1Mbps)	1	8 8 8			

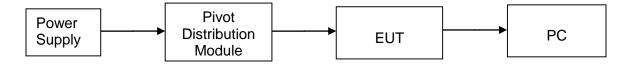
REPORT NO.: E01A23110826F00801 Page 10 of 29

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

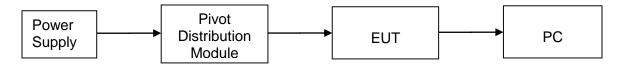
Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PCB Antenna	-10.29


Test Mode	Transmit and Receive Mode	Description
LE 1Mbps	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.7. SUPPORT UNITS FOR SYSTEM TEST


Equipment	Manufacturer	Model No.
Power Supply	/	GST220A12-C6P
Pivot Distribution Module	/	PB-D6PN-X-0X
PC	Lenovo	T14

5.8. SETUP DIAGRAM


AC conducted emission:

Radiated Emission:

RF conducted:

TRF No.: 01-E001-0B

REPORT NO.: E01A23110826F00801 Page 11 of 29

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of RF Conducted							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Spectrum Analyzer	Rohde & Schwarz	FSV40N	102257	2023-09-18	2024-09-18		
WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-12-13	2024-12-13		
MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-12-13	2024-12-13		
EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2024-05-09	2025-05-08		
RF Power detector box	MWRF-test	MW100-PSB	MW220912	2023-12-13	2024-12-13		
Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111	2023-12-13	2024-12-13		
Radio Frequency control box	MWRF-test	MW200-RFCB 2#	/	2023-12-13	2024-12-13		
RF Test Software	MWRF-test	MTS 8310(V.3.0)	N/A	N/A	N/A		

Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100302	2024-05-09	2025-05-08	
Pre-Amplifier	Anritsu	MH648A	M57886	2024-05-09	2025-05-08	
Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-1290	2021-11-11	2024-11-11	
Test Software	Farad	EZ-EMC 1.1.4.2	N/A	N/A	N/A	

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40N	101413	2023-12-13	2024-12-13
Low noise Amplifiers	A-INFO	LA1018N4009	J1013130524001	2024-05-09	2025-05-08
Horn antenna	A-INFO	LB-10180-SF	J2031090612123	2022-05-14	2025-05-14
Pre-Amplifier	HzEMC	HPA-184057	HYPA21004	2024-05-09	2025-05-08
DRG Horn	ETS	3116C	00246265	2022-03-28	2025-03-28
Test Software	Farad	EZ-EMC 1.1.4.2	N/A	N/A	N/A

Test Equipment of Conducted emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
LISN	ROHDE&SCHW ARZ	ENV216	101413	2023-09-18	2024-09-18	
EMI Test Receiver	ROHDE&SCHW ARZ	ESCI	101358	2024-05-09	2025-05-08	
Test Software	Farad	EZ-EMC 1.1.4.2	N/A	N/A	N/A	

REPORT NO.: E01A23110826F00801 Page 12 of 29

7. ANTENNA PORT TEST RESULTS

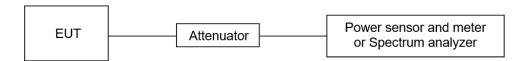
7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3						
Section	Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.9.1.


Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	≥DTS bandwidth
VBW	≥3×RBW
Span	≥3×RBW
Trace	Max hold
Sweep time	Auto

Allow trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.1℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section - Appendix A

TRF No.: 01-E001-0B

REPORT NO.: E01A23110826F00801 Page 13 of 29

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5			
ISED RSS-Gen Clause 6.7 99 % Occupied Bandwidth For reporting purposes only. 2400-2483.5						

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

0 1 5	T	
Center Frequency	The center frequency of the channel under test	
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW	
Detector	Peak	
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW	
Trace	Max hold	
Sweep	Auto couple	

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

REPORT NO.: E01A23110826F00801 Page 14 of 29

TEST SETUP

TEST ENVIRONMENT

Temperature	24.1℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section - Appendix A

REPORT NO.: E01A23110826F00801 Page 15 of 29

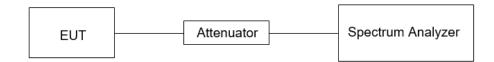
7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.1℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section - Appendix A

TRF No.: 01-E001-0B

REPORT NO.: E01A23110826F00801 Page 16 of 29

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5			

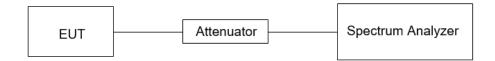
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

Sharige the settings for emission level measurement.		
Span	Set the center frequency and span to encompass frequency range to be measured	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
measurement points	≥span/RBW	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

REPORT NO.: E01A23110826F00801 Page 17 of 29

TEST SETUP

TEST ENVIRONMENT

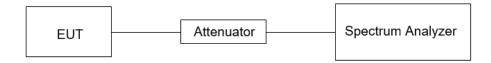
Temperature	24.1℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section - Appendix A

REPORT NO.: E01A23110826F00801 Page 18 of 29

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.1℃	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section - Appendix A

REPORT NO.: E01A23110826F00801 Page 19 of 29

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	gth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 – 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		
	ds listed in table 7 and in bands above 38.6	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

REPORT NO.: E01A23110826F00801 Page 21 of 29

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

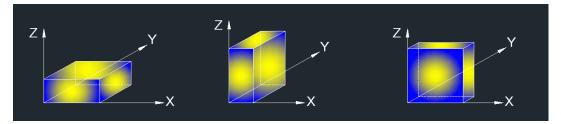
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

TRF No.: 01-E001-0B

REPORT NO.: E01A23110826F00801 Page 22 of 29

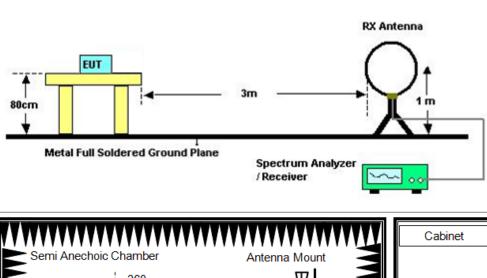
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

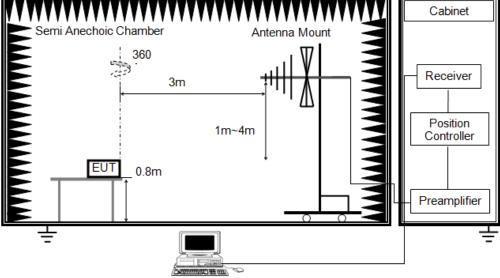
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

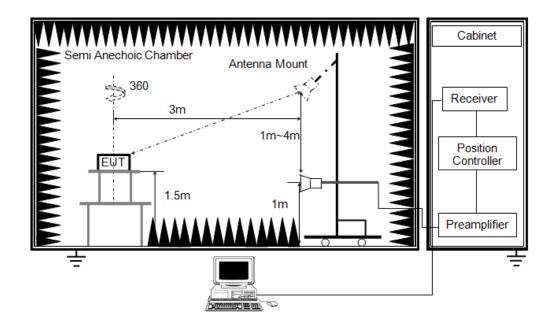

Above 1G

The setting of the spectrum analyser

RBW	1 MHz
IV/BW/	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold


- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.9℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

We tested all modes, The worst case Please refer to section - Appendix A

REPORT NO.: E01A23110826F00801 Page 25 of 29

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Standard	Requirement
RSS-Gen issue 5 6.8.	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location: This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

REPORT NO.: E01A23110826F00801 Page 26 of 29

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

DESCRIPTION

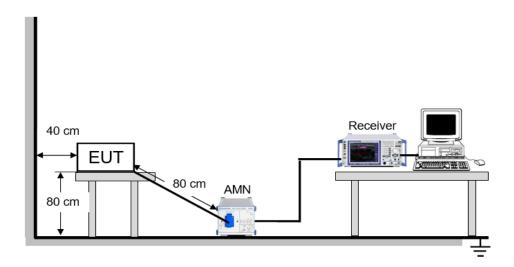
Pass

REPORT NO.: E01A23110826F00801 Page 27 of 29

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

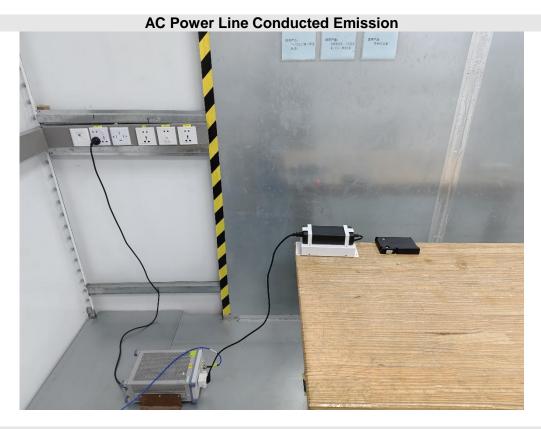
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

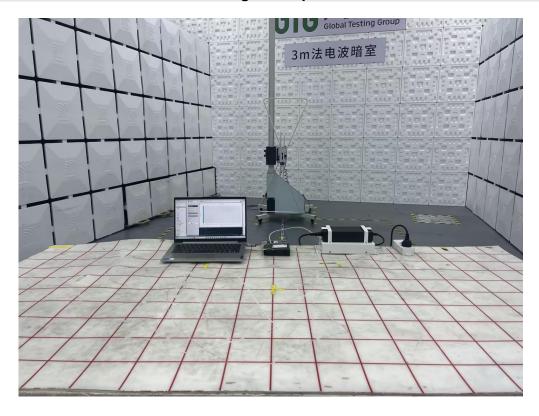
TEST SETUP

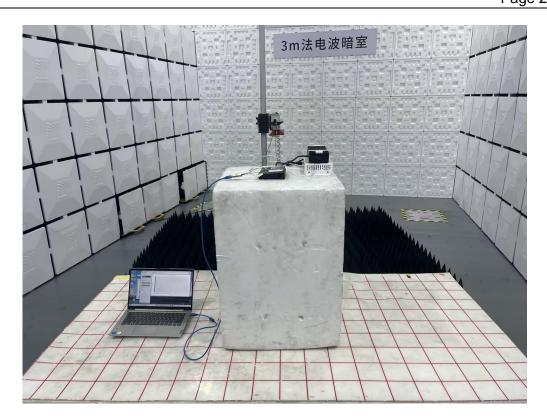
TEST ENVIRONMENT

Temperature	25 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		


TEST RESULTS

Please refer to section - Appendix A


TRF No.: 01-E001-0B


REPORT NO.: E01A23110826F00801 Page 28 of 29

11. PHOTOGRAPHS OF TEST CONFIGURATION

Radiated Band edge and Spurious Emission

END OF REPORT