Maximum Permissible Exposure Report

1. Product Information

FCC ID:	2ABVZ-D6ARN-XXN2		
Product name	Cabinet Lock		
Model number	D6ARN-XXN2, D6ARN-XXNX		
Power supply	DC 6.0V By 4*LR Battery(1825mAh)		
Modulation Type	GFSK for Bluetooth V4.2 (BT LE)		
Modulation Type	ASK for NFC		
Antonna Typo	PCB Antenna for BT		
Antenna Type	Coil Antenna for NFC		
Antenna Gain	0 dBi (maximum) for BT		
Hardware version	80-61ANRFRDL-01		
Software version	/		
Operation frequency	2402MHz-2480MHz for BT		
Operation frequency	13.56 MHz for NFC		
Exposure category	General population/uncontrolled environment		
EUT Type	Production Unit		
Device Type	mobile device		

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0 . The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

3. Limit

3. 1 Refer evaluation method

<u>ANSI C95.1–1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Frequency Electric Field Mag		Power Density	Averaging Time				
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)				
	Limits for Occupational/Controlled Exposure							
0.3 – 3.0 614		1.63	(100) *	6				
3.0 - 30	1842/f	4.89/f	(900/f ²)*	6				
30 – 300	61.4	0.163	1.0	6				
300 – 1500	/	/	f/300	6				
1500 - 100,000	/	/	5	6				

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency Electric Field		Magnetic Field	Power Density	Averaging Time	
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)	
	Limits for O	ccupational/Controll	ed Exposure		
0.3 – 3.0 614		1.63	(100) *	30	
3.0 – 30	824/f	2.19/f	(180/f ²)*	30	
30 – 300	27.5	0.073	0.2	30	
300 – 1500	/	/	f/1500	30	
1500 – 100,000	/	/	1.0	30	

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^2$

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

D6ARN-XXN2 can only use antennas certificated as follows provided by manufacturer;

Internal Identification	Antenna type and antenna number	Operate frequency band	Maximum antenna gain
Antenna 0	PCB Antenna	2402 MHz – 2480 MHz	0 dBi
Antenna 1	Coil Antenna	13.56 MHz	

6. Conducted Power

[BT LE]

Mode	Channel	Frequency (MHz)	Peak Conducted Output Power (dBm)
	0	2402	-0.496
GFSK – BT LE	19	2440	-0.358
	39	2480	-0.391

[NFC]

[IVI C]						
Mode	Channel	Frequency (MHz)	Fundamental Emissions dBuV/m @ 3m			
NFC	1	13.56	62.76			

7. Manufacturing Tolerance

GFSK – BT LE (Peak)							
Channel Channel 0 Channel 19 Channel 39							
Target (dBm)	-1.0	-1.0	-1.0				
Tolerance ±(dB)	1.0	1.0	1.0				

^{*=}Plane-wave equivalent power density

8. Measurement Results

8.1 Standalone MPE Evaluation

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

	Output	power	Antenna	Antenna	Duty	MPE	MPE
Modulation Type	dBm	mW	Gain (dBi)	Gain (linear)	Cycle	(mW/cm ²)	Limits (mW/cm²)
GFSK	0	1.0000	0	1.00	100%	0.0002	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. MPE evaluate distance is 20cm from user manual provide by manufacturer.

8.2 Simultaneous Transmission MPE

The sample support BT modular and NFC modular, BT and NFC share difference antenna, need consider simultaneous transmission;

Maximum Simultaneous transmission SAR Ratio for BT and NFC;

MPE Ratio BT	SAR Ratio _{NFC}	∑MPE ratios	Limit	Results
< 0.1	< 0.3	< 0.4	1.0	PASS

9. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

