

FCC Radio Test Report

FCC ID: 2ABVH-OONA22-1W

Report No. Equipment Model Name Brand Name Applicant	:	BTL-FCCP-3-2305G039 Kiosk OONA22-1W AAVA Aava Mobile Oy
Address	:	Nahkatehtaankatu 2, FI-90130 Oulu, Finland
Radio Function	:	WLAN 2.4 GHz
FCC Rule Part(s) Measurement Procedure(s)	:	FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	:	2023/5/11 2023/6/14 ~ 2023/6/15 2023/6/19

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee, Engineer

areu by

Jerry Chuang, Supervisor

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVISI	ON HISTO	RY	4
1	SUMMA	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
1.4	TABL	E OF PARAMETERS OF TEXT SOFTWARE SETTING	7
2	GENER	AL INFORMATION	8
2.1	DESC	CRIPTION OF EUT	8
2.2	TEST	MODES	10
2.3	BLOC	CK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4	SUPF	PORT UNITS	11
3	RADIAT	ED EMISSIONS TEST	12
3.1	LIMIT		12
3.2	TEST	PROCEDURE	13
3.3	DEVI	ATION FROM TEST STANDARD	13
3.4	TEST	SETUP	13
3.5	EUT	OPERATING CONDITIONS	14
3.6	TEST	RESULT – BELOW 30 MHZ	15
3.7	TEST	RESULT – 30 MHZ TO 1 GHZ	15
3.8	TEST	RESULT – ABOVE 1 GHZ	15
4	OUTPU	TPOWER	16
4.1	LIMIT		16
4.2	TEST	PROCEDURE	16
4.3	DEVI	ATION FROM TEST STANDARD	16
4.4	TEST	SETUP	16
4.5	EUT	OPERATING CONDITIONS	16
4.6	TEST	RESULT	16
5	LIST OF	MEASURING EQUIPMENTS	17
6	EUT TE	ST PHOTO	18
7	EUT PH	OTOS	18
APPEN	DIX A	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	19
APPEN	DIX B	RADIATED EMISSIONS - ABOVE 1 GHZ	22
APPEN	OIX C	OUTPUT POWER	55

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2305G039	R00	Original Report.	2023/6/19	Valid

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	NOTE (3)	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B	Pass	
15.247(a)	Bandwidth	NOTE (3)	Pass	
15.247(b)	Output Power	APPENDIX C	Pass	
15.247(e)	Power Spectral Density	NOTE (3)	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE (3)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) The differences compared with test report BTL-FCCP-3-2102C297(FCC ID: 2ABVH-INARI8C1):
 - 1) Changed product name, model name, display, product size, shell and adapter.
 - 2) Removed part of main board features and battery.
 - 3) Added 2*USB A-type ports, 2*USB Type-C ports and LAN port.
 - 4) Changed the antennas structure and position.

After evaluated, the changes with respect to the original one, only output power and radiated emissions tests need to be verified.

The test records and results please refer to the test report number: BTL-FCCP-3-2102C297, issued date is Apr. 14, 2021, and issued by:

Test Laboratory: BTL Inc.

Address: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China.

Which was accredited by A2LA, accreditation number is 5123.02, with the scopes of cited standards in this test report.

This report is only valid conjunction with the above referenced test report.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

C05		CB08	CB11	CB15	CB16
SR05	\bowtie	SR10			

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cisor} requirement.

A. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
CB21	0.2 GHz ~ 1 GHz	4.72
	1 GHz ~ 6 GHz	5.21
	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

B. Conducted test :

Test Item	U,(dB)
Output power	0.3659

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	23 °C, 52 %	AC 120 V	Mark Wang
Radiated emissions above 1 GHz	23~24 °C, 52~58 %	AC 120 V	Mark Wang
Output Power	24.7 °C, 44 %	AC 120 V	Jay Tien

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	QRCT v4.0.00189.0				
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate	
IEEE 802.11b	12	12	12	1 Mbps	
IEEE 802.11g	12	12.5	12	6 Mbps	
IEEE 802.11n (HT20)	12.5	12	12	MCS 0	
Mode	2422 MHz	2437 MHz	2452 MHz	Data Rate	
IEEE 802.11n (HT40)	11.5	11.5	13	MCS 0	

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

— ·				
Equipment	Kiosk			
Model Name	AAVA			
Brand Name	OONA22-1W			
Model Difference	N/A			
Power Source	DC voltage supplied from AC adapter.			
Power Rating	I/P: 100-240V~ 50/60Hz 1.7A O/P: 24.0V === 3.0A 72.0W			
Products Covered	1* Adapter: J652-2403000DI			
Operation Band	2400 MHz ~ 2483.5 MHz			
Operation Frequency	2412 MHz ~ 2462 MHz			
	IEEE 802.11b: DSSS			
Modulation Technology	IEEE 802.11g: OFDM			
	IEEE 802.11n: OFDM			
	IEEE 802.11b: 11/5.5/2/1 Mbps			
Transfer Rate	IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps			
	IEEE 802.11n: up to 300 Mbps			
	IEEE 802.11b: 18.32 dBm (0.0679 W)			
Output Power Max	IEEE 802.11g: 20.46 dBm (0.1111 W)			
Output Fower Max.	IEEE 802.11n (HT20): 20.60 dBm (0.1148 W)			
	IEEE 802.11n (HT40): 22.19 dBm (0.1657 W)			
Test Model	OONA22-1W			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n (HT20)							
ChannelFrequency (MHz)ChannelFrequency (MHz)Frequency (MHz)Frequency (MHz)							
01	2412	05	2432	09	2452		
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	08	2447				

(3) Table for Filed Antenna:

Ant.	Brand Name	Model Name	Туре	Connector	Gain (dBi)
1	PulseLarsen	W3006	Chip	N/A	1.94
2	PulseLarsen	W3006	Chip	N/A	1.02

Note:

1) This EUT supports CDD, and all antenna gains are not equal, so Directional gain= $10\log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})^2/N]dBi$, that is Directional gain= $10\log[(10^{1.94/20}+10^{1.02/20})^2/2]dBi=4.50$.

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

(5) Operating Mode and Antenna Configuration

Operating Mode TX Mode	2TX
IEEE 802.11b	V (Ant.1 + Ant. 2)
IEEE 802.11g	V (Ant.1 + Ant. 2)
IEEE 802.11n (HT20)	V (Ant.1 + Ant. 2)
IEEE 802.11n (HT40)	V (Ant.1 + Ant. 2)

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11n (HT40)	09	-
	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions	TX Mode_IEEE 802.11g	01/11	Bondodao
(above 1GHz)	TX Mode_IEEE 802.11n (HT20)		Бапаеаде
	TX Mode_IEEE 802.11n (HT40)	03/09	
	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions	TX Mode_IEEE 802.11g	01/06/11	Hormonio
(above 1GHz)	TX Mode_IEEE 802.11n (HT20)		паппопіс
	TX Mode_IEEE 802.11n (HT40)	03/06/09	
	TX Mode_IEEE 802.11b		
Output Power	TX Mode_IEEE 802.11g	01/06/11	
	TX Mode_IEEE 802.11n (HT20)		-
	TX Mode_IEEE 802.11n (HT40)	03/06/09	

NOTE:

- (1) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
 (2) For radiated spurious emissions below 1 GHz test, the IEEE 802.11n (HT40) Channel 09 is found to be the worst case and recorded.
- (3) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	ADP	UL	J652-2403000DI	N/A	Supplied by test requester.
В	USB 2.5" HDD	AKITIO	Neutrino U3.1	SK21D1621D00 3F	Furnished by test lab.
С	USB 2.5" HDD	AKITIO	Neutrino U3.1	SK21D1621D00 3F	Furnished by test lab.
D	USB 3.0 HDD	WD	WDBC3C0010BS L-0B	WX81A88ALJU C	Furnished by test lab.
Е	USB	KINGSTON	N/A	N/A	Furnished by test lab.
F	NB	HP	TPN-C125	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	0.6m	USB TO TYPE-C	Furnished by test lab.
2	N/A	N/A	2m	RJ45 Cable	Furnished by test lab.
3	N/A	N/A	1.2m	POWER CORD	Supplied by test requester.
4	No	No	0.6m	TypeC to TypeC	Furnished by test lab.
5	No	No	1m	TypeC to TypeC	Furnished by test lab.
6	No	No	0.4m	TypeC to USB	Furnished by test lab.

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	Ш	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	Ш	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector	
Start ~ Stop Frequency	90KHz~110KHz for QP detector	
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector	
Start ~ Stop Frequency	490KHz~30MHz for QP detector	
Start ~ Stop Frequency	30MHz~1000MHz for QP detector	

3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

3.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX A.

3.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX B.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

4 OUTPUT POWER

4.1 LIMIT

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit				
15.247(b)	Maximum Output Power	1 Watt or 30dBm				

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT

Please refer to the APPENDIX C.

5 LIST OF MEASURING EQUIPMENTS

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18		
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6		
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2022/9/28	2023/9/27		
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29		
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2023/3/14	2024/3/13		
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13		
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13		
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23		
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18		
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2023/5/12	2024/5/11		
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2023/5/12	2024/5/11		
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2023/5/9	2024/5/8		
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2023/5/9	2024/5/8		
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13		
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13		
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

Output Power							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/7	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

6 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2305G039-1 (APPENDIX-TEST PHOTOS).

7 EUT PHOTOS

Please refer to document Appendix No.: EP-2305G039-1 (APPENDIX-EUT PHOTOS).

APPENDIX A RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

		LOVOI	1 actor	mont				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	47.1043	44.89	-11.26	33.63	40.00	-6.37	peak	
2	156.0030	44.68	-11.97	32.71	43.50	-10.79	peak	
3	353.3333	48.98	-10.14	38.84	46.00	-7.16	peak	
4	670.0060	37.64	-3.03	34.61	46.00	-11.39	peak	
5	746.3450	40.21	-1.60	38.61	46.00	-7.39	peak	
6	960.0037	36.33	1.39	37.72	54.00	-16.28	peak	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		110.8010	48.64	-15.11	33.53	43.50	-9.97	QP	
2	*	156.0030	49.30	-11.97	37.33	43.50	-6.17	QP	
3		250.0283	52.20	-13.14	39.06	46.00	-6.94	QP	
4		295.2627	49.12	-11.40	37.72	46.00	-8.28	QP	
5		340.5940	48.18	-10.44	37.74	46.00	-8.26	QP	
6		844.2180	35.84	-0.16	35.68	46.00	-10.32	QP	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - ABOVE 1 GHZ

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2345.940	56.79	-5.46	51.33	74.00	-22.67	peak	
2		2345.940	43.71	-5.46	38.25	54.00	-15.75	AVG	
3		2400.000	58.33	-5.37	52.96	74.00	-21.04	peak	No Limit
4	Х	2412.000	100.70	-5.34	95.36	74.00	21.36	peak	No Limit
5	*	2412.000	97.32	-5.34	91.98	54.00	37.98	AVG	No Limit
6		2495.073	56.06	-5.20	50.86	74.00	-23.14	peak	
7		2495.073	43.42	-5.20	38.22	54.00	-15.78	AVG	

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

No	ь. M	1k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		23	68.087	55.28	-5.42	49.86	74.00	-24.14	peak	
2	2	23	68.087	43.11	-5.42	37.69	54.00	-16.31	AVG	
3	3 X	(24	62.000	99.63	-5.26	94.37	74.00	20.37	peak	No Limit
4	*	24	62.000	96.04	-5.26	90.78	54.00	36.78	AVG	No Limit
5	5	25	47.133	56.21	-5.04	51.17	74.00	-22.83	peak	
6	6	25	47.133	43.35	-5.04	38.31	54.00	-15.69	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2345.127	56.28	-5.46	50.82	74.00	-23.18	peak	
2		2345.127	43.65	- 5.46	38.19	54.00	-15.81	AVG	
3		2400.000	73.42	-5.37	68.05	74.00	-5.95	peak	No Limit
4	Х	2412.000	103.64	-5.34	98.30	74.00	24.30	peak	No Limit
5	*	2412.000	93.68	-5.34	88.34	54.00	34.34	AVG	No Limit
6		2501.860	55.67	-5.19	50.48	74.00	-23.52	peak	
7		2501.860	43.78	-5.19	38.59	54.00	-15.41	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2378.380	55.58	-5.40	50.18	74.00	-23.82	peak	
2		2378.380	43.41	-5.40	38.01	54.00	-15.99	AVG	
3	Х	2462.000	99.34	-5.26	94.08	74.00	20.08	peak	No Limit
4	*	2462.000	89.47	-5.26	84.21	54.00	30.21	AVG	No Limit
5		2485.033	60.53	-5.21	55.32	74.00	-18.68	peak	
6		2485.033	43.81	-5.21	38.60	54.00	-15.40	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.827	55.64	- <mark>5</mark> .39	50.25	74.00	-23.75	peak	
2		2389.827	45.19	-5.39	39.80	54.00	-14.20	AVG	
3		2400.000	76.30	-5.37	70.93	74.00	-3.07	peak	No Limit
4	Х	2412.000	102.36	-5.34	97.02	74.00	23.02	peak	No Limit
5	*	2412.000	92.13	-5.34	86.79	54.00	32.79	AVG	No Limit
6		2509.240	56.45	-5.16	51.29	74.00	-22.71	peak	
7		2509.240	43.58	-5.16	38.42	54.00	-15.58	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

1	2370.960	55.82	-5.41	50.41	74.00	-23.59	peak	
2	2370.960	43.61	-5.41	38.20	54.00	-15.80	AVG	
3	X 2462.000	99.10	-5.26	93.84	74.00	19.84	peak	No Limit
4	* 2462.000	89.21	-5.26	83.95	54.00	29.95	AVG	No Limit
5	2484.167	58.35	-5.23	53.12	74.00	-20.88	peak	
6	2484.167	43.98	-5.23	38.75	54.00	-15.25	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2276.147	59.17	-5.58	53.59	74.00	-20.41	peak	
2		2276.147	45.66	-5.58	40.08	54.00	-13.92	AVG	
3		2400.000	64.42	-5.37	59.05	74.00	-14.95	peak	No Limit
4	Х	2422.000	100.45	-5.32	95.13	74.00	21.13	peak	No Limit
5	*	2422.000	91.30	-5.32	85.98	54.00	31.98	AVG	No Limit
6		2488.413	56.34	-5.21	51.13	74.00	-22.87	peak	
7		2488.413	44.57	-5.21	39.36	54.00	-14.64	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2280.027	55.64	-5.57	50.07	74.00	-23.93	peak	
2		2280.027	44.10	-5.57	38.53	54.00	-15.47	AVG	
3	Х	2452.000	97.09	-5.28	91.81	74.00	17.81	peak	No Limit
4	*	2452.000	87.91	-5.28	82.63	54.00	28.63	AVG	No Limit
5		2579.840	56.20	-4.92	51.28	74.00	-22.72	peak	
6		2579.840	44.00	-4.92	39.08	54.00	-14.92	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	43.77	0.59	44.36	74.00	-29.64	peak	
2	*	4824.000	34.58	0.59	35.17	54.00	-18.83	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	43.72	0.59	44.31	74.00	-29.69	peak	
2	*	4824.000	35.36	0.59	35.95	54.00	-18.05	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency	IEEE 802.11b 2437MHz	Test Date Polarization	2023/6/14 Vertical
Temp	24°C	Hum.	58%
30.0 dBuV/m		·	· · · · · · · · · · · · · · · · · · ·
20			
10			
00			
0			
0			
0			
0			
0 1			
0 2			
0 ×			
0			
0.0 1000.000 3550.00 6100	.00 8650.00 11200.00 13	750.00 16300.00 18850.00	21400.00 26500.00 MHz
Readin	g Correct Measure-		

No. M	k. Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4874.000	45.22	0.74	45.96	74.00	-28.04	peak	
2 *	4874.000	33.81	0.74	34.55	54.00	-19.45	AVG	

3TL

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

2 * 4874.000

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

0.74

35.24

54.00

-18.76

AVG

34.50

Test Mode			IEEE			Fest Date	e	2023/6/14		
Tes	Test Frequency Temp		246	62MHz	Polarization	on Ve	Vertical			
			2	24°C			Hum.		58%	
130.0	0 dBu∀/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		× 2								
30		×								
20										
10.0										
10	000.000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300	.00 1885	0.00 21400.00	26500.00 MHz	
. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	4924.000	43.98	0.89	44.87	74.00	-29.13	peak			
2 *	4924.000	35.33	0.89	36.22	54.00	-17.78	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No. M	lk. Fre	q. Level	Facto	r ment	- Limit	Over				
	MH	z dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	4924.00	00 44.62	0.89	45.51	74.00	-28.49	peak			
2 *	4924.00	00 37.89	0.89	38.78	54.00	-15.22	AVG			

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4	4824.000	43.43	0.59	44.02	74.00	-29.98	peak	
2	* 4	4824.000	32.06	0.59	32.65	54.00	-21.35	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2023/6/15
Test Frequency	2437MHz	Polarization	Vertical
Temp	23°C	Hum.	52%
130.0 dBu∀/m			
120			
110			
100			
90			
30			
70			
50			
50 1 X			
40 2			
30 ×			
20			
10.0			
1000.000 3550.00 610	0.00 8650.00 11200.00 13750	.00 16300.00 18850.00 21400.00	26500.00 MHz

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	44.47	0.74	45.21	74.00	-28.79	peak	
2	*	4874.000	32.65	0.74	33.39	54.00	-20.61	AVG	

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

Test Mode	IEEE 802.11g	Test Date	2023/6/15
Test Frequency	2437MHz	Polarization	Horizontal
Temp	23°C	Hum.	52%
120.0 JB-3//-			
13U.U dBuy/m			
120			
110			
100			
90			
30			
70			
50			
50 1			
40 ×			
30 ×			
20			
10.0			
1000.000 3550.00 6100	0.00 8650.00 11200.00 137	50.00 16300.00 18850.00 21400.	00 26500.00 MHz

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4	1874.000	43.66	0.74	44.40	74.00	-29.60	peak	
2	* 4	874.000	32.19	0.74	32.93	54.00	-21.07	AVG	

BIL

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No.	Mk	. Freq.	Level	Factor	measure-	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	45.64	0.89	46.53	74.00	-27.47	peak	
2	*	4924.000	32.83	0.89	33.72	54.00	-20.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2023/6/15
Test Frequency	2462MHz	Polarization	Horizontal
Iemp	23°C	Hum.	52%
130.0 dBuV/m			· · · · · · · · · · · · · · · · · · ·
20			
10			
00			
10			
0			
i0			
i0 1 ×			
0 2			
10 ×			
0			
0.0			
1000.000 3550.00	6100.00 8650.00 11200.00	13750.00 16300.00 18850.00 214	00.00 26500.00 MHz
Rea Mk. Freq. Le	ading Correct Measure- vel Factor ment	Limit Over	
MHz dE	BuV dB dBuV/m	dBuV/m dB Detector Comme	ent
4924 000 43	91 0.89 44.80	74.00 -29.20 peak	

54.00 -20.32 AVG

REMARKS:

2 * 4924.000

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

0.89 33.68

32.79

Test Mode		IEEE 80	2.11n(HT2	20)	T	est Date	•		2023/6/15
Test Frequency	ý	24	12MHz		Po	larizatio	n		Vertical
Temp			23°C			Hum.			52%
130.0 dBuV/m									
120									
110									
100									
90									
80									
70									
60									
50	1								
40	2								
30	×								
20									
10.0									
1000.000 3550.00	6100.0	0 8650.00	11200.00	13750.0	0 16300.0	0 18850	.00 2140	00.00	26500.00 MHz
Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt	

74.00 -28.72

-21.27

54.00

peak

AVG

1

2 * 4824.000

4824.000

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

0.59

0.59

45.28

32.73

44.69

32.14

Iest Mode	IEEE 802.11n(HT20)	Test Date	2023/6/14
Tomp	241210112	Polarization	Horizontai
Temp	24 C	Hum.	30%
120.0 dB-3//m			
120			
110			
100			
90			
30			
70			
50			
50 1			
40 ×			
30 X			
20			
1000.000.2550.00			20500.00 MU-
1000.000 3000.00 610			26000.00 MHZ

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4	824.000	44.08	0.59	44.67	74.00	-29.33	peak	
2	* 4	824.000	32.39	0.59	32.98	54.00	-21.02	AVG	

BIL

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

Test Mode	IEEE 802.11n(HT20)	Test Date	2023/6/15
Test Frequency	2437MHz	Polarization	Vertical
Temp	23°C	Hum.	52%
130.0 dBuV/m			
120			
110			
100			
-			
JU			
80			
70			
50			
50 1			
40			
20 ×			
0			
20			
10.0			
1000.000 3550.00 61	00.00 8650.00 11200.00 1375	0.00 16300.00 18850.00 21400.0	0 26500.00 MHz

No. M	k. Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4874.000	45.24	0.74	45.98	74.00	-28.02	peak	
2 *	4874.000	33.03	0.74	33.77	54.00	-20.23	AVG	

BIL

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mod	de	IEEE 80	2.11n(HT2	0)	Test	t Date		2023/6/15
Test Freque	ency	2437MHz			Pola	rization		Horizontal
Temp			23°C		H	um.		52%
30.0 dBu∀/m	ı							
20								
10								
00								
0								
0								
0								
0								
0	1							
0	2							
0	×							
:0								
0.0	50.00 6100	100 8650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
	Readin	a Correct	Measure-				21100.00	20050.00 1112
Mk. Fre	q. Level	Factor	ment	Limit	Over			
MHz	z dBuV	dB	dBuV/m	dBuV/m	dB De	etector C	omment	

74.00 -29.15 peak

54.00 -20.39 AVG

REMARKS
REMARKS:

1

4874.000

4874.000

3

(1) Measurement Value = Reading Level + Correct Factor.

0.74

0.74

44.85

33.61

(2) Margin Level = Measurement Value - Limit Value.

44.11

32.87

Test Mode	IEEE 802.11n(HT20)	Test Date	2023/6/15
Test Frequency	2462MHz	Polarization	Vertical
Temp	23°C	Hum.	52%
120.0 JD.4/7-			
120			
110			
100			
90			
30			
70			
50			
50 1			
40 X			
30 ×			
20			
10.0			
1000.000 3550.00 6	100.00 8650.00 11200.00 1375	0.00 16300.00 18850.00 21400.0	0 26500.00 MHz

No.	Mł	k. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	44.25	0.89	45.14	74.00	-28.86	peak	
2	*	4924.000	33.04	0.89	33.93	54.00	-20.07	AVG	

BIL

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

No.	Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	43.88	0.89	44.77	74.00	-29.23	peak	
2	*	4924.000	33.25	0.89	34.14	54.00	-19.86	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

Test Mode	IEEE 802.11n(HT40)	Test Date	2023/6/15
Test Frequency	2422MHz	Polarization	Vertical
Temp	23°C	Hum.	52%
120.0 dB. <i>\ta</i>			
120			
110			
90			
30			
70			
60			
50			
1 X			
2			
30 ×			
20			
10.0			
1000.000 3550.00 6100	0.00 8650.00 11200.00 13750	.00 16300.00 18850.00 21400.00	26500.00 MHz

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4844.000	44.25	0.64	44.89	74.00	-29.11	peak	
2	*	4844.000	32.96	0.64	33.60	54.00	-20.40	AVG	

BIL

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT40)	Test Date	2023/6/15
Test Frequency	2422MHz	Polarization	Horizontal
Temp	23°C	Hum.	52%
130.0 dBu∀/m			
120			
110			
100			
90			
80			
70			
60			
50 1			
40 2			
30 ×			
20			
10.0			
1000.000 3550.00 61	00.00 8650.00 11200.00 1375	0.00 16300.00 18850.00 21400.0	0 26500.00 MHz

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4844.000	44.66	0.64	45.30	74.00	-28.70	peak	
2	*	4844.000	32.91	0.64	33.55	54.00	-20.45	AVG	

BIL

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

Test Mode	IEEE 802.11n(HT40)	Test Date	2023/6/15		
Test Frequency	2437MHz	Polarization	Vertical		
Temp	23°C	Hum.	52%		
•					
30.0 dBuV/m					
20					
10					
00					
n					
0					
0					
:0					
0					
x x					
0 2					
0					
0.0					
1000.000 3550.00 610	0.00 8650.00 11200.00 13750.	00 16300.00 18850.00 21400.	00 26500.00 MHz		

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	44.91	0.74	45.65	74.00	-28.35	peak	
2	*	4874.000	33.37	0.74	34.11	54.00	-19.89	AVG	

BIL

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT40)	Test Date	2023/6/15
Test Frequency	2437MHz	Polarization	Horizontal
Temp	23°C	Hum.	52%
130.0 dBu∀/m			
120			
110			
100			
90			
30			
70			
50			
50			
40 2			
30			
20			
10.0			20500.00 111
1000.000 3550.00 0	5100.00 8650.00 11200.00 13750	1.00 16300.00 18850.00 21400.00	0 26500.00 MHz

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4	874.000	44.06	0.74	44.80	74.00	-29.20	peak	
2	* 4	874.000	33.41	0.74	34.15	54.00	-19.85	AVG	

3īL

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

Test Mode		IEEE 802	2.11n(HT40)	Test	Date		2023/6/15
Test Frequency		2452MHz 23°C			Polar	ization		Vertical
Temp					H		52%	
130.0 dBu∀/m								
120								
110								
100								
30								
30								
70								
50								
50	1 X							
40	2							
30								
20								
10.0								
1000.000 3550.00	6100.00	8650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz

No.	M	k. Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4904.000	44.18	0.82	45.00	74.00	-29.00	peak	
2	*	4904.000	33.45	0.82	34.27	54.00	-19.73	AVG	

BIL

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	ode	IEEE 80)2.11n(HT40)	Test	Date		2023/6/15
Test Frequ	uency	2452MHz			Polar	ization		Horizontal
Temp)	23°C			H		52%	
130.0 dBuV/	m							
120								
110								
100								
90								
30								
70								
60								
50	1 ×							
40	2 X							
30	^							
20								
10.0	550.00 6100	.00 8650.00) 11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
Mk. Fre	Readir eq. Level	ig Correct Factor	Measure- ment	Limit	Over			
MF	Hz dBuV	dB	dBuV/m d	IBuV/m	dB De	etector C	omment	

1		4904.000	44.86	0.82	45.68	74.00	-28.32	peak
2	*	4904.000	33.61	0.82	34.43	54.00	-19.57	AVG

BIL

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX C OUTPUT POWER

BIL

Test Mode	IEEE 802.11b_Ar	it.1		Tested Date	2023/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	14.97	0.0314	30.00	1.0000	Complies
2437	15.55	0.0359	30.00	1.0000	Complies
2462	14.82	0.0303	30.00	1.0000	Complies
Test Mode	IEEE 802.11b_Ar	t.2		Tested Date	2023/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	15.46	0.0352	30.00	1.0000	Complies
2437	14.88	0.0308	30.00	1.0000	Complies
2462	15.75	0.0376	30.00	1.0000	Complies
Test Mode	IEEE 802.11b_To	tal		Tested Date	2023/6/14
			Limit	Limit	
Frequency (MHz)	(dBm)	Conducted Power (W)	(dBm)	(W)	Result
Frequency (MHz) 2412	(dBm) 18.23	(W) 0.0666	(dBm) 30.00	(W) 1.0000	Result Complies
Frequency (MHz) 2412 2437	Conducted Power (dBm) 18.23 18.24	Conducted Power (W) 0.0666 0.0667	(dBm) 30.00 30.00	(W) 1.0000 1.0000	Result Complies Complies

Test Mode	IEEE 802.11g_An	t.1		Tes	sted Date	202	23/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)		Limit (W)		Result
2412	17.44	0.0555	30.00		1.0000		Complies
2437	17.76	0.0597	30.00		1.0000		Complies
2462	17.19	0.0524	30.00		1.0000		Complies
Test Mode	IEEE 802.11g_An	t.2		Tes	sted Date	202	23/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)		Limit (W)		Result
2412	17.35	0.0543	30.00		1.0000		Complies
2437	17.11	0.0514	30.00		1.0000		Complies
2462	17.55	0.0569	30.00		1.0000		Complies
						_	
Test Mode	IEEE 802.11g_To	tal		Tes	sted Date	202	23/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)		Limit (W)		Result
2412	20.41	0.1098	30.00		1.0000		Complies
2437	20.46	0.1111	30.00		1.0000		Complies
	00.00	0.1002	20.00		1 0000		Complies

Test Mode	IEEE 802.11n (HT	⁻ 20)_Ant.1		Tested Date	2023/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	17.61	0.0577	30.00	1.0000	Complies
2437	16.97	0.0498	30.00	1.0000	Complies
2462	17.27	0.0533	30.00	1.0000	Complies
Test Mode	Test Mode IEEE 802.11n (HT20)_Ant.2			Tested Date	2023/6/14
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	17.57	0.0571	30.00	1.0000	Complies
2437	16.69	0.0467	30.00	1.0000	Complies
2462	17.34	0.0542	30.00	1.0000	Complies
Test Mode	IEEE 802.11n (HT20)_Total			Tested Date	2023/6/14
Frequency	Conducted Power	Conducted Power	Limit	Limit	Result
(MHz)	(dBm)	(VV)	(dBm)	(W)	1 coount
2412	20.60	0.1148	30.00	1.0000	Complies
2437	19.84	0.0964	30.00	1.0000	Complies
2462	20.32	0.1075	30.00	1.0000	Complies

IEEE 802.11n (HT	-40)_Ant.1		Tes	sted Date	2023/	6/14	
Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)		Limit (W)		Result	
19.15	0.0822	30.00		1.0000		Complies	
19.08	0.0809	30.00		1.0000		Complies	
19.04	0.0802	30.00		1.0000		Complies	
Mode IEEE 802.11n (HT40)_Ant.2			Tes	ested Date 202		23/6/14	
Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)		Limit (W)		Result	
18.83	0.0764	30.00		1.0000		Complies	
18.45	0.0700	30.00		1.0000		Complies	
						•	
19.32	0.0855	30.00		1.0000		Complies	
19.32	0.0855	30.00		1.0000		Complies	
19.32	0.0855 -40)_Total	30.00	Tes	1.0000 sted Date	2023/	Complies	
19.32	0.0855 40)_Total	30.00	Tes	1.0000 sted Date	2023/	Complies	
19.32 IEEE 802.11n (HT Conducted Power	0.0855 40)_Total Conducted Power	30.00 Limit	Tes	1.0000 sted Date Limit	2023/	Complies 6/14 Result	
19.32 IEEE 802.11n (HT Conducted Power (dBm)	0.0855 40)_Total Conducted Power (W)	30.00 Limit (dBm)	Tes	1.0000 sted Date Limit (W)	2023/	6/14 Result	
19.32 IEEE 802.11n (HT Conducted Power (dBm) 22.00	0.0855 40)_Total Conducted Power (W) 0.1586	30.00 Limit (dBm) 30.00	Tes	1.0000 sted Date Limit (W) 1.0000	2023/	Complies 6/14 Result Complies	
19.32 IEEE 802.11n (HT Conducted Power (dBm) 22.00 21.79	0.0855 -40)_Total Conducted Power (W) 0.1586 0.1509	30.00 Limit (dBm) 30.00 30.00	Tes	1.0000 sted Date Limit (W) 1.0000 1.0000	2023/	Complies 6/14 Result Complies Complies	
	Conducted Power (dBm) 19.15 19.08 19.04 IEEE 802.11n (HT Conducted Power (dBm) 18.83 18.45	Conducted Power (dBm) Conducted Power (W) 19.15 0.0822 19.08 0.0809 19.04 0.0802 IEEE 802.11n (HT40)_Ant.2 Conducted Power (dBm) 18.83 0.0764 18.45 0.0700	Conducted Power (dBm) Conducted Power (W) Limit (dBm) 19.15 0.0822 30.00 19.08 0.0809 30.00 19.04 0.0802 30.00 IEEE 802.11n (HT40)_Ant.2 Conducted Power (dBm) Conducted Power (W) Limit (dBm) 18.83 0.0764 30.00 18.45 0.0700 30.00	Conducted Power (dBm) Conducted Power (W) Limit (dBm) 19.15 0.0822 30.00 19.08 0.0809 30.00 19.04 0.0802 30.00 IEEE 802.11n (HT40)_Ant.2 Test Conducted Power (dBm) Conducted Power (W) Limit (dBm) 18.83 0.0764 30.00 18.45 0.0700 30.00	IEEE 802.11n (HT40)_Ant.2 Iested Date Conducted Power (dBm) Conducted Power (W) Limit (dBm) Limit (W) 19.15 0.0822 30.00 1.0000 19.08 0.0809 30.00 1.0000 19.04 0.0802 30.00 1.0000 IEEE 802.11n (HT40)_Ant.2 Tested Date Conducted Power (dBm) Conducted Power (W) Limit (dBm) Limit (W) 18.83 0.0764 30.00 1.0000 18.45 0.0700 30.00 1.0000	IEEE 802.11n (HT40)_Ant.2 Tested Date 2023/ Conducted Power (dBm) Conducted Power (W) Limit (dBm) Limit (W) 19.15 0.0822 30.00 1.0000 19.08 0.0809 30.00 1.0000 19.04 0.0802 30.00 1.0000 IEEE 802.11n (HT40)_Ant.2 Tested Date 2023/ Conducted Power (dBm) Conducted Power (W) Limit (dBm) Limit (W) 18.83 0.0764 30.00 1.0000 18.45 0.0700 30.00 1.0000	

End of Test Report