

Report No. : FR890633D

FCC RADIO TEST REPORT

FCC ID	:	2ABVH-INARI8B2
Equipment	:	Tablet
Brand Name	:	AAVA
Model Name	:	INARI8B-LTG-1
Applicant	:	Aava Mobile Oy
		NAHKATEHTAANKATU 2 90130 OULU FINLAND
Manufacturer	:	Aava Mobile Oy
		NAHKATEHTAANKATU 2 90130 OULU FINLAND
Standard	:	FCC Part 15 Subpart C §15.225

The product was received on Sep. 06, 2018 and testing was started from Oct. 31, 2018 and completed on Nov. 01, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Joseph Lin SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History	y of this test report	3
Summ	y of this test report ary of Test Result	4
	eral Description	
1.1	Product Feature of Equipment Under Test	
1.2	Product Specification of Equipment Under Test	
1.3	Modification of EUT	5
1.4	Testing Location	
1.5	Applicable Standards	6
2. Test	t Configuration of Equipment Under Test	7
2.1	Descriptions of Test Mode	
2.2	Connection Diagram of Test System	
2.3	EUT Operation Test Setup	7
3. Test	t Results	8
3.1	Field Strength of Fundamental Emissions and Mask Measurement	
3.2	Radiated Emissions Measurement	
	of Measuring Equipment	
5. Unc	ertainty of Evaluation	
Appen	dix A. Test Results of Radiated Test Items	
A1.	Test Result of Field Strength of Fundamental Emissions	
A2.	Results of Radiated Emissions (9 kHz~30MHz)	

A3. Results of Radiated Emissions (30MHz~1GHz)

Appendix B. Setup Photographs

Appendix C. Original Report

History of this test report

Report No.	Version	Description	Issued Date
FR890633D	01	Initial issue of report	Jan. 08, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.207	AC Power Line Conducted Emissions	Not Required	-
	15.215(c)	20dB Spectrum Bandwidth	Not Required	-
-	2.1049	99% OBW Spectrum Bandwidth	Not Required	-
-	15.225(e)	Frequency Stability	Not Required	-
3.1	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Pass	Max level 54.47 dBµV/m at 13.560 MHz
3.2	15.225(d) 15.209	Radiated Spurious Emissions	Pass	Under limit 9.69 dB at 40.800MHz
-	15.203	Antenna Requirements	Not Required	-

Remark:

1. Not required means after assessing, test items are not necessary to carry out.

 This is a variant report by adding WWAN module. All the test cases were performed on original report which can be referred to Sporton Report Number FR860615D as appendix C. Based on the original report, the Field Strength of Fundamental Emissions and Radiated Spurious Emissions test cases were verified.

Reviewed by: Wii Chang

Report Producer: Polly Tsai

1. General Description

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Tablet
Brand Name	AAVA
Model Name	INARI8B-LTG-1
FCC ID	2ABVH-INARI8B2
	WCDMA/HSPA/LTE/NFC/GNSS
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40
EOT Supports Radios application	WLAN 11ac VHT20/VHT40/VHT80
	Bluetooth BR/EDR/LE
HW Version	DV1
SW Version	Windows 10
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories				
AC Adapter Brand Name PHIHONG Model Name AQ18A-59CFA				
Battery	Brand Name	Aava	Model Name	AMME3735
USB Cable	Brand Name	PHIHONG	Model Name	UES-1001A160-R

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
Antenna Type	Ferrite-Backed Loop Antenna		
Type of Modulation	ASK		

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.	
	03CH07-HY	
Test Engineer	Stan Hsieh	
Temperature	22~24°C	
Relative Humidity	51~53%	

Note: The test site complies with ANSI C63.4 2014 requirement.

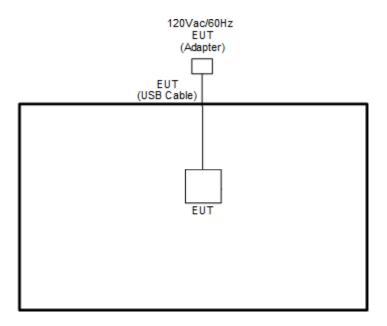
1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- + FCC Part 15 Subpart C §15.225
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode


Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items			
Field Strength of Fundamental Emissions	Radiated Emissions 30MHz~1GHz		
Radiated Emissions 9kHz~30MHz			

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.

2.2 Connection Diagram of Test System

2.3 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 0 cm gap to the EUT.

3. Test Results

3.1 Field Strength of Fundamental Emissions and Mask Measurement

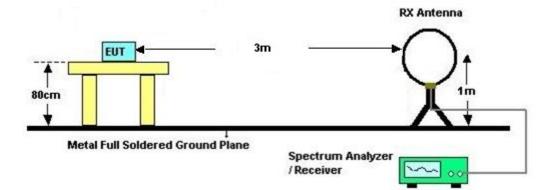
3.1.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225			
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.			
	Field Strength	Field Strength	Field Strength	Field Strength
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m
1.705~13.110	30	29.5	48.58	69.5
13.110~13.410	106	40.5	59.58	80.5
13.410~13.553	334	50.5	69.58	90.5
13.553~13.567	15848	84.0	103.08	124.0
13.567~13.710	334	50.5	69.58	90.5
13.710~14.010	106	40.5	59.58	80.5
14.010~30.000	30	29.5	48.58	69.5

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

TEL : 886-3-327-3456	Page Number	: 8 of 14
FAX : 886-3-328-4978	Issued Date	: Jan. 08, 2019
Report Template No.: BU5-FR15CNFC Version 2.1	Report Version	: 01



3.1.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level ($dB\mu V/m$) = 20 log Emission level ($\mu V/m$).

3.1.4 Test Setup

For radiated emissions below 30MHz

3.1.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix A.

3.2 Radiated Emissions Measurement

3.2.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

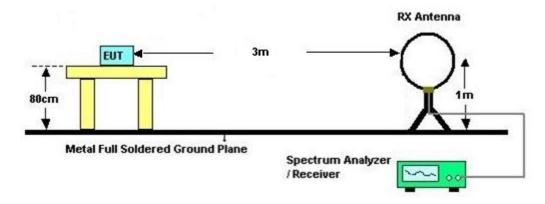
See list of measuring instruments of this test report.

3.2.3 Measuring Instrument Setting

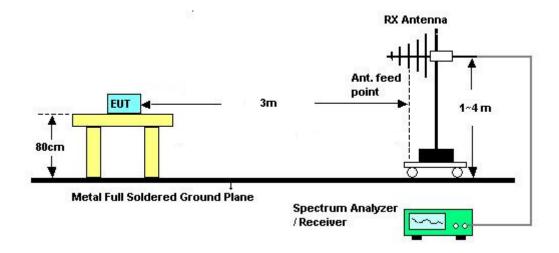
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.2.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.2.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.2.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix A.

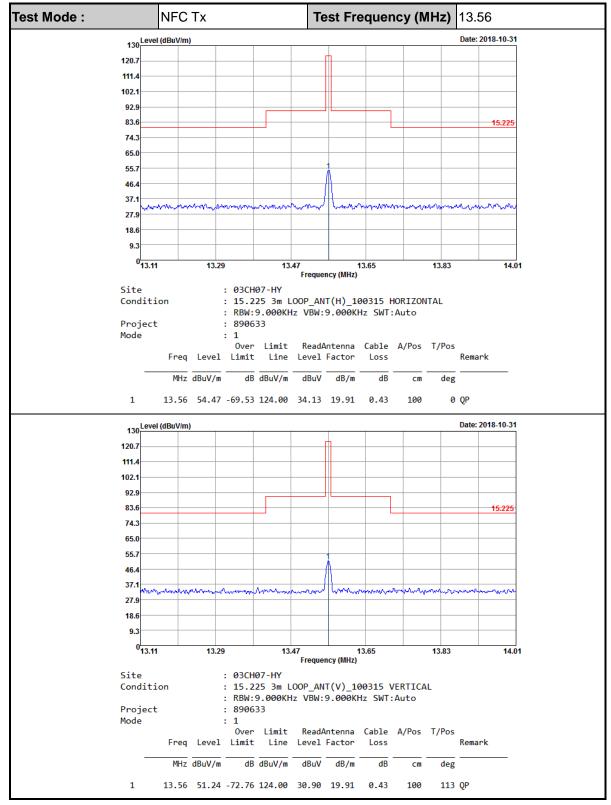
Remark: There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D&0080 0N1D01N-06	35419&03	30MHz to 1GHz	Dec. 18, 2017	Oct. 31, 2018~ Nov. 01, 2018	Dec. 17, 2018	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A (MXE)	MY5329005 3	20Hz to 26.5GHz	Jan. 16, 2018	Oct. 31, 2018~ Nov. 01, 2018	Jan. 15, 2019	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Nov. 10, 2017	Oct. 31, 2018~ Nov. 01, 2018	Nov. 09, 2018	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-001 01800-30-10 P	1590075	1GHz ~ 18GHz	Apr. 25, 2018	Oct. 31, 2018~ Nov. 01, 2018	Apr. 24, 2019	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4, MY28655/4	9KHz~30MHz	Jan. 02, 2018	Oct. 31, 2018~ Nov. 01, 2018	Jan. 01, 2019	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFI FX	MY28655/4, MY24971/4, MY15682/4	30MHz~1GHz	Feb. 27, 2018	Oct. 31, 2018~ Nov. 01, 2018	Feb. 26, 2019	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Oct. 31, 2018~ Nov. 01, 2018	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8 -24	805040046 56H	N/A	N/A	Oct. 31, 2018~ Nov. 01, 2018	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Oct. 31, 2018~ Nov. 01, 2018	N/A	Radiation (03CH07-HY)

5. Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)


Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.7
of 95% (U = 2Uc(y))	5.7

Appendix A. Test Results of Radiated Test Items

A1. Test Result of Field Strength of Fundamental Emissions

Test Mode	: NFC	Тх		Polariz	zation :	Hor	izontal		
1	Level (dBuV	/m)						Date: 2018	10-31
	8.6								
11	7.1								
10	5.7								
	4.3								
	2.9						1	5.209 LIMIT	LINE
	0.0			7					
4	8.6								0
3	7.1				8		9	1	0
	5.7								
	4.3 2.9								
	8.6								
	-200.009	6.007	1:	2.005	18.004	4	24.002		30
	-	-	「 「	-	ncy (MHz)		[
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.00951	41.47	-86.57	128.04	20.41	20.63	0.43	-	-	Average
0.0633	41.66	-69.92	111.58	21.13	20.1	0.43	-	-	Average
0.09226	40.83	-67.47	108.3	20.31	20.09	0.43	-	-	QP
0.12224	40.83	-65.03	105.86	20.33	20.07	0.43	-	-	Average
0.15	41.98	-62.1	104.08	21.49	20.06	0.43	-	-	Average
0.49	41.17	-32.63	73.8	20.75	19.99	0.43	-	-	QP
13.56	54.47	-15.03	69.5	34.13	19.91	0.43	-	-	QP
15.568	36.4	-33.1	69.5	16	19.97	0.43	-	-	QP
22.246	37.67	-31.83	69.5	16.07	20.4	1.2	-	-	QP
28.48	38.79	-30.71	69.5	17.37	20.22	1.2	100	0	QP

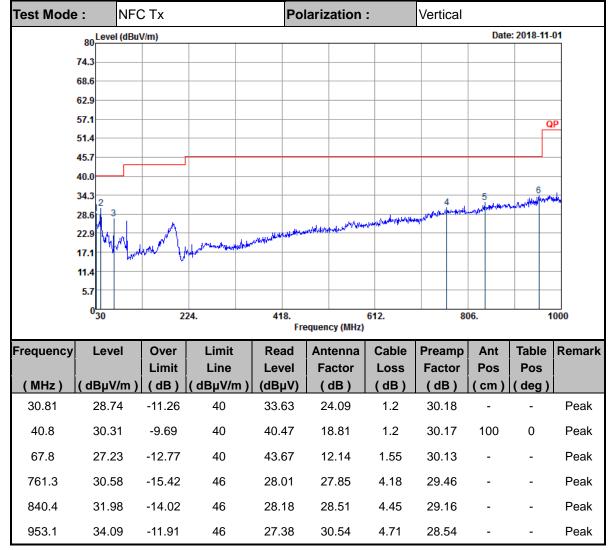
A2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode	: NFC	Тх		Polariz	zation :	Ve	rtical		
1	40 Level (dBuV/	m)						Date: 20	18-10-31
12									
11	7.1								
10	5.7								
9	4.3								
	2.9								
	1.4							15.209 LIN	ALL LINE.
	0.0			8					
	8.6 56 7.1		7				9		10
	5.7								
1	4.3			_					
:	2.9			_					
	8.6								
	-20 <mark>0.009</mark>	6.007	1:	2.005 Frequen	18.00 icy (MHz))4	24.002	·	30
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
<i></i> .		Limit	Line	Level	Factor	Loss	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg	
0.00961	40.2	-87.75	127.95	19.14	20.63	0.43	-	-	Average
0.06144	40.81	-71.03	111.84	20.28	20.1	0.43	-	-	Average
0.09056	41.54	-66.93	108.47	21.02	20.09	0.43	-	-	QP
0.13008	40.42	-64.9	105.32	19.92	20.07	0.43	-	-	Average
0.15306	41.05	-62.86	103.91	20.56	20.06	0.43	-	-	Average
0.49751	40.81	-32.86	73.67	20.39	19.99	0.43	-	-	QP
11.04	36.3	-33.2	69.5	15.94	19.93	0.43	-	-	QP
13.56	51.24	-18.26	69.5	30.9	19.91	0.43	-	-	QP
22.381	37.95	-31.55	69.5	16.34	20.41	1.2	-	-	QP
28.33	38.5	-31	69.5	17.05	20.25	1.2	100	0	QP

Note:

1. 13.56 MHz is fundamental signal which can be ignored.

2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 4. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Test Mode : NFC Tx			Ро	larization	Horizontal						
	80	el (dBuV	//m)						Dat	e: 2018-11-	01
	74.3										
	68.6										_
	62.9										_
	57.1									Q	D
	51.4										-
	45.7										_
	40.0										_
	34.3							4	5	6	**
	28.6	3				. oxfak	- he management	hoursemanne	hali the standard		_
	22.9	Aut	MAN	hullethanne	WHAT-WEAR ANTH	hannonish-theory internet					-
	17.1	$\sqrt{1}$	· · • •	Providence							_
	11.4										_
	5.7										
	0 <mark>30</mark>		2	24.	418. Fr	equency (MHz)	612.	8	06.	1	000
Frequency	Lev	el	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remar
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµ∖	//m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
30	25.5	57	-14.43	40	29.95	24.6	1.2	30.18	-	-	Peak
40.53	26.4	14	-13.56	40	36.6	18.81	1.2	30.17	-	-	Peak
94.8	28.6	63	-14.87	43.5	41.96	15.21	1.55	30.09	-	-	Peak
790	30.2	24	-15.76	46	27.32	27.97	4.32	29.37	-	-	Peak
865.6	31.9	94	-14.06	46	27.41	29	4.58	29.05	-	-	Peak

A3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

Appendix C. Original Report

Please refer to Sporton report number FR860615D as below.

Report No. : FR860615D

FCC RADIO TEST REPORT

FCC ID	: 2	ABVH-INARI8B1
Equipment	: T	ablet
Brand Name	: A	AVA
Model Name	: 11	NARI8B-WIG-1
Applicant	: A	Aava Mobile Oy
	Ν	AHKATEHTAANKATU 2 90130 OULU FINLAND
Manufacturer	: A	Aava Mobile Oy
	Ν	AHKATEHTAANKATU 2 90130 OULU FINLAND
Standard	: F	CC Part 15 Subpart C §15.225

The product was received on Jun. 06, 2018 and testing was started from Jun. 20, 2018 and completed on Jun. 21, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

La

Approved by: Joseph Lin SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

	/ of this test report	
Summa	ary of Test Result	4
1. Gene	eral Description	5
1.1	Product Feature of Equipment Under Test	5
1.2	Product Specification of Equipment Under Test	5
1.3	Modification of EUT	5
1.4	Testing Location	6
1.5	Applicable Standards	6
2. Test	Configuration of Equipment Under Test	7
2.1	Descriptions of Test Mode	7
2.2	Connection Diagram of Test System	
2.3	Table for Supporting Units	9
2.4	EUT Operation Test Setup	9
3. Test	Results	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	
3.6	Antenna Requirements	
4. List	of Measuring Equipment	20
5. Unce	ertainty of Evaluation	21
Appene	dix A. Test Results of Conducted Emission Test	
Append	dix B. Test Results of Conducted Test Items	
B1. 1	Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR860615D	01	Initial issue of report	Sep. 07, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.207	AC Power Line Conducted Emissions	Pass	Under limit 6.77 dB at 13.560MHz
2.2	15.215(c)	20dB Spectrum Bandwidth	Pass	-
3.2	2.1049	99% OBW Spectrum Bandwidth	Reporting only	-
3.3	15.225(e)	Frequency Stability	Pass	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Pass	Max level 52.99 dBµV/m at 13.560 MHz
3.5	15.225(d) 15.209	Radiated Spurious Emissions	Pass	Under limit 10.57 dB at 30.000MHz
3.6	15.203	Antenna Requirements	Pass	-

Reviewed by: Wii Chang Report Producer: Natasha Hsieh

1. General Description

1.1 Product Feature of Equipment Under Test

Product Feature						
Equipment	Tablet					
Brand Name	AAVA					
Model Name	INARI8B-WIG-1					
FCC ID	2ABVH-INARI8B1					
EUT supports Radios application	NFC/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE					
HW Version	RU					
SW Version	Windows 10					
MFD	2018-04-26					
EUT Stage	Identical Prototype					

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories				
AC Adapter	Brand Name	PHIHONG	Model Name	AQ18A-59CFA
Battery	Brand Name	Aava	Model Name	AMME3735
USB Cable	Brand Name	PHIHONG	Model Name	UES-1001A160-R

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range	13.553 ~ 13.567MHz	
Channel Number	1	
20dBW	2.64 KHz	
99%OBW	2.26 KHz	
Antenna Type	Loop Antenna	
Type of Modulation	ASK	

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.		Sporton Site No.	
Test Site No.	TH03-HY	CO05-HY	03CH07-HY
Test Engineer	Louis Chung	Kai-Chun Chu	Stan Hsieh
Temperature	22~24 ℃	21~25 ℃	22~24 ℃
Relative Humidity	53~55%	51~55%	51~53%

Note: The test site complies with ANSI C63.4 2014 requirement.

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.225
- ANSI C63.10-2013

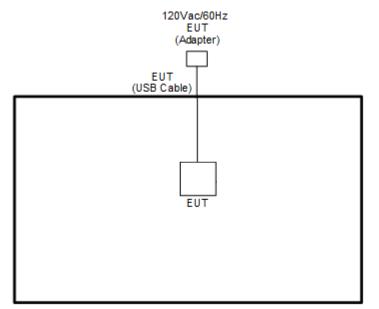
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

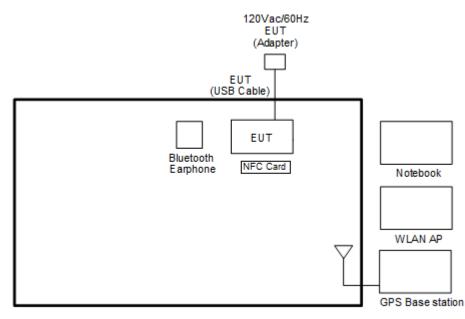
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items		
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions	
20dB Spectrum Bandwidth	Frequency Stability	
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz	


The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.

Test Cases				
AC	Mode 1: WLAN (2.4GHz) Link + Bluetooth Link + USB Cable (Type C) + Adapter +			
Conducted	GPS Rx + NFC On			
Emission				



2.2 Connection Diagram of Test System

<Radiated Emission Mode>

<AC Conducted Emission Mode>

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
6.	NFC Card	Metro Taipei	Easy Card	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 0 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

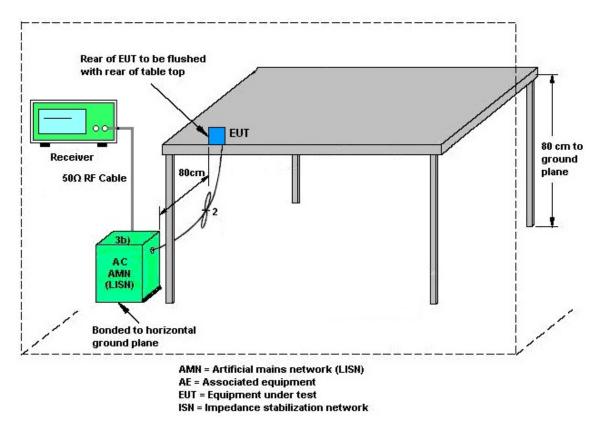
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

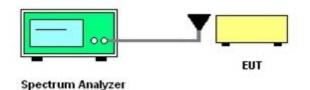
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

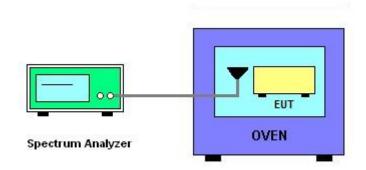
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

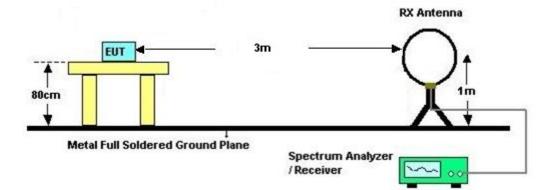
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225				
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.				
Free of Emission (MUT)	Field Strength	Field Strength	Field Strength	Field Strength	
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m	
1.705~13.110	30	29.5	48.58	69.5	
13.110~13.410	106	40.5	59.58	80.5	
13.410~13.553	334	50.5	69.58	90.5	
13.553~13.567	15848	84.0	103.08	124.0	
13.567~13.710	334	50.5	69.58	90.5	
13.710~14.010	106	40.5	59.58	80.5	
14.010~30.000	30	29.5	48.58	69.5	

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

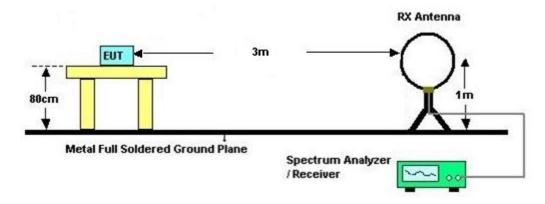
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

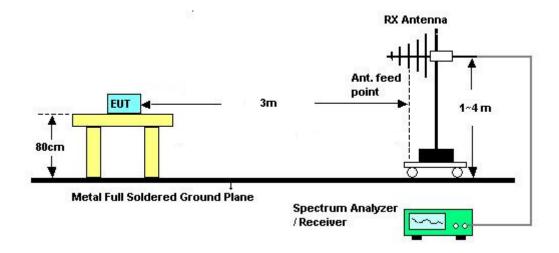
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	AC POWER	AFC-500W	F1040700 11	50Hz~60Hz	Mar. 21, 2018	Jun. 21, 2018	Mar. 20, 2019	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101329	9kHz~30GHz	Jun. 26, 2017	Jun. 21, 2018	Jun. 25, 2018	Conducted (TH03-HY)
Temperature Chamber	ESPEC	SU-641	92013721	-30°C ~70°C	Dec. 06, 2017	Jun. 21, 2018	Dec. 05, 2019	Conducted (TH03-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jun. 20, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	3.6GHz	Dec. 08, 2017	Jun. 20, 2018	Dec. 07, 2018	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 30, 2017	Jun. 20, 2018	Nov. 29, 2018	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jun. 20, 2018	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Jun. 20, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Jun. 20, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D&0080 0N1D01N-06	35419&03	30MHz to 1GHz	Dec. 18, 2017	Jun. 20, 2018 ~ Jun. 21, 2018	Dec. 17, 2018	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Nov. 10, 2017	Jun. 20, 2018 ~ Jun. 21, 2018	Nov. 09, 2018	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	May 21, 2018	Jun. 20, 2018 ~ Jun. 21, 2018	May 20, 2019	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9010A	MY534701 18	10Hz~44GHz	Apr. 17, 2018	Jun. 20, 2018 ~ Jun. 21, 2018	Apr. 16, 2019	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Jun. 20, 2018 ~ Jun. 21, 2018	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Jun. 20, 2018 ~ Jun. 21, 2018	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8 -24	RK-00104 2	N/A	N/A	Jun. 20, 2018 ~ Jun. 21, 2018	N/A	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MX E)	MY532900 53	20Hz to 26.5GHz	Jan. 16, 2018	Jun. 20, 2018 ~ Jun. 21, 2018	Jan. 15, 2019	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/ 4,MY2865 5/4	9KHz~30MHz	Jan. 02, 2018	Jun. 20, 2018 ~ Jun. 21, 2018	Jan. 01, 2019	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/ 4, MY24971/ 4, MY15682/ 4	30MHz~1GHz	Feb. 27, 2018	Jun. 20, 2018 ~ Jun. 21, 2018	Feb. 26, 2019	Radiation (03CH07-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	27
of 95% (U = 2Uc(y))	2.1

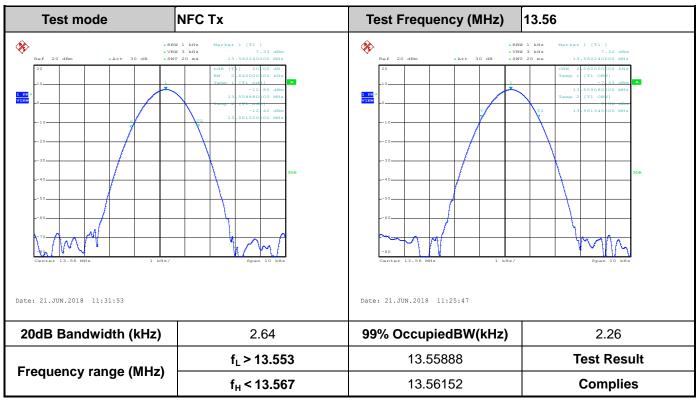
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	24
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.7
--	-----

Appendix A. Test Results of Conducted Emission Test


(MHz) (dBµV) (dBµV) (dBµV) (dB) Line Filter (dB) 0.159000 27.73 55.52 27.79 L1 OFF 19.5 0.159000 42.33 65.52 23.19 L1 OFF 19.5 0.498750 36.37 56.02 19.65 L1 OFF 19.5 0.498750 36.37 56.02 19.65 L1 OFF 19.5 0.678750 31.34 46.00 14.66 L1 OFF 19.6 0.678750 31.34 46.00 19.53 L1 OFF 19.6 0.871500 26.47 46.00 19.53 L1 OFF 19.6 0.811500 38.11 56.00 17.14 L1 OFF 19.6 0.874500 25.31 46.00 20.69 L1 OFF 19.6 0.991500			Chu		Temp	erature :		21~25°	2	
Final Result Frequency QuasiPeak CAverage Limit Margin Line Filter CdBP CdBP Company CdBP Company CdBP Company CdBP Company CdBP	est Engineer	: Kai-Chun	Chu		Relati	ve Humi	dity :	51~55%	6	
Final Result $Final Result$ $Frequency Mission Miss$	est Voltage :	120Vac/	60Hz		Phase):				
Final Result Final Result $Frequency = 16, 13, 36, 36, 37, 56, 30, 36, 36, 37, 56, 36, 36, 36, 36, 36, 36, 36, 36, 36, 3$										
$ \frac{1}{10000000000000000000000000000000000$		90-								
$ \begin{array}{c} I \\ I $	dB 留	70-								
$ \begin{array}{c} \hline \\ \hline $	Level in	50 40		and the second second		-Ave Limita	t Main Po	rts		
Final Result QuasiPeak (dBµV) CAverage (dBµV) Limit (dBµV) Margin (dBµV) Line (dBµV) Fitter (dB 0.159000 27.73 55.52 27.79 L1 OFF 19.5 0.159000 26.78 46.02 19.24 L1 OFF 19.5 0.498750 26.78 46.02 19.24 L1 OFF 19.5 0.678750 26.78 46.00 19.65 L1 OFF 19.5 0.678750 26.47 46.00 19.53 L1 OFF 19.6 0.874500 26.43 46.00 19.53 L1 OFF 19.6 0.874500 25.51 46.00 19.57 L1 OFF 19.6 0.874500 25.51 46.00 19.57 L1 OFF 19.6 0.874500 25.51 46.00 20.45 L1 OFF 19.6 1.07700		-								
150k 300400500 8001M 2M 3M 4M5M6 8 10M 20M 30M Frequency in Hz Final Result Frequency QuasiPeak (dBµV) CAverage (dBµV) Limit (dBµV) Margin (dBµV) Line Filter Con (dB 0.159000 27.73 55.52 27.79 L1 OFF 19.5 0.159000 42.33 65.52 23.19 L1 OFF 19.5 0.498750 26.78 46.02 19.24 L1 OFF 19.5 0.678750 31.34 46.00 14.66 L1 OFF 19.6 0.874500 26.47 46.00 19.57 L1 OFF 19.6 0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 25.31 46.00 20.49 L1 OFF 19.6 0.991500 2		-								
Frequency in Hz Final Result Image: Frequency (dBµV) QuasiPeak (dBµV) CAverage (dBµV) Limit (dBµV) Margin (dBµV) Line Filter Corr 0.159000 27.73 55.52 27.79 L1 OFF 19.5 0.159000 42.33 65.52 23.19 L1 OFF 19.5 0.498750 26.78 46.02 19.24 L1 OFF 19.5 0.498750 26.78 46.00 14.66 L1 OFF 19.5 0.678750 31.34 46.00 14.66 L1 OFF 19.6 0.811500 26.47 46.00 19.53 L1 OFF 19.6 0.811500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 25.51 46.00 20.45 L1 OFF 19.6 0.991500 25.55 46.00		-	400500 8001M	2M 3M 4	H H H H H H H H H H H H H H H H H H H	10M 20	M 30M			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		150K 500								
(MHz) (dBµV) (dBV) (dBV) (dBV) <th></th> <th>1000 000</th> <th></th> <th>Frequency in H</th> <th>z</th> <th></th> <th></th> <th></th> <th></th>		1000 000		Frequency in H	z					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fir	nal Result	QuasiPeak		1	Margin			Corr.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fir	nal Result Frequency (MHz)		CAverage (dBµV)	Limit (dBµV)	(dB)			Corr. (dB)	
0.498750 36.37 56.02 19.65 L1 OFF 19.5 0.678750 31.34 46.00 14.66 L1 OFF 19.6 0.678750 46.41 56.00 9.59 L1 OFF 19.6 0.811500 26.47 46.00 19.53 L1 OFF 19.6 0.811500 38.11 56.00 17.89 L1 OFF 19.6 0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 25.55 46.00 20.45 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 <	Fir	nal Result Frequency (MHz) 0.159000	(dBµV)	CAverage (dBµV) 27.73	Limit (dBµV) 55.52	(dB) 27.79	L1	OFF	(dB) 19.5	
0.678750 31.34 46.00 14.66 L1 OFF 19.6 0.678750 46.41 56.00 9.59 L1 OFF 19.6 0.811500 26.47 46.00 19.53 L1 OFF 19.6 0.811500 38.11 56.00 17.89 L1 OFF 19.6 0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.991500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.358250 <td>Fir</td> <td>nal Result Frequency (MHz) 0.159000 0.159000</td> <td>(dBµV) 42.33</td> <td>CAverage (dBμV) 27.73</td> <td>Limit (dBµV) 55.52 65.52</td> <td>(dB) 27.79 23.19</td> <td>L1 L1</td> <td>OFF</td> <td>(dB) 19.5 19.5</td>	Fir	nal Result Frequency (MHz) 0.159000 0.159000	(dBµV) 42.33	CAverage (dBμV) 27.73	Limit (dBµV) 55.52 65.52	(dB) 27.79 23.19	L1 L1	OFF	(dB) 19.5 19.5	
0.678750 46.41 56.00 9.59 L1 OFF 19.6 0.811500 26.47 46.00 19.53 L1 OFF 19.6 0.811500 38.11 56.00 17.89 L1 OFF 19.6 0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.991500 25.31 46.00 20.69 L1 OFF 19.6 1.077000 34.07 56.00 21.93 L1 OFF 19.6 1.077000 36.90 25.55 46.00 20.45 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.358250	Fir	nal Result Frequency (MHz) 0.159000 0.159000 0.498750	(dBµV) 42.33 	САverage (dBµV) 27.73 26.78	Limit (dBµV) 55.52 65.52 46.02	(dB) 27.79 23.19 19.24	L1 L1 L1	OFF OFF OFF	(dB) 19.5 19.5 19.5	
0.811500 26.47 46.00 19.53 L1 OFF 19.6 0.811500 38.11 56.00 17.89 L1 OFF 19.6 0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.991500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.614750 <td>Fir</td> <td>nal Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750</td> <td>(dBµV) 42.33 36.37</td> <td>САverage (dBµV) 27.73 26.78 </td> <td>Limit (dBµV) 55.52 65.52 46.02 56.02</td> <td>(dB) 27.79 23.19 19.24 19.65</td> <td>L1 L1 L1 L1</td> <td>OFF OFF OFF OFF</td> <td>(dB) 19.5 19.5 19.5 19.5</td>	Fir	nal Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750	(dBµV) 42.33 36.37	САverage (dBµV) 27.73 26.78 	Limit (dBµV) 55.52 65.52 46.02 56.02	(dB) 27.79 23.19 19.24 19.65	L1 L1 L1 L1	OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5	
0.811500 38.11 56.00 17.89 L1 OFF 19.6 0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.991500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750	Fir	nal Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750	(dBµV) 42.33 36.37 	САverage (dBµV) 27.73 26.78 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00	(dB) 27.79 23.19 19.24 19.65 14.66	L1 L1 L1 L1 L1	OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.5 19.5	
0.874500 26.43 46.00 19.57 L1 OFF 19.6 0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.991500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65	Fir	nal Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750	(dBµV) 42.33 36.37 46.41	САverage (dBµV) 27.73 26.78 31.34 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59	L1 L1 L1 L1 L1 L1	OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6	
0.874500 38.86 56.00 17.14 L1 OFF 19.6 0.991500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 25.59 46.00 20.19 L1 OFF 19.6 1.862250	Fir	nal Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500	(dBµV) 42.33 36.37 46.41 	САverage (dBµV) 27.73 26.78 31.34 26.47	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53	L1 L1 L1 L1 L1 L1 L1 L1	OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6	
0.991500 25.31 46.00 20.69 L1 OFF 19.6 0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 25.59 46.00 20.41 L1 OFF 19.6 1.862250	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500	(dBµV) 42.33 36.37 46.41 	CAverage (dBµV) 27.73 26.78 31.34 26.47 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89	L1 L1 L1 L1 L1 L1 L1 L1	OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6	
0.991500 34.07 56.00 21.93 L1 OFF 19.6 1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.874500	(dBµV) 42.33 36.37 46.41 38.11 	CAverage (dBµV) 27.73 26.78 31.34 26.47 26.43	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57	L1 L1 L1 L1 L1 L1 L1 L1 L1	OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6	
1.077000 25.55 46.00 20.45 L1 OFF 19.6 1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.874500 0.874500	(dBµV) 42.33 36.37 46.41 38.11 38.86	CAverage (dBµV) 27.73 26.78 31.34 26.47 26.43 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14		OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6	
1.077000 36.90 56.00 19.10 L1 OFF 19.6 1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.874500 0.874500 0.991500	(dBµV) 42.33 36.37 46.41 38.11 38.86 	CAverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69		OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.198500 26.13 46.00 19.87 L1 OFF 19.6 1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.874500 0.874500 0.991500	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93		OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.198500 35.86 56.00 20.14 L1 OFF 19.6 1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 0.991500 1.077000	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 	CAverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.358250 25.24 46.00 20.76 L1 OFF 19.6 1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.811500 0.874500 0.874500 0.991500 0.991500 1.077000	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 36.90	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.358250 34.96 56.00 21.04 L1 OFF 19.6 1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.874500 0.874500 0.874500 0.991500 1.077000 1.198500	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 36.90 	CAverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.51 25.55 26.13	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.614750 25.81 46.00 20.19 L1 OFF 19.6 1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.811500 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500	(dBµV) 42.33 36.37 46.41 38.86 38.86 34.07 34.07 36.90 35.86	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.614750 34.65 56.00 21.35 L1 OFF 19.6 1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	nal Result Frequency (MHz) 0.159000 0.498750 0.498750 0.678750 0.678750 0.678750 0.811500 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 34.07 35.86 	CAverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.55 26.13 25.24	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.862250 25.59 46.00 20.41 L1 OFF 19.6 1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6	Fir	al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 34.07 35.86 35.86 34.96	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.24 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
1.862250 34.17 56.00 21.83 L1 OFF 19.6 2.431500 25.17 46.00 20.83 L1 OFF 19.6		al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250 1.614750	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 36.90 35.86 34.96 	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.24 25.24 25.81	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04 20.19		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
2.431500 25.17 46.00 20.83 L1 OFF 19.6		al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250 1.614750	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 36.90 35.86 35.86 34.96 34.65	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.24 25.24 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04 20.19 21.35		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
		al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250 1.614750 1.862250	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 36.90 35.86 34.96 34.65 	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.24 25.24 25.81 25.59	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04 20.19 21.35 20.41		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
4.90 000 04.01 00.00 20.00 L1 UFF 19.0		al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250 1.614750 1.862250	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 35.86 35.86 34.96 34.65 34.17	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.24 25.24 25.81 25.59 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04 20.19 21.35 20.41 21.83		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
		al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250 1.614750 1.862250 2.431500	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 35.86 34.96 34.65 34.17 	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.55 26.13 25.24 25.81 25.59 25.17	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04 20.19 21.35 20.41 21.83 20.83		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	
13.560000 43.23 50.00 6.77 L1 OFF 20.0 13.560000 46.12 60.00 13.88 L1 OFF 20.0		al Result Frequency (MHz) 0.159000 0.159000 0.498750 0.498750 0.678750 0.678750 0.811500 0.874500 0.874500 0.991500 1.077000 1.198500 1.358250 1.614750 1.862250 2.431500	(dBµV) 42.33 36.37 46.41 38.11 38.86 34.07 35.86 35.86 34.96 34.65 34.17 32.37	САverage (dBµV) 27.73 26.78 31.34 26.47 26.43 25.31 25.55 26.13 25.24 25.24 25.81 25.59 25.17 	Limit (dBµV) 55.52 65.52 46.02 56.02 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) 27.79 23.19 19.24 19.65 14.66 9.59 19.53 17.89 19.57 17.14 20.69 21.93 20.45 19.10 19.87 20.14 20.76 21.04 20.19 21.35 20.41 21.83 20.83 23.63		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	

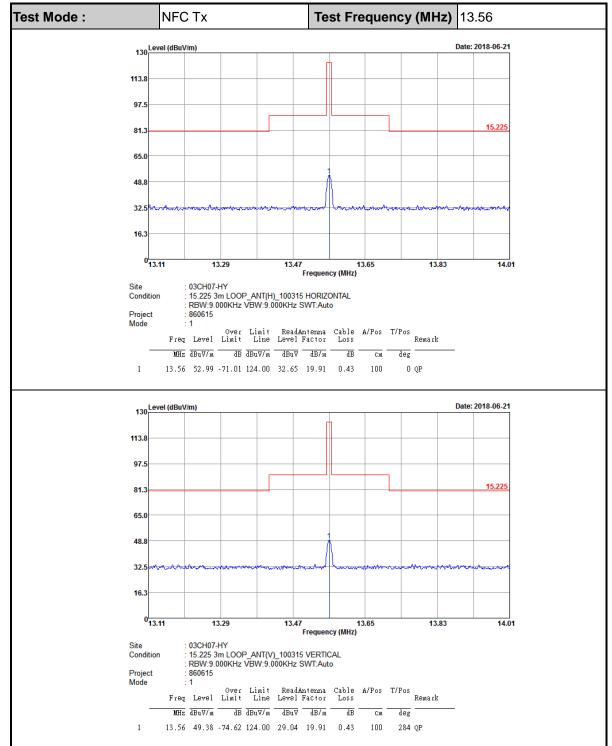
t Engineer	Kain	hun Chu		Temp	Temperature :			
t Engineer :	rai-C			Relati	ive Hum	nidity :	51~55%	
st Voltage :	120Va	ac / 60Hz			Phase	e :		Neutral
	100- 90- 80- 70- 9 9 70- 9 9 70- 9 70- 9 7 9 7 0- 7 9 7 0- 7 9 7 0- 7 7 0- 7 7 0- 7 7 0- 7 7 0- 7 7 7 7				_		Man Ports	
	+							
Final R	0- 15:	0k 300400500		M 3M 4M Jency in Hz	5M6 8 10M	И 20М	30M	
	15 esult uency	QuasiPeak	Frequ CAverage	Limit	Margin			Corr.
Freq (M	15 Result uency (Hz)	QuasiPeak (dBµV)	Frequ CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	(dB)
Freq (M	esult uency Hz)	QuasiPeak (dBµV)	Frequ CAverage (dBµV) 29.46	Limit (dBµV) 55.88	Margin (dB) 26.42	Line	Filter	(dB) 19.5
Freq (M 0.15 0.15	15 Result uency Hz) 52250 52250	QuasiPeak (dBµV) 49.60	Frequ CAverage (dBµV) 29.46	Limit (dBµV) 55.88 65.88	Margin (dB) 26.42 16.28	Line N N	Filter OFF OFF	(dB) 19.5 19.5
Freq (M 0.15 0.15 0.48	15 2esult uency Hz) 52250 5250 5250	QuasiPeak (dBµV) 49.60 	Frequ CAverage (dBµV) 29.46 25.59	Limit (dBµV) 55.88 65.88 46.25	Margin (dB) 26.42 16.28 20.66	Line N N N	Filter OFF OFF	(dB) 19.5 19.5 19.5
Freq (M 0.15 0.15 0.48 0.48	150 esult uency Hz) 52250 52250 5250 5250	QuasiPeak (dBµV) 49.60	Frequ CAverage (dBµV) 29.46 25.59 	Limit (dBµV) 55.88 65.88 46.25 56.25	Margin (dB) 26.42 16.28 20.66 22.83	Line N N N	Filter OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5
Freq (M 0.15 0.15 0.48 0.48 0.67	15 Lesult uency Hz) 2250 2250 5250 5250 6500	QuasiPeak (dBµV) 49.60 33.42 	Frequ CAverage (dBµV) 29.46 25.59	Limit (dBµV) 55.88 65.88 46.25	Margin (dB) 26.42 16.28 20.66 22.83 16.10	Line N N N N	Filter OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.5 19.6
Freq (M 0.15 0.15 0.48 0.48 0.67 0.67	150 esult uency Hz) 52250 52250 5250 5250	QuasiPeak (dBµV) 49.60 	Frequ CAverage (dBµV) 29.46 25.59 29.90	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00	Margin (dB) 26.42 16.28 20.66 22.83	Line N N N	Filter OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5
Freq (M 0.15 0.15 0.48 0.48 0.67 0.67 0.88	15 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50	Frequ CAverage (dBµV) 29.46 25.59 29.90 	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50	Line N N N N N	Filter OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6
Freq (M 0.15 0.15 0.48 0.48 0.67 0.67 0.67 0.88 0.88	15 2250 2250 2250 5250 5250 6500 6500 3500	QuasiPeak (dBµV) 49.60 33.42 41.50 	Frequ (dBµV) 29.46 25.59 29.90 25.45	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55	Line N N N N N N	Filter OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6
Freq (M 0.15 0.15 0.48 0.48 0.67 0.67 0.67 0.88 0.88 0.98	15 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41	Frequ CAverage (dBµV) 29.46 25.59 29.90 25.45 25.45 24.32	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53	Line N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.48 0.48 0.67 0.67 0.88 0.88 0.88 0.98 0.98 0.98 1.18	15 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47 	Frequ CAverage (dBµV) 29.46 25.59 29.90 25.45 	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26	Line N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.15 0.48 0.48 0.67 0.67 0.67 0.88 0.88 0.98 0.98 0.98 1.18	15 2250 2250 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47	Freque (dBµV) 29.46 25.59 29.90 25.45 24.32 24.32 24.74 	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26 24.28	Line N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.15 0.48 0.48 0.67 0.67 0.67 0.88 0.98 0.98 0.98 1.18 1.18 1.14	15 2250 2250 2250 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47 	Frequ CAverage (dBµV) 29.46 25.59 29.90 25.45 24.32 24.32 24.74	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26 24.28 21.51	Line N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.48 0.48 0.48 0.67 0.67 0.88 0.88 0.98 0.98 0.98 1.18 1.18 1.14 1.44	15 2250 2250 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47 31.72	Freque (dBµV) 29.46 25.59 29.90 25.45 24.32 24.32 24.74 24.74 	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26 24.28 21.51 25.69	Line N N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.48 0.48 0.48 0.67 0.67 0.88 0.88 0.98 0.98 0.98 1.18 1.18 1.14 1.44 2.01	15 2250 2250 2250 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47 31.72 30.31 	Freque CAverage (dBµV) 29.46 25.59 29.90 25.45 24.32 24.32 24.74 24.74 24.49 25.29	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26 24.28 21.51 25.69 20.71	Line N N N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.48 0.48 0.48 0.67 0.67 0.88 0.88 0.98 0.98 0.98 1.18 1.18 1.14 1.44 1.44 2.01 2.01	15 2250 2250 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47 31.72 30.31 29.73	Freque CAverage (dBµV) 29.46 25.59 29.90 25.45 24.32 24.74 24.74 24.74 24.49 25.29 	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26 24.28 21.51 25.69 20.71 26.27	Line N N N N N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Freq (M 0.15 0.48 0.48 0.48 0.67 0.67 0.88 0.88 0.98 0.98 0.98 1.18 1.18 1.14 1.44 2.01 2.01 13.50	15 2250 2250 2250 2250 2250 2250 2250 25	QuasiPeak (dBµV) 49.60 33.42 41.50 33.41 31.47 31.72 30.31 	Freque CAverage (dBµV) 29.46 25.59 29.90 25.45 24.32 24.32 24.74 24.74 24.49 25.29	Limit (dBµV) 55.88 65.88 46.25 56.25 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 26.42 16.28 20.66 22.83 16.10 14.50 20.55 22.59 21.68 24.53 21.26 24.28 21.51 25.69 20.71	Line N N N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B2. Test Result of Frequency Stability


B3. Voltage vs. F	requency Stability	Temperature vs. Frequency Stability					
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (°C)	Time	Measurement Frequency (MHz)			
120	13.560160	-20	0	13.560210			
102	13.560200		2	13.560240			
138	13.560200		5	13.560280			
			10	13.560300			
		-10	0	13.560260			
			2	13.560270			
			5	13.560270			
			10	13.560260			
		0	0	13.560280			
			2	13.560280			
			5	13.560280			
			10	13.560280			
		10	0	13.560280			
			2	13.560280			
			5	13.560280			
			10	13.560290			
		20	0	13.560200			
			2	13.560200			
			5	13.560200			
			10	13.560200			
		30	0	13.560160			
			2	13.560160			
			5	13.560150			
			10	13.560160			
		40	0	13.560160			
			2	13.560160			
			5	13.560160			
			10	13.560160			

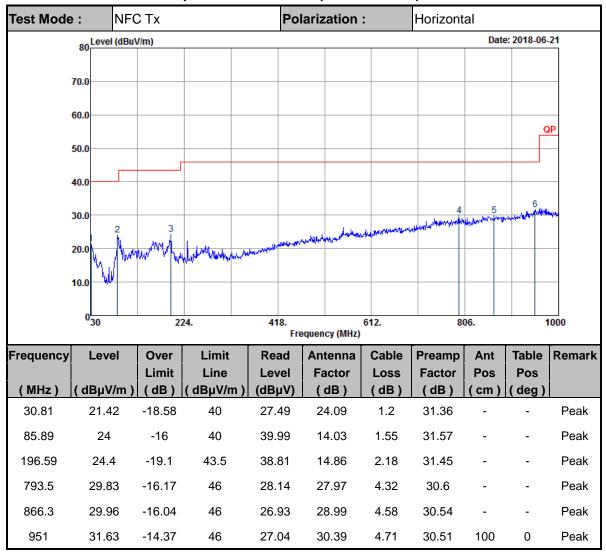
Voltage vs. Frequ	ency Stability	Temperature vs. Frequency Stability					
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (℃)	Time	Measurement Frequency (MHz)			
				Frequency (MHz)			
		50	0	13.560160			
			2	13.560160			
			5	13.560160			
			10	13.560160			
Max.Deviation (MHz)	0.000200	Max.Deviati	on (MHz)	0.000300			
Max.Deviation (ppm)	14.7493	Max.Deviati	on (ppm)	22.1239			
Limit	FS < ±100 ppm	Limi	Limit FS <				
Test Result	PASS	Test Re	PASS				

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

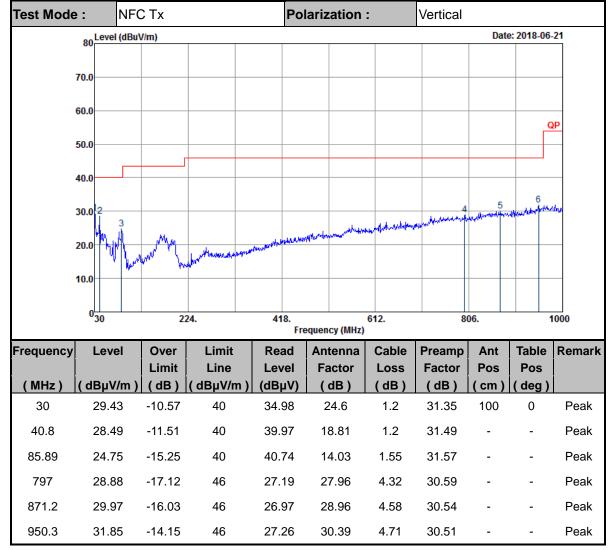
Test Mode	: NFC	Тх		Polariz	ation :	Hor	rizontal			
1	40 Level (dBuV/	m)						Date: 2018	-06-21	
12	0.0									
10	D.0									
8	D.O							15.209 LIMIT		
6	0.0							13.209 LIMIT		
	6			8						
40	0.0			7			9			
2	0.0									
	D.O									
	5.0									
	20 <mark>0.009</mark>	6.007	1:	2.005 Frequen	18.00 cy (MHz)	4	24.002		30	
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Pos	Pos		
(MHz) 0.0091	(dBµV/m) 46.15	(dB) -82.27	(dBµV/m) 128.42	(dBµV) 25.09	(dB) 20.63	(dB) 0.43	(cm) -	(deg)	Average	
0.0624	47.24	-64.46	111.7	26.71	20.1	0.43	_	-	Average	
0.09038	46.42	-62.06	108.48	25.9	20.09	0.43	-	-	QP	
0.11016	43.69	-63.07	106.76	23.17	20.09	0.43	_	_	Average	
0.15	43.18	-60.9	104.08	22.69	20.09	0.43	_	_	Average	
0.13	43.16	-31.34	73.8	22.09	19.99	0.43	- 100	-	QP	
12.928	42.40 34.86	-31.54	69.5	22.04 14.51	19.99	0.43	100	U	QP	
12.928	52.99	-34.64	69.5	32.65	19.92	0.43	-	-	QP	
							-	-		
23.524	36.46	-33.04	69.5	14.79	20.47	1.2	-	-	QP	
29.37	36.71	-32.79	69.5	15.45	20.06	1.2	-	-	QP	

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)


						Polarization :				Vertical				
	140	(dBuV	/m)						1			Date	2018-0)6-21
12	0.0													
10	0.0													
8	0.0											15.209		LINE
6	0.0	J					8							
	0.0						Ĵ					-0		10
	0.0				Í							Ĭ		
2	0.0													
	0.0													
	-20 <mark>0.009</mark>		6.00)7		12.00		18 ency (MHz)	.004		24.00)2		30
Frequency	Le	vel	Over	L	imit		Read	Antenr	na Ca	ble	Ant	Ta	ble	Remark
/ 			Limit		ine		_evel	Facto		ss	Pos		os	
(MHz) 0.00971	(ав µ 45.	<u>V/m)</u> 70	(dB) -82.07		μ V/m 7.86		24.73) (dB) 20.63			(cm) (d	eg)	Average
											-		-	Average
0.06057	44.		-67.89		1.96		23.54	20.1		43	-		-	Average
0.09078	44.		-63.59		8.44		24.33	20.09		43	-		-	QP
0.11384	43	8.6	-62.88	3 10	6.48	2	23.08	20.09	0.	43	-		-	Average
0.1517	47.	.66	-56.32	2 10	3.98		27.17	20.06	6 O.	43	-		-	Average
0.49	41.	.21	-32.59	7	3.8		20.79	19.99) 0.	43	100) (0	QP
10.752	34.	.56	-34.94	4 6	9.5		14.19	19.94	0.4	43	-		-	QP
13.56	49.	.38	-20.12	2 6	9.5		29.04	19.91	0	43	-		-	QP
24.919	36.	.04	-33.46	6 6	9.5		14.35	20.49) 1	.2	-		-	QP
29.86	37.	.65	-31.85	56	9.5		16.47	19.98	3 1	.2	-		-	QP

Note:

1. 13.56 MHz is fundamental signal which can be ignored.


2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 4. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.