

Inter Lab

Final Report on WLAN tranceiver INARI5-WLAN-1

FCC ID: 2ABVH-INARI51 IC: 11875A-INARI51

Report Reference:

MDE_AAVAM_1408_FCCb_rev1 According to:Title 47 CFR chapter I part 15 subpart C FCC ID: 2ABVH-INARI51 IC: 11875A-INARI51

August 19, 2015

Date: Test Laboratory: 7 layers AG Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzen der Chairman of the Supervisory Board: Peter Mertel Vorstand Board: Dr. H. Ansorge Registergericht registered in: Düsseldorf, HRB 44096 USt-IdNr VAT No.: DE 203159652 TAX No. 147/5869/0385 A Bureau Veritas Group Company

1 Administrative Data

1.1 Project Data

Project Responsible:	Dirk Bratsch
Date Of Test Report:	2015/08/19
Date of first test:	2015/01/09
Date of last test:	2015/02/15

1.2 Applicant Data

Company Name:	Aava Mobile Oy
Street: City: Country:	Nahkatehtaankatu 2 90130 Oulu Finland
Contact Person:	Mr. Antti Aho
Fax:	+3588373811

1.3 Test Laboratory Data

The following list shows all places and laboratories involved for test result generation:

Company Name :	7 layers AG		
Street :	Borsigstrasse 11		
City :	40880 Ratingen		
Country :	Germany		
Contact Person :	Mr. Michael Albert		
Phone :	+49 2102 749 201		
Fax :	+49 2102 749 444		
E Mail :	Michael.Albert@7Layers.com		

Laboratory Details

Lab ID	Identification	Responsible	Accreditation Info
Lab 1	Conducted Emissions	Mr. Andreas Petz Mr. Wolfgang Richter	DAkkS-Registration no. D-PL-12140-01-01
Lab 2	Radiated Emissions	Mr. Marco Kullik Mr. Robert Machulec	DAkkS-Registration no. D-PL-12140-01-01
Lab 3	Regulatory Bluetooth RF Test Solution	Mr. Jimmy Chatheril Mr. Sören Berentzen	DAkkS-Registration no. D-PL-12140-01-01

1.4 Signature of the Testing Responsible

0 Imad Hjije responsible for tests performed in: Lab 1, Lab 2, Lab 3

1.5 Signature of the Accreditation Responsible

[B. RETKA]

Accreditation scope responsible person responsible for Lab 1, Lab 2, Lab 3

2 Test Object Data

2.1 General OUT Description

The following section lists all OUTs (Object's Under Test) involved during testing.

OUT: INARI5-WLAN-1

Type / Model / Family:

WLAN tranceiver INARI5-WLAN-1

FCC ID: 2ABVH-INARI51 IC: 11875A-INARI51 Others

Please see applicant data

Product Category:

Manufacturer: Company Name:

Contact Person:

Parameter List:

Parameter name

Value

2.2 Detailed Description of OUT Samples

Sample : aa01

OUT Identifier	INARI5-WLAN-1		
Sample Description	Standard sampel#	1	
Serial No.	EB44900055		
HW Status	Preproduction		
SW Status	Android 4.4		
Low Voltage	3.5 V	Low Temp.	-10 °C
High Voltage	4.35 V	High Temp.	+55 °C
Nominal Voltage	3.8 V	Normal Temp.	+25 °C

Sample : ad01

OUT Identifier	INARI5-WLAN-1		
Sample Description	Standard Sample #2		
Serial No.	EDB65F3C		
HW Status	Preproduction	l i i i i i i i i i i i i i i i i i i i	
SW Status	Android 4.4		
Low Voltage	3.5 V	Low Temp.	-10 °C
High Voltage	4.35 V	High Temp.	+55 °C
Nominal Voltage	3.8 V	Normal Temp.	+25 °C

Sample : ae01

OUT Identifier	INARI5-WLAN-1		
Sample Description	Conducted Sample #2		
Serial No.	EB44900043		
HW Status	Preproduction		
SW Status	Android 4.4		
Low Voltage	3.5 V	Low Temp.	-10 °C
High Voltage	4.35 V	High Temp.	55 °C
Nominal Voltage	3.8 V	Normal Temp.	25 °C

2.3 OUT Features

Features for OUT:	INARI5-WLAN-1
-------------------	---------------

Designation Description

Allowed Values

Supported Value(s)

	for scope: FCC_v2
AC	The OUT is powered by or connected to AC Mains
BT	EUT supports Bluetooth data rate of 1 Mbps with GFSK modulation in the band 2400 MHz - 2483.5 MHz
BTLE	Support of Bluetooth Low Energy
EDR2	EUT supports Bluetooth using data rate of 2 Mbps with PI/4 DQPSK modulation in the band 2400 MHz - 2483.5 MHz
EDR3	EUT supports Bluetooth using data rate of 3 Mbps with 8DPSK modulation in the band 2400 MHz - 2483.5 MHz
Iant	Integral Antenna: permanent fixed antenna, which may be built-in, designed as an indispensable part of the equipment
TantC	temporary antenna connector, which may be only built-in for testing, designed as an example part of the equipment
Wa1	EUT supports WLAN in mode a in the band 5150 MHz - 5250 MHz
Wa2	EUT supports WLAN in mode a in the band 5250 MHz - 5350 MHz
Wa3	EUT supports WLAN in mode a in the band 5470 MHz - 5725 MHz
Wa4	EUT supports WLAN in mode a in the band 5725 MHz - 5825 MHz
Wa5	EUT supports WLAN in mode a in the band 5725 MHz - 5850 MHz
Wa6	EUT supports WLAN in mode a in the band 5745 MHz - 5805 MHz
Wa7	EUT supports WLAN in mode a in the band 5180 MHz - 5240 MHz
Wa8	EUT supports WLAN in mode a in the band 5260 MHz - 5320 MHz
Wa9	EUT supports WLAN in mode a in the band 5500 MHz - 5600 MHz
Wa10	EUT supports WLAN in mode a in the band 5650 MHz - 5700 MHz
Wb	EUT supports WLAN in mode b in the band 2400 MHz - 2483.5 MHz
Wg	EUT supports WLAN in mode g in the band 2400 MHz - 2483.5 MHz
Wn	EUT supports WLAN in mode n in the band 5150 MHz - 5850 MHz.
Wn	EUT supports WLAN in mode n in the band 2400 MHz - 2483.5 MHz

2.4 Setups used for Testing

For each setup a relation is given to determine if and which samples and auxiliary equipment is used. The left side list all OUT samples and the right side lists all auxiliary equipment for the given setup.

Setup No. List of OUT samples			List of auxi	liary equipment		
	Sample N	lo.	Sample Des	cription	AE No.	AE Description
S	01_AC01	(Conducted m	easurments	Setup)		
	Sample:	ae01	Conducted S	Sample #2		
S	02_AA01	(Radiated mea	asurement S	etup)		
	Sample:	aa01	Standard sa	mpel#1		
S	02_AD01	(Conducted er	nissions mea	asurment Set	up)	
	Sample:	ad01	Standard Sa	mple #2	AE 02	Headset
					AE 03	Temperature Sensor
					AE 01	AC/DC Converter
3	Resul	te				
3.1	Gener					
0.1						
	devices:	tation of teste	d	Available at t	he test labor	atory.
	Interpreta test resul	ation of the ts:		pages, where	e 'Conformity criteria were	on are described on the following ' or 'Passed' means that the verified and that the tested device is andard.
						on' is printed, the required documents facturers product documentation.
					are not rele	cable' is printed, the test case vant to the specific equipment
	Note:			pertaining to	services ren	e abbreviated information content dered. Supporting documentation not ned and available at the laboratory.
					ents of the s	under environmental conditions within pecifications. Environmental conditions atory.
				3. This test rodevice.	eport covers	only the Bluetooth functionality of this
						of MDE_AAVAM_1408_FCCb. ble can be found in the Annex.

3.2 List of the Applicable Body

(Body for Scope: FCC_v2)

Designation	Description
FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES	Subpart C - Intentional Radiators; 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

3.3 List of Test Specification

Test Specification:	FCC part 2 and 15
Version	10-1-13 Edition
Title:	PART 2 - GENERAL RULES AND REGULATIONS PART 15 - RADIO FREQUENCY DEVICES

3.4 Summary

est Case Identi Test (condition	,	Result	Date of Test	Lab Ref.	Setup
			Date of Test	Ker.	Setup
5c.1 Conduct 15c.1; Mode =	cted emissions (AC power line transmit	e) §15.207 Passed	2015/02/15	Lab 1	S02_AD01
15c.2; Frequer	us radiated emissions §15.24 acy = 2402 - 2480, Mode = BT GFSK/PSK Modulation, ut Power	/ (d), §15.35 (b) Passed	2015/01/22	Lab 2	S02_AA01
5c.3 Occupi	ed bandwidth §15.247 (a) (1))			
	cy = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.3; Frequer transmit using	1 Mbps with GFSK modulation cy = 2402, Mode = BT 2 Mbps with PI/4 DQPSK	Passed	2015/01/09	Lab 3	S01_AC01
	icy = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.3; Frequer	3 Mbps with 8DPSK modulation cy = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.3; Frequer transmit using	1 Mbps with GFSK modulation cy = 2441, Mode = BT 2 Mbps with PI/4 DQPSK	Passed	2015/01/09	Lab 3	S01_AC01
	cy = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.3; Frequer	3 Mbps with 8DPSK modulation cy = 2480, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.3; Frequer transmit using	1 Mbps with GFSK modulation cy = 2480, Mode = BT 2 Mbps with PI/4 DQPSK	Passed	2015/01/09	Lab 3	S01_AC01
	icy = 2480, Mode = BT 3 Mbps with 8DPSK modulation	Passed	2015/01/09	Lab 3	S01_AC01
5c.4 Peak p	ower output §15.247 (b) (1)				
	cy = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 1 Mbps with GFSK modulation 15c.4; Frequency = 2402, Mode = BT transmit using 2 Mbps with PI/4 DQPSK	icy = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
	icy = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.4; Frequer	3 Mbps with 8DPSK modulation cy = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.4; Frequer transmit using	1 Mbps with GFSK modulation cy = 2441, Mode = BT 2 Mbps with PI/4 DQPSK	Passed	2015/01/09	Lab 3	S01_AC01
	cy = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.4; Frequer	3 Mbps with 8DPSK modulation cy = 2480, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
15c.4; Frequer transmit using	1 Mbps with GFSK modulation cy = 2480, Mode = BT 2 Mbps with PI/4 DQPSK	Passed	2015/01/09	Lab 3	S01_AC01
	icy = 2480, Mode = BT 3 Mbps with 8DPSK modulation	Passed	2015/01/09	Lab 3	S01_AC01

andone factor 🖉 (n. 2000). Fest mension factores in a subset former				
				408_FCCb_rev1
	Acc	ording to:Title 47 CFR cl		
				2ABVH-INARI51
				11875A-INARI51
Test Case Identifier / Name			Lab	
Test (condition)	Result	Date of Test	Ref.	Setup
15c.5 Spurious RF conducted emissions §15	.247 (d)			
15c.5; Frequency = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 1 Mbps with GFSK modulation				
15c.5; Frequency = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 2 Mbps with PI/4 DQPSK modulation				
15c.5; Frequency = 2402, Mode = BT	Passed	2015/01/09	Lab 3	S01 AC01
transmit using 3 Mbps with 8DPSK modulation	1 doocd	2013/01/03	Lub 5	501_/(601
15c.5; Frequency = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 1 Mbps with GFSK modulation				
15c.5; Frequency = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 2 Mbps with PI/4 DQPSK modulation				
15c.5; Frequency = 2441, Mode = BT	Passed	2015/01/09	Lab 3	S01 AC01
transmit using 3 Mbps with 8DPSK modulation		2020,02,00	200 0	001_/1001
15c.5; Frequency = 2480, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 1 Mbps with GFSK modulation				
15c.5; Frequency = 2480 , Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 2 Mbps with PI/4 DQPSK modulation				
15c.5; Frequency = 2480, Mode = BT	Passed	2015/01/09	Lab 3	S01_AC01
transmit using 3 Mbps with 8DPSK modulation		2020, 02, 09		

	Accor	Reference: MDE_ ding to:Title 47 CFR c	hapter I pa FCC ID:	
Test Case Identifier / Name			Lab	
Test (condition)	Result	Date of Test	Ref.	Setup
15c.6 Band edge compliance §15.247 (d)				
15c.6; Frequency = 2402, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2400 MHz	Passed	2015/01/09	Lab 3	S01_AC01
15c.6; Frequency = 2402, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = conducted, band edge = 2400 MHz	Passed	2015/01/09	Lab 3	S01_AC01
15c.6; Frequency = 2402, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2400 MHz	Passed	2015/01/09	Lab 3	S01_AC01
15c.6; Frequency = 2480, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2483.5 MHz	Passed	2015/01/09	Lab 3	S01_AC01
15c.6; Frequency = 2480, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = radiated	Passed	2015/01/12	Lab 2	S02_AA01
15c.6; Frequency = 2480, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = conducted, band edge = 2483.5 MHz	Passed	2015/01/09	Lab 3	S01_AC01
15c.6; Frequency = 2480, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = radiated	Passed	2015/01/12	Lab 2	S02_AA01
15c.6; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2483.5 MHz	Passed	2015/01/09	Lab 3	S01_AC01
15c.6; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = radiated	Passed	2015/01/21	Lab 2	S02_AA01
15c.6; Frequency = hopping, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2400 MHz	Passed	2015/01/12	Lab 3	S01_AC01
15c.6; Frequency = hopping, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2483.5 MHz	Passed	2015/01/12	Lab 3	S01_AC01
15c.6; Frequency = hopping, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = conducted, band edge=2400 MHz	Passed	2015/01/12	Lab 3	S01_AC01
15c.6; Frequency = hopping, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method=conducted, band edge=2483.5 MHz	Passed	2015/01/12	Lab 3	S01_AC01
15c.6; Frequency = hopping, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2400 MHz	Passed	2015/01/12	Lab 3	S01_AC01
15c.6; Frequency = hopping, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2483.5 MHz	Passed	2015/01/12	Lab 3	S01_AC01
15c.7 Dwell time §15.247 (a) (1) (iii) 15c.7; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation	Passed	2015/01/09	Lab 3	S01_AC01
15c.8 Channel separation §15.247 (a) (1) 15c.8; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation	Passed	2015/01/09	Lab 3	S01_AC01

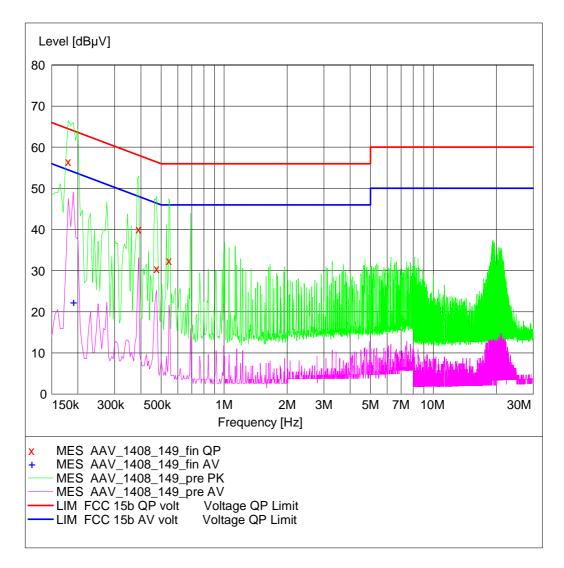
	Accor	Reference: MDE ding to:Title 47 CFR c	hapter I p	
Test Case Identifier / Name			IC: 1 <i>Lab</i>	1875A-INARI51
Test (condition)	Result	Date of Test	Ref.	Setup
15c.9 Number of hopping frequencies §15. 15c.9; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation	. 247 (a) (1) (iii) Passed	2015/01/09	Lab 3	S01_AC01

3.5 Detailed Results

3.5.1 15c.1 Conducted emissions (AC power line) §15.207

Test: 15c.1; Mode = transmit

Result:	Passed
Setup No.:	S02_AD01
Date of Test:	2015/02/15 9:38
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15


Detailed Results:

AC MAINS CONDUCTED

EUT:(DE1004006ab01)Manufacturer:AAVAMOperating Condition:Tx on 5240 MHz, WLAN mode a, 6 Mbps, 120V/60HzTest Site:7 layers RatingenOperator:MoeTest Specification:ANSI C63.4; FCC 15.107 / 15.207Comment:Class BStart of Test:25.02.2015 / 21:30:49

SCAN TABLE: "FCC Voltage"

Short Desc	ription:		FCC Voltage			
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	5.0 kHz	MaxPeak	20.0 ms	9 kHz	ESH3-Z5
			Average			

MEASUREMENT RESULT: "AAV_1408_149_fin QP"

25.02.2015 21	:37					
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dBµV	dB	dBµV	dB		
0.180000	56.50	10.1	65	8.0	Ν	FLO
0.390000	40.20	10.1	58	17.9	Ν	FLO
0.475000	30.60	10.1	56	25.9	Ν	GND
0.545000	32.50	10.1	56	23.5	L1	GND

MEASUREMENT RESULT: "AAV_1408_149_fin AV"

25.02.2015 21:37

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.190000	22.40	10.1	54	31.6	N	GND

3.5.2 15c.2 Spurious radiated emissions §15.247 (d), §15.35 (b),

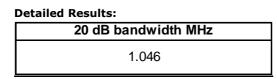
§15.209

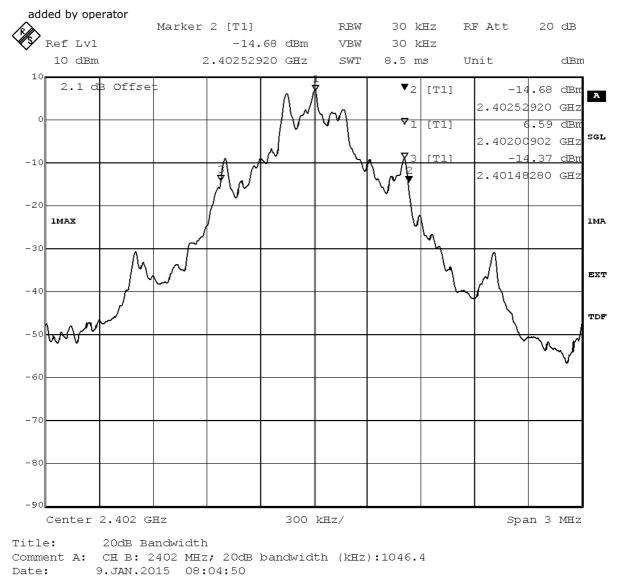
Test: 15c.2; Frequency = 2402 - 2480, Mode = BT transmit using GFSK/PSK Modulation, Maximum Output Power

Result:	Passed
Setup No.:	S02_AA01
Date of Test:	2015/01/22 10:16
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:

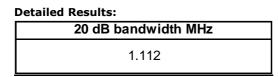
ab01 ab01 ab01 ab01 aa01	GFSK Modulatic 122-125 068 069 070 001 002 003 E 001 002 003 BE 001 002 003	Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed	9k-30M 30M-1G 30M-1G 1G-3G 1G-3G 1G-3G 78/2.48C-2.5G 3G-18G	- - - - aa01 aa01 aa01 aa01 aa01	PSK Modulation	Passed Passed Passed Passed Passed	16-36 16-36 16-36
ab01 ab01 ab01 aa01	068 069 070 001 002 003 003_BE 001 002	Passed Passed Passed Passed Passed Passed Passed Passed	30M-1G 30M-1G 30M-1G 1G-3G 1G-3G 1G-3G 78/2.48G-2.5G	- - - aa01 aa01 aa01 aa01	- - 004 005 006	- - - Passed Passed Passed	16-36 16-36 16-36
ab01 ab01 aa01 aa01	069 070 001 002 003 003_BE 001 002	Passed Passed Passed Passed Passed Passed Passed	30M-1G 30M-1G 1G-3G 1G-3G 1G-3G 78/2.48G-2.5G	- - aa01 aa01 aa01 aa01	- - 004 005 006	- - Passed Passed Passed	1G-3G 1G-3G 1G-3G 1G-3G
ab01 aa01	070 001 002 003 003_BE 001 002	Passed Passed Passed Passed Passed Passed	30M-1G 1G-3G 1G-3G 1G-3G 78/2.48G-2.5G	aa01 aa01 aa01	005	Passed Passed	1G-3G 1G-3G
aa01 aa01 aa01 aa01 aa01 aa01 aa01 aa01	001 002 003 003_BE 001 002	Passed Passed Passed Passed Passed	1G-3G 1G-3G 1G-3G 78/2.48G-2.5G	aa01 aa01 aa01	005	Passed Passed	1G-3G 1G-3G
aa01 aa01 aa01 aa01 aa01 aa01 aa01 aa01	002 003 003_BE 001 002	Passed Passed Passed Passed	1G-3G 1G-3G 78/2.48G-2.5G	aa01 aa01 aa01	005	Passed Passed	1G-3G 1G-3G
aa01 aa01 aa01 aa01 aa01 aa01 aa01	003 003_BE 001 002	Passed Passed Passed	1G-3G 78/2.48G-2.5G	aa01 aa01	006	Passed	1G-3G
aa01 aa01 aa01 aa01 aa01 aa01	003_BE 001 002	Passed Passed	78/2.48G-2.5G	aa01			
aa01 aa01 aa01 aa01	001 002	Passed			006_BE	Passed	70/0 400 0 50
aa01 aa01 aa01	002		3G-18G				78/2.48G-2.5G
aa01 aa01		Passed		aa01	004	Passed	3G-8G
aa01	003	rasseu	3G-18G	aa01	005	Passed	3G-8G
		Passed	3G-18G	aa01	006	Passed	3G-8G
	019	Passed	18G-25G	-	-	-	-
aa01	021	Passed	18G-25G	-	-	-	-
aa01	020	Passed	18G-25G	-	-	-	-
ge of 1-18GHz Limit QPK	Frequency	Corrected	Margin	Result			
[dBµV]	[MHz]	value QPK [dBµV]	Q РК [dB]				
				Passed			
Limit PK [dBµV]	Limit AV [dBµV]	Frequency [MHz]	value PK	Corrected value AV [dBµV]	Margin PK [dB]	Margin AV [dB]	Result
							Passed
			<u> </u>	l		l	
device is power	red via AC/DC ad	dapter, as it is	the worst case				
	nissions which a cause no emissi ge of 1-18GHz Limit QPK [dBµV] Limit QPK Limit PK [dBµV]	missions which are within 20 dB c cause no emission where found v ge of 1-18GHz Limit QPK [dBµV] Frequency [MHz] nge 1 GHz - 25 GHz Limit PK [dBµV] [dBµV]	missions which are within 20 dB of the limit are li cause no emission where found within 20 dB of t ge of 1-18GHz Limit QPK [dBµV] [Frequency [dBµV] [MHz] Corrected value QPK [dBµV] [dBµV] Inge 1 GHz - 25 GHz Limit PK Limit AV Frequency [dBµV] [dBµV] [MHz]	missions which are within 20 dB of the limit are listed in the tables cause no emission where found within 20 dB of the limit under GF ge of 1-18GHz Limit QPK Frequency [dBµV] Gorrected Margin [dBµV] [MHz] value QPK QPK [dB] [dBµV] [dBµV] Imit AF J GHz - 25 GHz Limit PK Limit AV Frequency Corrected	missions which are within 20 dB of the limit are listed in the tables below. cause no emission where found within 20 dB of the limit under GFSK modulatio ge of 1-18GHz Limit QPK [dBµV] Frequency [MHz] Corrected value QPK [dB] Passed [dBµV] Passed Inge 1 GHz - 25 GHz Limit PK Limit AV [Frequency [dBµV] Corrected value PK [dBµV] [dBµV] [dBµV] [dBµV] [dBµV] [dBµV] [dBµV]	missions which are within 20 dB of the limit are listed in the tables below. cause no emission where found within 20 dB of the limit under GFSK modulation, PSK modulation ge of 1-18GHz Limit QPK [dBµV] Frequency [MHz] Corrected value QPK [dB] Passed Inge 1 GHz - 25 GHz Limit PK Limit AV [Frequency [dBµV] Frequency [dBµV] [dV] [dV] [dV] [dV] [dV] [dV] [dV] [d	missions which are within 20 dB of the limit are listed in the tables below. cause no emission where found within 20 dB of the limit under GFSK modulation, PSK modulation was tested us ge of 1-18GHz Limit QPK [Frequency Value QPK [dB] [dBµV] [MHz] Corrected Value QPK [dB] Imit QPK [dBµV] Passed Imit PK Limit AV [Frequency [MHz] Corrected Value PK [dB] Limit PK [dBµV] [MHz] Corrected Value PK [dB] [dBµV] [dBµV] [MHz] Corrected Value AV [dB] Imit PK [dB] PK [dB] AV [dB] Imit PK [dB] AV [dB] Imit PK [dBµV] [MHz] Corrected Value AV [dB] Imit PK [dB] AV [dB] Imit PK [dBµV] [MHz] [dBµV] [dBµV] Imit PK [dB] AV [dB] Imit PK [dB]

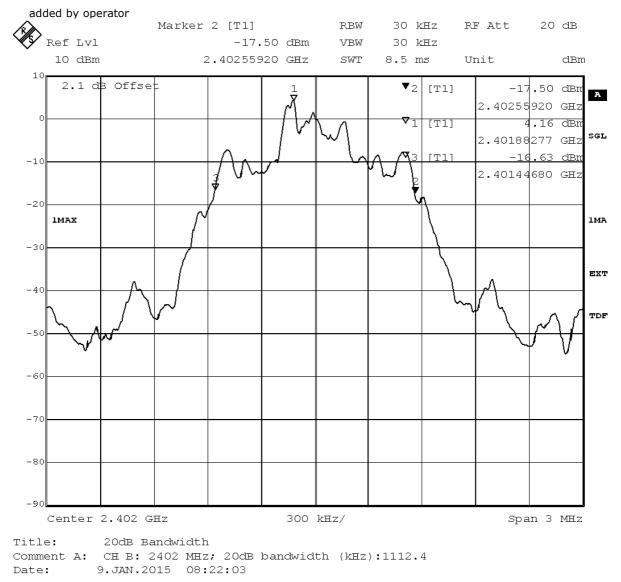



3.5.3 15c.3 Occupied bandwidth §15.247 (a) (1)

Test: 15c.3; Frequency = 2402, Mode = BT transmit using 1 Mbps with GFSK modulation

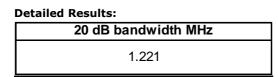
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:19
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

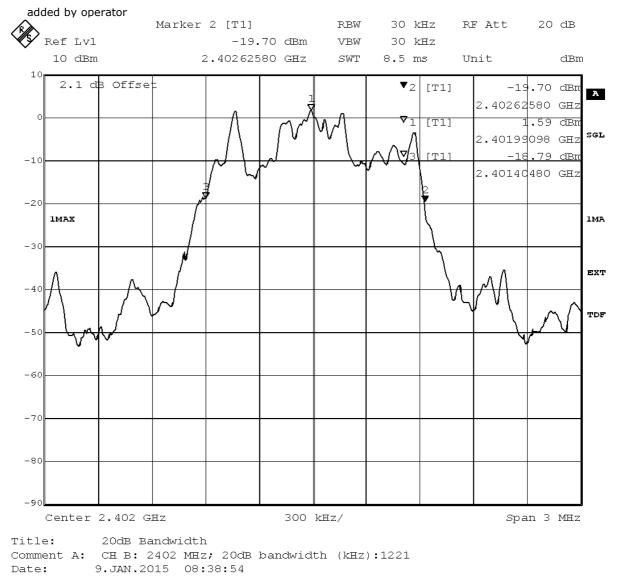




Test: 15c.3; Frequency = 2402, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

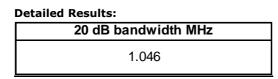
Result:PassedSetup No.:S01_AC01Date of Test:2015/01/09 9:25Body:FCC47CFRChIPART15c247RADIO FREQUENCY DEVICESTest Specification:FCC part 2 and 15

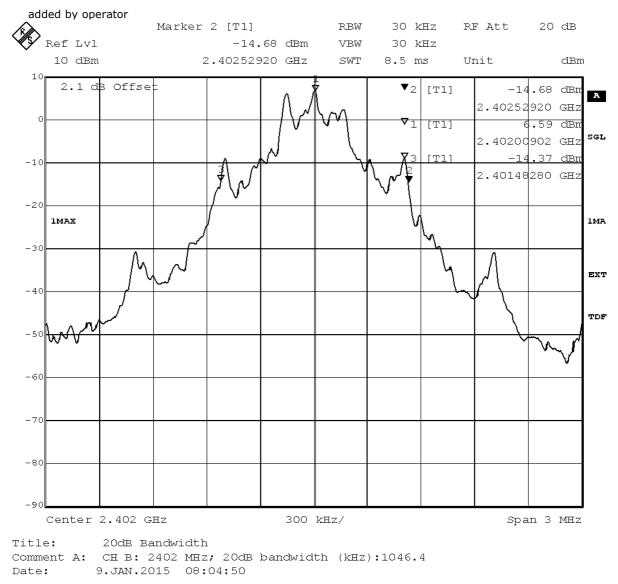




Test: 15c.3; Frequency = 2402, Mode = BT transmit using 3 Mbps with 8DPSK modulation

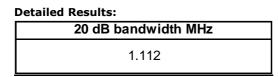
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:29
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

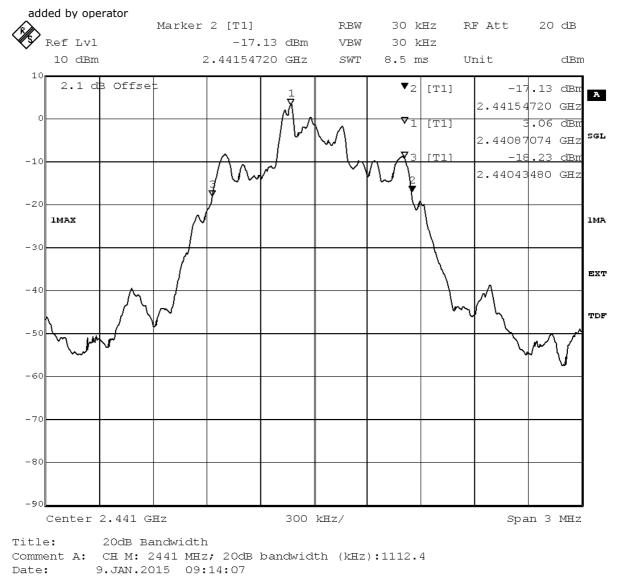




Test: 15c.3; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:19
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15





Test: 15c.3; Frequency = 2441, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

Result:PassedSetup No.:S01_AC01Date of Test:2015/01/09 9:25Body:FCC47CFRChIPART15c247RADIO FREQUENCY DEVICESTest Specification:FCC part 2 and 15

Test: 15c.3; Frequency = 2441, Mode = BT transmit using 3 Mbps with 8DPSK modulation

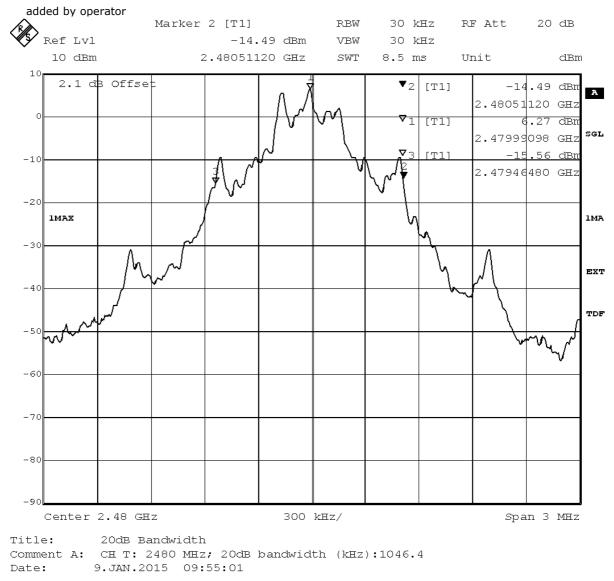
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:45
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin to limit dB
2441	2.65	2.82	-17.18	-19.84
dded by operato Ref Lvl 10 dBm	Marker 4 [2.65 dBm V	BW 300 kHz	RFATT 20 dB Jnit dBr
0 2.1 dB 01 0 -D1 -17.18 0 IMAX 0 0			▼4 [T1] ▼1 [T1] ▼2 [T1] ▼3 [T1]	2.65 dBm 2.44100000 GHz 2.82 dBm 2.44115230 GHz -36.24 dBm 2.43951703 GHz -38.24 dBm 2.43951703 GHz
0 10 ph what here as here	man			her an her turken
0 F1 Center 2.4		800 kHz/		F2 Span 8 MHz

Comment A: CH M: 2441 MHz Date: 9.JAN.2015 09:15:54

Test: 15c.3; Frequency = 2480, Mode = BT transmit using 1 Mbps with GFSK modulation

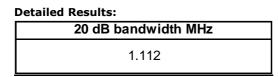

Result:PassedSetup No.:S01_AC01Date of Test:2015/01/09 10:03Body:FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES

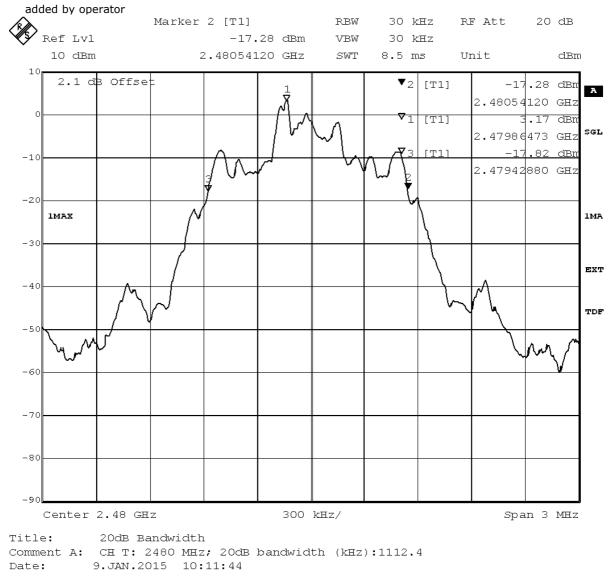
Test Specification:

FCC part 2 and 15

Test: 15c.3; Frequency = 2480, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

Passed S01_AC01


Setup No.: Date of Test: Body:


Test Specification:

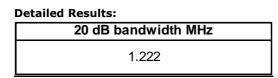
Result:

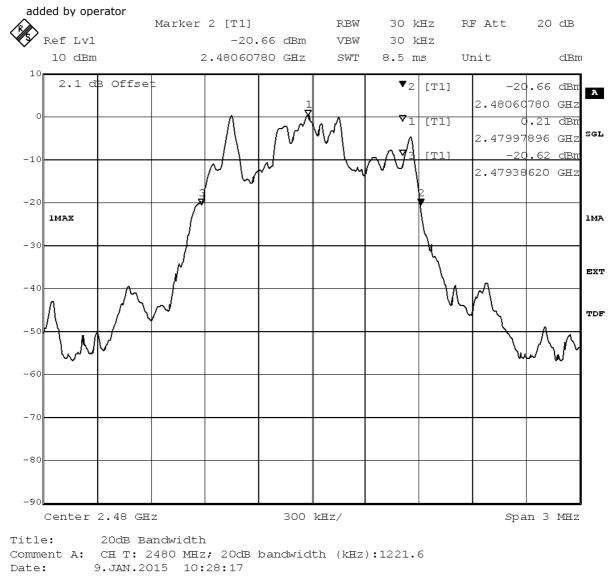
2015/01/09 10:17 FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES FCC part 2 and 15

Test: 15c.3; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation

 Result:
 Passed

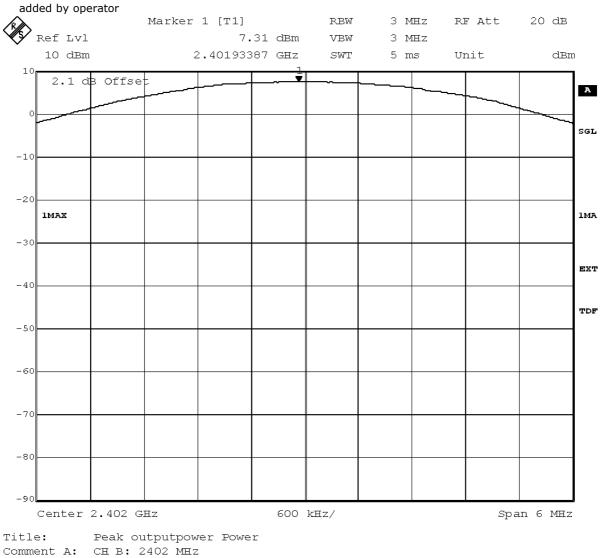
 Setup No.:
 S01_AC01


 Date of Test:
 2015/01/09 10:35


 Body:
 FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES

Test Specification:

FCC part 2 and 15

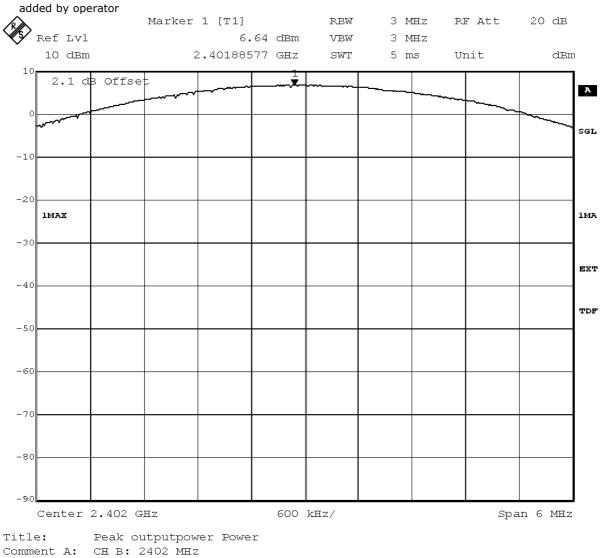

3.5.4 15c.4 Peak power output §15.247 (b) (1)

Test: 15c.4; Frequency = 2402, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:21
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
7.31	-1.25	6.06

Date: 9.JAN.2015 07:48:25

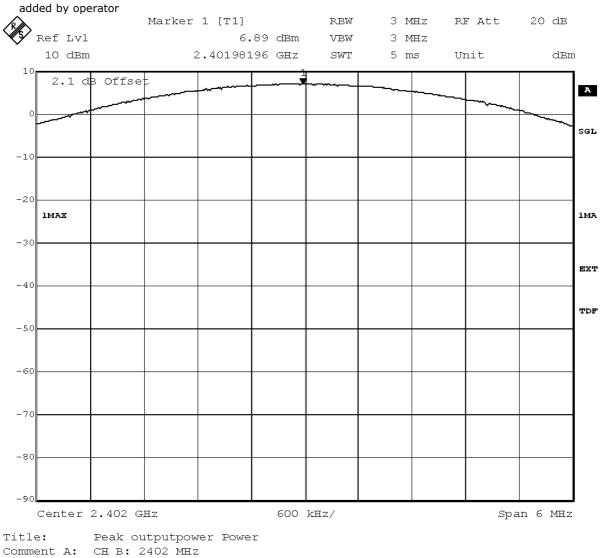


Test: 15c.4; Frequency = 2402, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

Result:PassedSetup No.:S01_AC01Date of Test:2015/01/09 9:26Body:FCC47CFRChIPART15c247RADIO FREQUENCY DEVICESTest Specification:FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
6.64	-1.25	5.39

Date: 9.JAN.2015 08:22:38

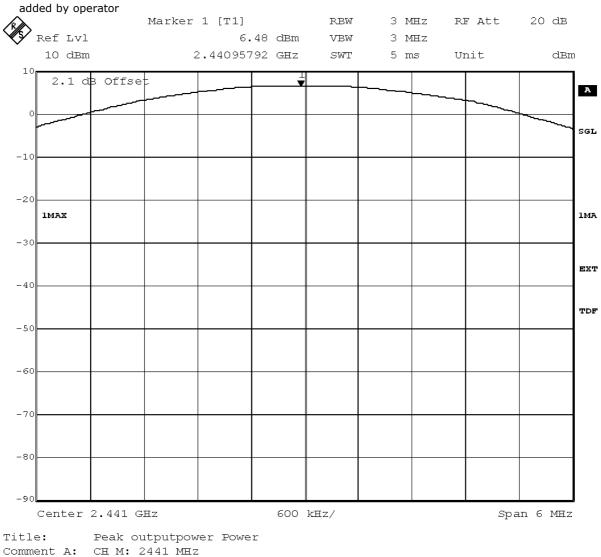


Test: 15c.4; Frequency = 2402, Mode = BT transmit using 3 Mbps with 8DPSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:29
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
6.89	-1.25	5.64

Comment A: CH B: 2402 MHz Date: 9.JAN.2015 08:39:27

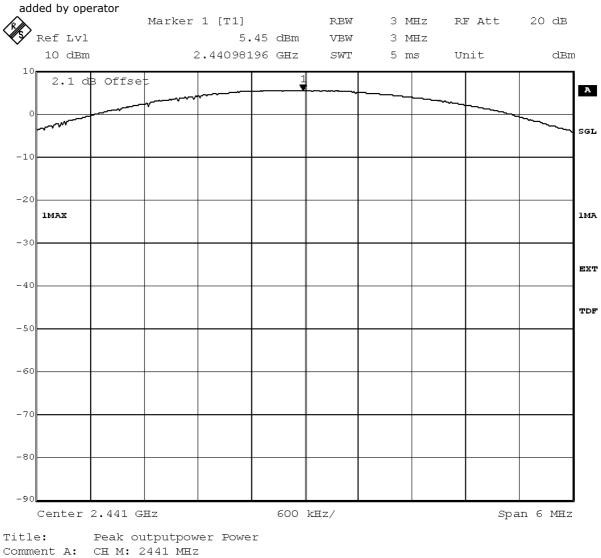


Test: 15c.4; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:21
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
6.48	-1.25	5.23

Date: 9.JAN.2015 08:58:06

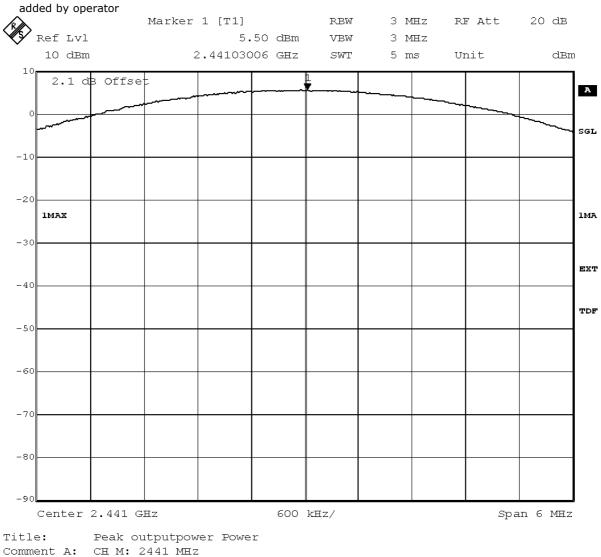


Test: 15c.4; Frequency = 2441, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

Result:PassedSetup No.:S01_AC01Date of Test:2015/01/09 9:26Body:FCC47CFRChIPART15c247RADIO FREQUENCY DEVICESTest Specification:FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
5.45	-1.25	4.20

Date: 9.JAN.2015 09:14:40



Test: 15c.4; Frequency = 2441, Mode = BT transmit using 3 Mbps with 8DPSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:46
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
5.50	-1.25	4.25

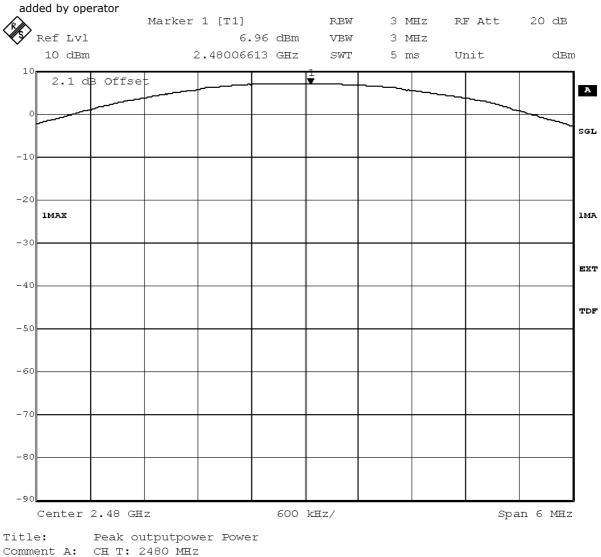
Date: 9.JAN.2015 09:31:28

Test: 15c.4; Frequency = 2480, Mode = BT transmit using 1 Mbps with GFSK modulation

 Result:
 Passed

 Setup No.:
 S01_AC01

 Date of Test:
 2015/01/09 10:02


 Body:
 FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES

Test Specification:

FCC part 2 and 15

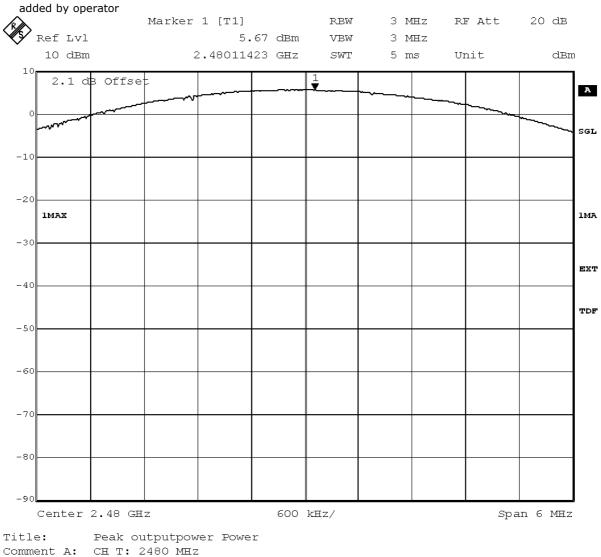
Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
6.96	-1.25	5.71

Date: 9.JAN.2015 09:55:34

Test: 15c.4; Frequency = 2480, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

Passed S01_AC01

Setup No.: Date of Test: Body:


Test Specification:

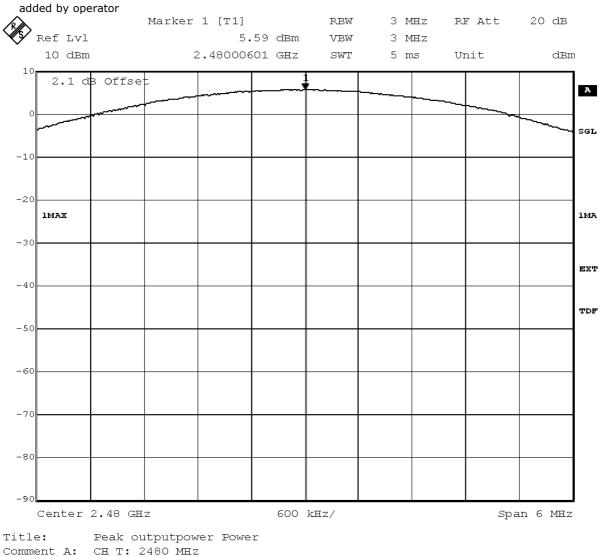
Result:

2015/01/09 10:17 FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
5.67	-1.25	4.42

Date: 9.JAN.2015 10:12:17

Test: 15c.4; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation

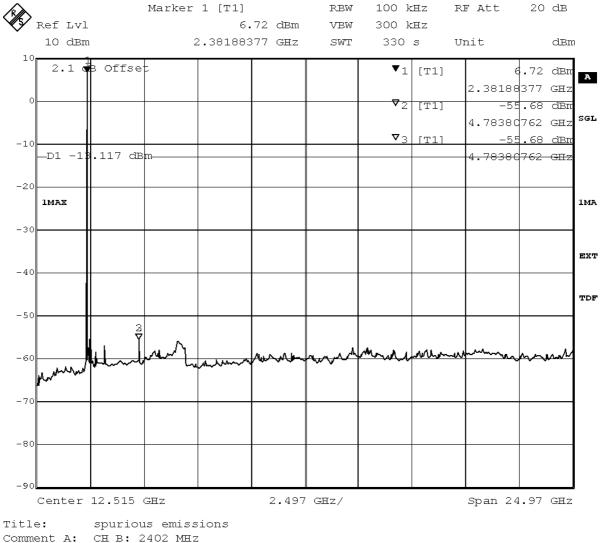

Result:PassedSetup No.:S01_AC01Date of Test:2015/01/09 10:35Body:FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES

Test Specification:

FCC part 2 and 15

Detailed Results:		
conducted peak output power value /dBm		peak value EIRP /dBm
5.59	-1.25	4.34

Date: 9.JAN.2015 10:28:55



3.5.5 15c.5 Spurious RF conducted emissions §15.247 (d)

Test: 15c.5; Frequency = 2402, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:22
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:

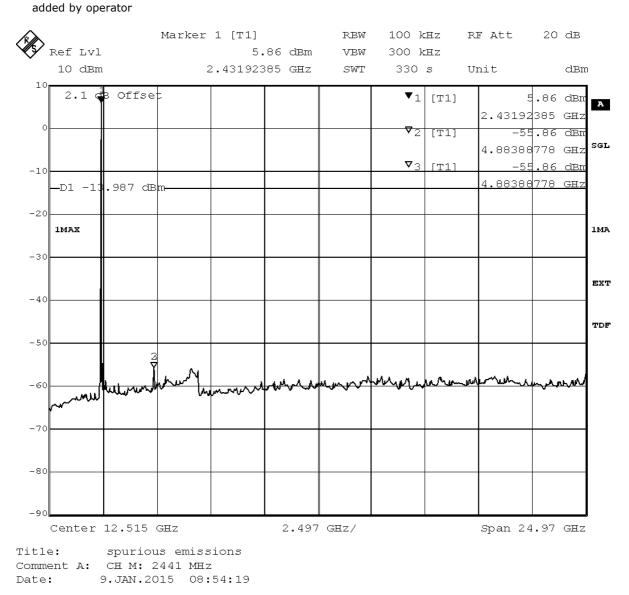
Date: 9.JAN.2015 08:01:22

sult:	Passed
tup No.:	S01_AC01
te of Test:	2015/01/09 9:26
dy:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
st Specification:	FCC part 2 and 15
etailed Results:	
Mar	cer 1 [T1] RBW 100 kHz RF Att 20 dB
Y Ref Lvl	4.27 dBm VBW 300 kHz
10 dBm	2.38188377 GHZ SWT 330 s Unit dBr
2.1 dB Offset	▼1 [T1] 4.27 dBn
	2.38188377 GHz
0	▼2 [T1] -55.84 dBn
	6.63529058 GHz
-10	
D1 -15.694 dBm	6.63529058 GHz
-20	
1MAX	
-30	
-40	
-50	3
-60	My here a marger while of a demonstration of a marger
-60 milementer	handred and a second
-70	
-80	
-90	
Center 12.515 GHz	2.497 GHz/ Span 24.97 GHz

Title:spurious emissionsComment A:CH B: 2402 MHzDate:9.JAN.2015 08:18:45

Test: 15c.5; Frequency = 2402, Mode = BT transmit using 3 Mbps with 8DPSK modulation Result: Passed Setup No.: S01_AC01 Date of Test: 2015/01/09 9:29 Body: FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES Test Specification: FCC part 2 and 15 **Detailed Results:** Marker 1 [T1] RBW 100 kHz RF Att 20 dB Ŵ Ref Lvl VBW 300 kHz 3.90 dBm 10 dBm 2.38188377 GHz SWT 330 s Unit dBm 10 2.1 gB Offset ▼1 | [T1] 3.90 dBm А 2.38188377 GHz **▼**2 [T1] .90 dBm SGL 2.38188377 GHz -10 –D1 –1**6.**117 dBm -20 1MAX 1MA -30 EXT -40 TDF -50 -60 للمحمد للأ ALL SMALL -70 -80 -90 Center 12.515 GHz 2.497 GHz/ Span 24.97 GHz Title: spurious emissions

Title:spurious emissionsComment A:CH B: 2402 MHzDate:9.JAN.2015 08:35:41

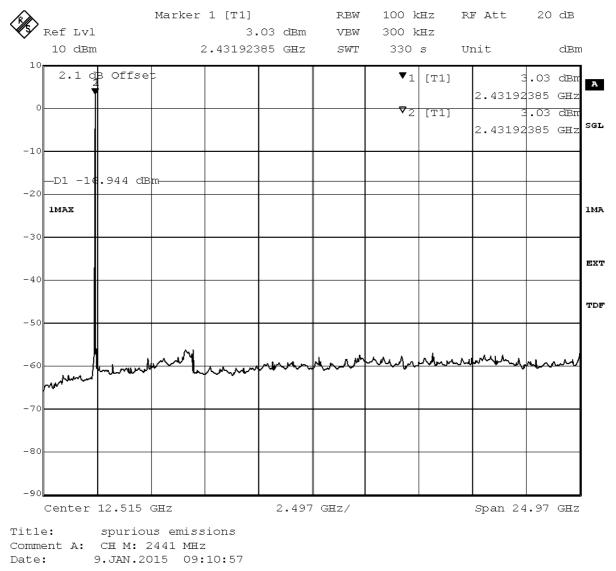


Test: 15c.5; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:22
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:

Frequency	Measured value	Reference value	Limit	Margin to limit
MHz	dBm	dBm	dBm	dB
2441		6.01		

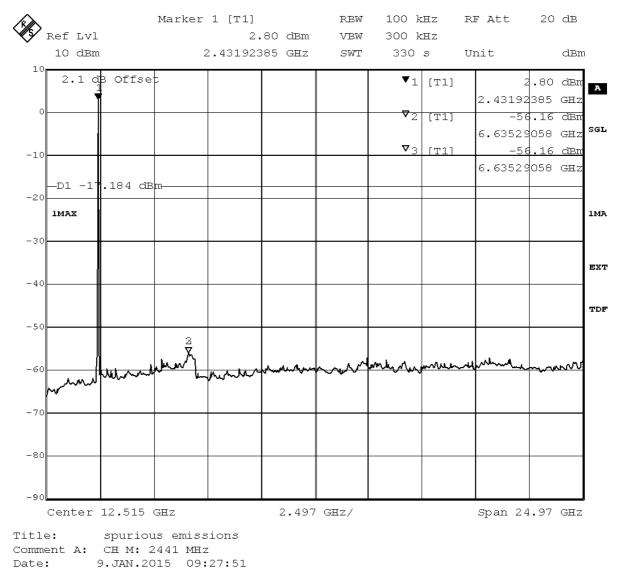

Test: 15c.5; Frequency = 2441, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:26
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:

added by operator

Frequency	Measured value	Reference value	Limit	Margin to limit
MHz	dBm	dBm	dBm	dB
2441		3.06		



Test: 15c.5; Frequency = 2441, Mode = BT transmit using 3 Mbps with 8DPSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:46
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:

Frequency	Measured value	Reference value	Limit	Margin to limit
MHz	dBm	dBm	dBm	dB
2441		2.82		

added by operator

esult:	Passed				
etup No.:	S01_AC01				
ate of Test:	2015/01/09 9:58	3			
ody:	FCC47CFRChIPAR	T15c247RAD	IO FREQUENCY	DEVICES	
est Specification:	FCC part 2 and 15	5			
etailed Results:					
	rker 1 [T1]	RBW	100 kHz	RF Att	20 dB
🛿 Ref Lvl	6.40 dB	m VBW	300 kHz		
10 dBm	2.48196393 GH	z SWT	330 s	Unit	dBm
2.1 dB Offset			▼1 [T1]]	6.40 dBm
				2.4819	6393 GHz
0			▼2 [T1]	-5	5.71 dBm
				6.7854	1082 GHz
-10			▼3 [T1	1 -5	5.71 dBm
—D1 -13.565 dBm—				6.7854	1082 GHZ
-20					
IMAX					
-30					
-40					
-50	3				
	Å		manne		
-60 mutule	" have been a second				
-70		_			
-80					
-90					
Center 12.515 GH	2.4	97 GHz/		Span 2	4.97 GHz

Comment A: CH T: 2480 MHz Date: 9.JAN.2015 09:51:43

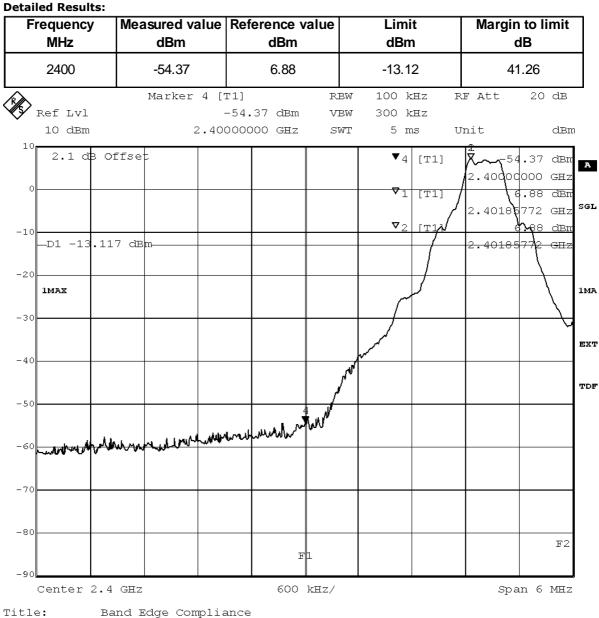
esult:	Passed
tup No.:	S01_AC01
ate of Test:	2015/01/09 10:15
dy:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
st Specification:	FCC part 2 and 15
etailed Results:	
Mar Mar	er 1 [T1] RBW 100 kHz RF Att 20 dB
У Ref Lvl	3.12 dBm VBW 300 kHz
10 dBm 10	2.48196393 GHz SWT 330 s Unit de
2.1 dB Offset	▼1 [T1] 3.12 dE
Ť	2.48196393 GH
0	▼2 [T1] 3.12 dE
	2.4819¢393 GH
-10	
-20	
1MAX	
-30	
10	
-40	
-50	
	u, , ,
-60 - 60 60	have and a second and the second and the second
manna	
-70	
-80	
-90 Center 12.515 GHz	2.497 GHz/ Span 24.97 GH

 Comment A:
 CH T:
 2480 MHz

 Date:
 9.JAN.2015
 10:08:29

Test: 15c.5; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation Result: Passed Setup No.: S01_AC01 Date of Test: 2015/01/09 10:35 Body: FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES Test Specification: FCC part 2 and 15 **Detailed Results:** Marker 1 [T1] RBW 100 kHz RF Att 20 dB Ŵ Ref Lvl VBW 300 kHz 2.83 dBm 10 dBm 2.48196393 GHz SWT 330 s Unit dBm 10 2.1 dB Offset ▼1 | [T1] 2.83 dBm А 2.48196393 GHz **▼**2 [T1] -55.35 dBn SGL 6.63529058 GHz ▼<u>3 | [T1]</u> <u>-55.35</u> dBn -10 6.63529058 GHz .143 dBm--D1 -17 -20 1MAX 1MA -30 EXT -40 TDF -50 2 7 -60 -70 -80 -90 Center 12.515 GHz 2.497 GHz/ Span 24.97 GHz Title: spurious emissions

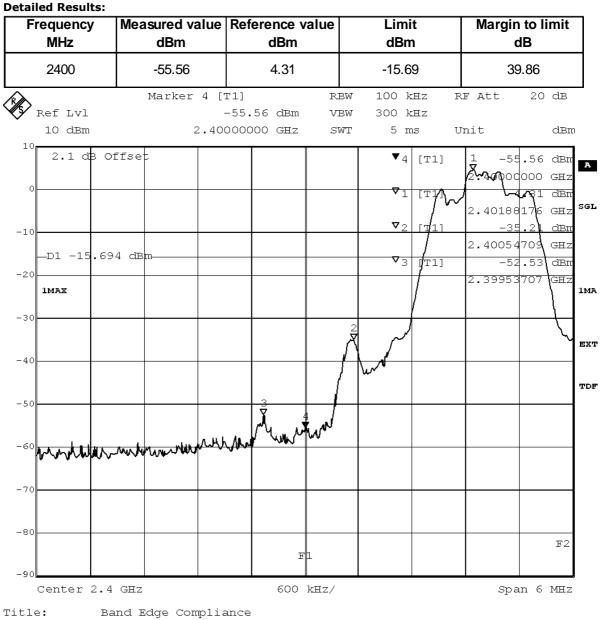
Title:spurious emissionsComment A:CH T: 2480 MHzDate:9.JAN.2015 10:25:09



3.5.6 15c.6 Band edge compliance §15.247 (d)

Test: 15c.6; Frequency = 2402, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2400 MHz

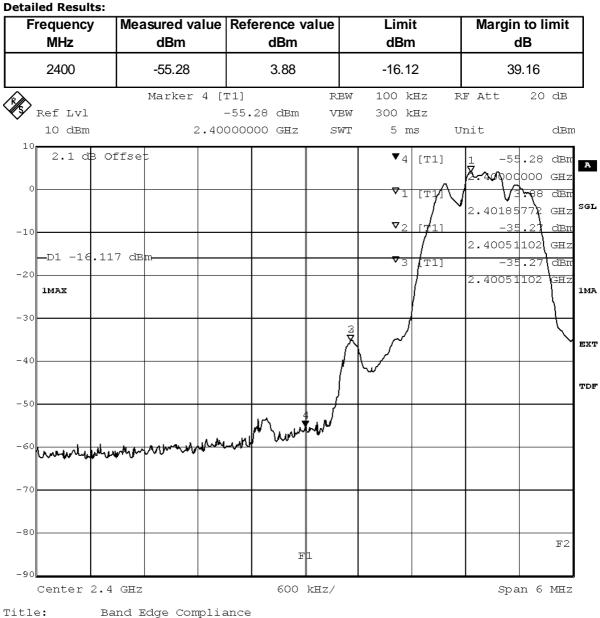
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:23
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15



Title:Band Edge ComplianceComment A:CH B: 2402 MHzDate:9.JAN.2015 07:49:14

Test: 15c.6; Frequency = 2402, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = conducted, band edge = 2400 MHz

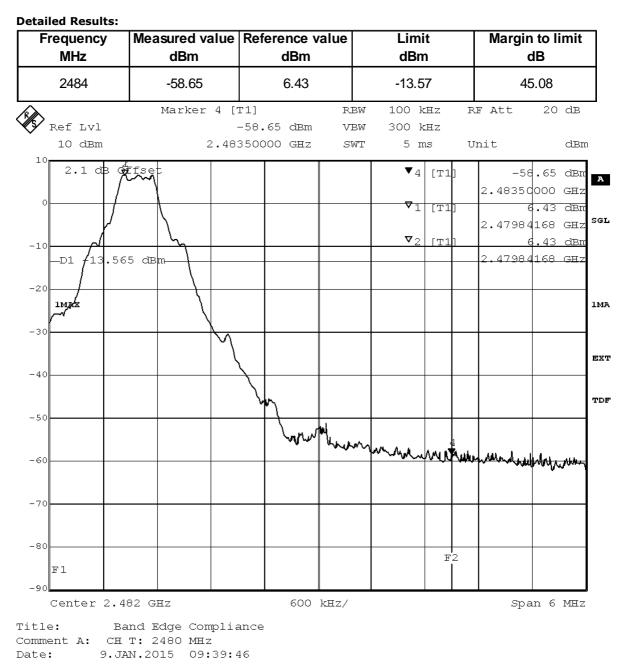
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:27
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15



Title:Band Edge CompliandComment A:CH B: 2402 MHzDate:9.JAN.2015 08:06:45

Test: 15c.6; Frequency = 2402, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2400 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:30
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15



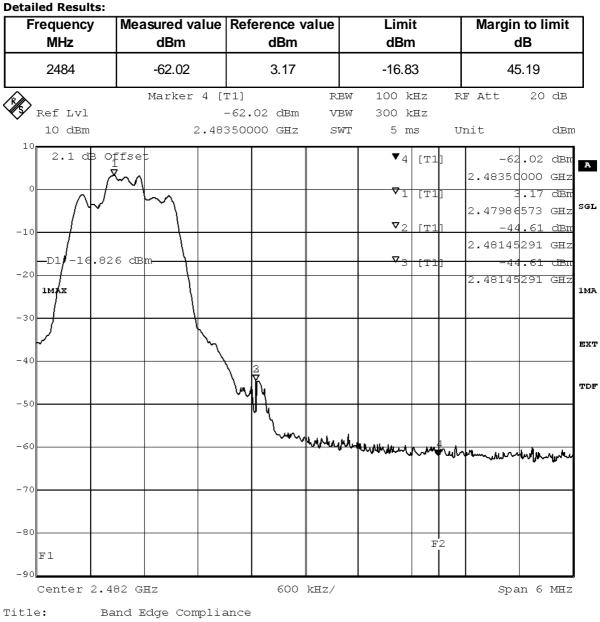
Title: Band Edge Complianc Comment A: CH B: 2402 MHz Date: 9.JAN.2015 08:23:44

Test: 15c.6; Frequency = 2480, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2483.5 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 9:48
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Test: 15c.6; Frequency = 2480, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = radiated

Result:	Passed
Setup No.:	S02_AA01
Date of Test:	2015/01/12 14:18
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15


Detailed Results:

TX on			Limit AV [dBµV]		value PK	Corrected value AV [dBµV]		Margin AV [dB]	Result
2480 MHz	Ver + Hor	74	54	2483.5	47.6	35.9	26.38	18.08	Passed

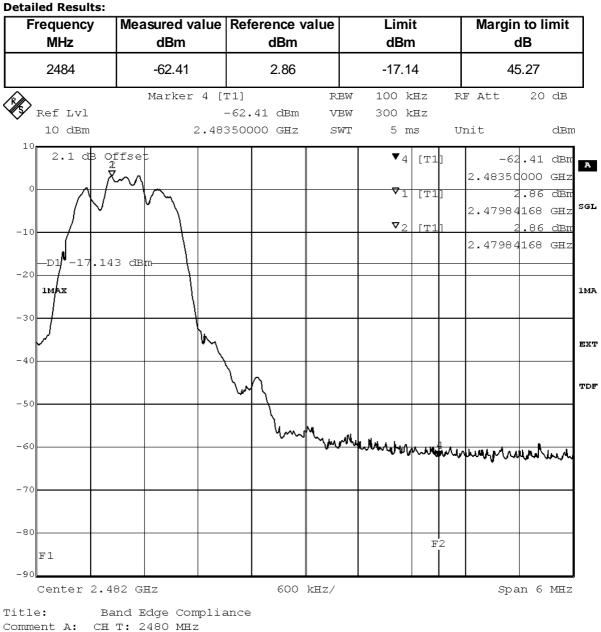
Test: 15c.6; Frequency = 2480, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = conducted, band edge = 2483.5 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 10:15
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Comment A: CH T: 2480 MHz Date: 9.JAN.2015 09:56:33

Test: 15c.6; Frequency = 2480, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = radiated

Result:	Passed
Setup No.:	S02_AA01
Date of Test:	2015/01/12 14:16
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15


Detailed Results:

TX on				[MHz]				Margin AV [dB]	Result
2480 MHz	Ver + Hor	74	54	2483.5	48.44	35.59	25.56	18.41	Passed

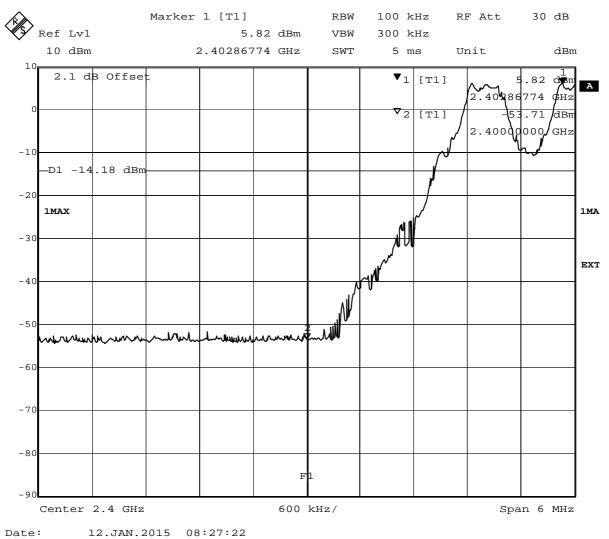
Test: 15c.6; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2483.5 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 10:20
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Date: 9.JAN.2015 10:13:12

Test: 15c.6; Frequency = 2480, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = radiated

Result:	Passed
Setup No.:	S02_AA01
Date of Test:	2015/01/21 14:03
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

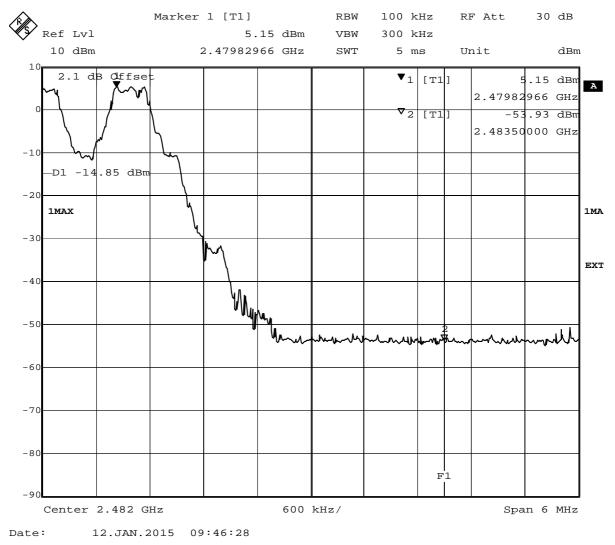

Detailed Results:

TX on	Ant. Polar.			• •				Margin AV [dB]	Result
2480 MHz	Ver + Hor	74	54	2483.5	47.86	35.36	26.14	18.64	Passed

Test: 15c.6; Frequency = hopping, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2400 MHz

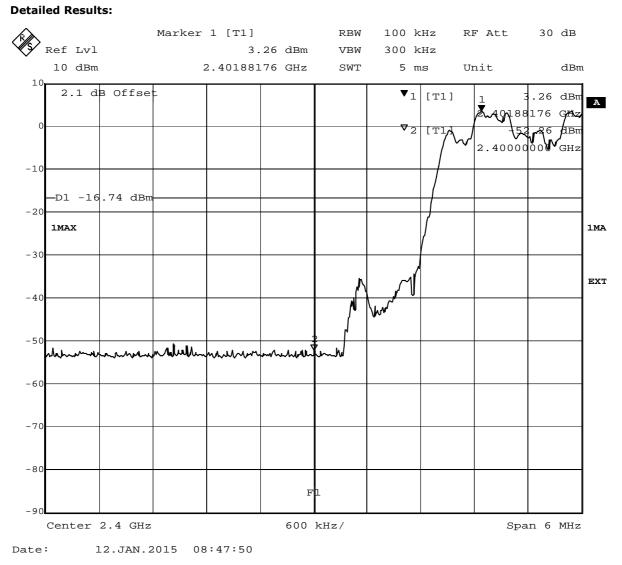
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/12 9:04
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed Results:



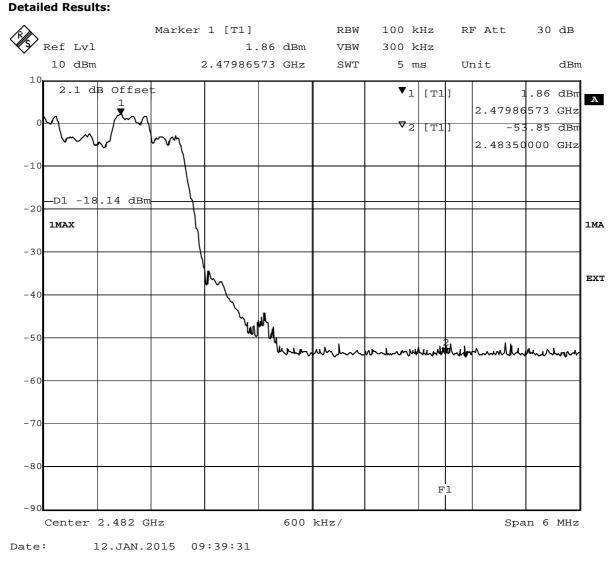
Test: 15c.6; Frequency = hopping, Mode = BT transmit using 1 Mbps with GFSK modulation, Method = conducted, band edge = 2483.5 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/12 9:53
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15


Detailed Results:

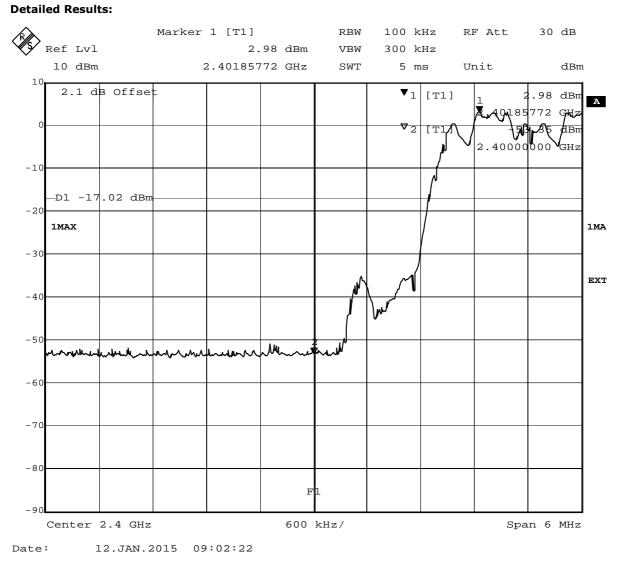
Test: 15c.6; Frequency = hopping, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method = conducted, band edge=2400 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/12 9:05
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15



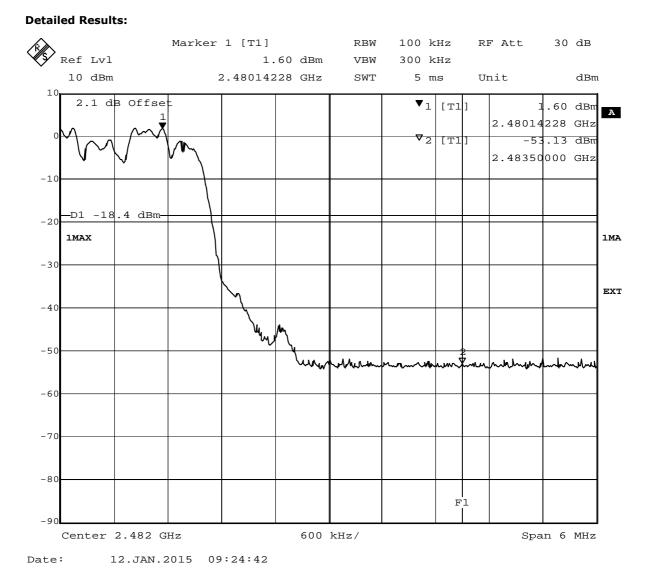
Test: 15c.6; Frequency = hopping, Mode = BT transmit using 2 Mbps with PI/4 DQPSK modulation, Method=conducted, band edge=2483.5 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/12 9:47
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15



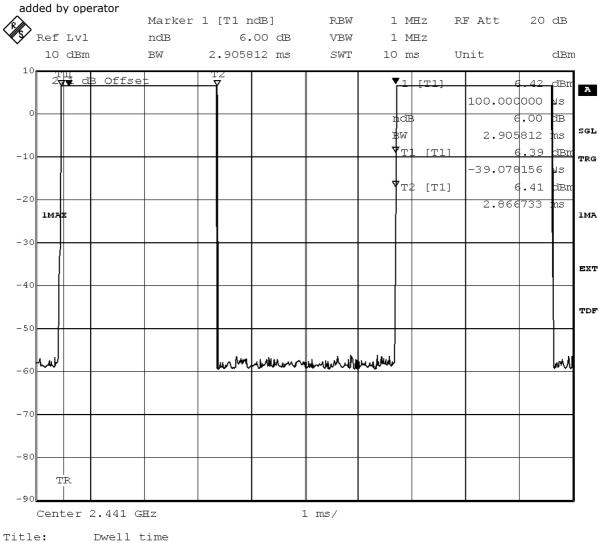
Test: 15c.6; Frequency = hopping, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2400 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/12 9:21
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15



Test: 15c.6; Frequency = hopping, Mode = BT transmit using 3 Mbps with 8DPSK modulation, Method = conducted, band edge = 2483.5 MHz

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/12 9:47
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15


3.5.7 15c.7 Dwell time §15.247 (a) (1) (iii)

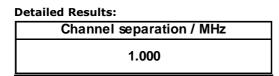
Test: 15c.7; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation

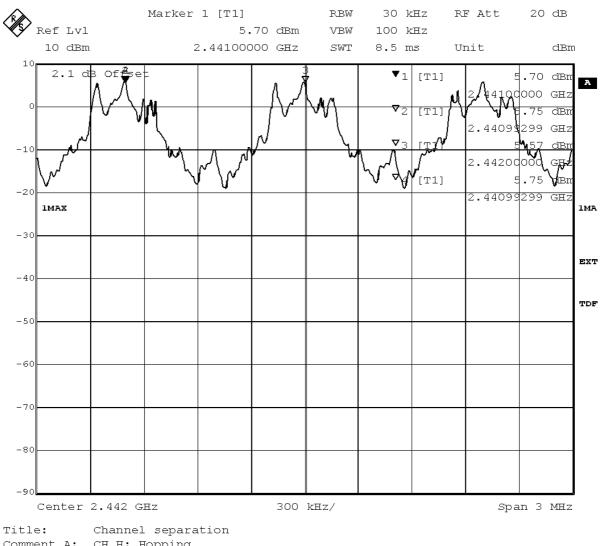
Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 13:37
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Detailed R	esults:		
Packet	Time det langth	Dwell time	Dwell time
type	Time slot length	Dwell time	ms
DH5	2.91	time slot length *	371.94
DIB	2.91	1600/5 /79 * 31.6	371:94

Comment A: CH M: 2441 MHz Date: 9.JAN.2015 13:25:00

added by operator



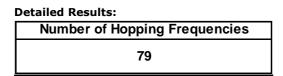

3.5.8 15c.8 Channel separation §15.247 (a) (1)

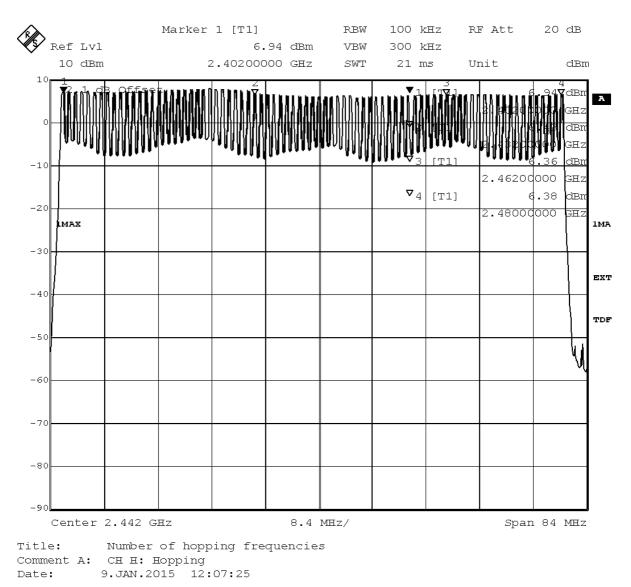
Test: 15c.8; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 13:04
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

Comment A: CH H: Hopping Date: 9.JAN.2015 10:42:49

added by operator




3.5.9 15c.9 Number of hopping frequencies §15.247 (a) (1) (iii)

Test: 15c.9; Frequency = 2441, Mode = BT transmit using 1 Mbps with GFSK modulation

Result:	Passed
Setup No.:	S01_AC01
Date of Test:	2015/01/09 13:04
Body:	FCC47CFRChIPART15c247RADIO FREQUENCY DEVICES
Test Specification:	FCC part 2 and 15

added by operator

Page 80 of 103

4 Test Equipment Details

4.1 List of Used Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 2	
Manufacturer:	Frankonia	
Description:	Anechoic Chamber for radiated testing	
Type:	10.58x6.38x6.00 m ³	
	Calibration Details	Last Execution Next Exec.
	NSA (FCC)	2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID:	Lab 1
Manufacturer:	Rohde & Schwarz GmbH & Co.KG
Description:	EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

-			
Single Device Name	Туре	Serial Number	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
Stabilization Network	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/10 2016/01/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2014/06/18 2017/11/30
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/03/31
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Description: Serial Number: Lab 2 Equipment for emission measurements see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/11920 513	Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck Mess- Elektronik OHG
Biconical dipole	VUBA 9117	9117-108	Schwarzbeck Mess- Elektronik OHG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 1 GHz - 4 GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 18 GHz - 26 GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 30 MHz - 18 GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01- 2+W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02- 2+W38.02-2	Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
Double-ridged horn- duplicated 2015-07- 15 10:47:55	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/18000-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26.5 GHz BBHA 9170	BBHA 9170	BBHA9170262	Schwarzbeck Mess- Elektronik OHG
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna (upgraded)	HL 562 Ultralog new refelector	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD Calibration		2014/11/27 2017/11/27

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Standard Gain / Pyramidal Horn Antenna 26.5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Standard Gain / Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/379070 9	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 2
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divider N (Aux)	1506A / 93459	LM390	Weinschel Associates
Broadband Power Divider SMA	WA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/07/29 2015/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID:Lab 1, Lab 2Description:Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit CBT	CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standart calibration		2015/01/21 2018/01/19
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD calibration		2014/12/02 2017/12/01
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	B11, B21V14, B21-2, B41, B52V14, J B53-2, B56V14, B68 3v04, PCMCIA, Software: K21 4v21, K22 4v21, K23 4v21, K24 K43 4v21, K53 4v21, K56 4v22, K57 K59 4v22, K61 4v22, K62 4v22, K63 K65 4v22, K66 4v22, K67 4v22, K68 Firmware: μP1 8v50 02.05.06	U65V04 4v21, K42 4v21, 4v22, K58 4v22, 4v22, K64 4v22, 4v22, K69 4v22	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD calibration HW/SW Status		2014/12/03 2017/12/02 Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B52-2, B53-2, B54V14, B56V14, B68 3v04, B95, PCMCIA, U65V02 SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v11, K27 4v10, K28 4v10, K42 4v11, K43 4v11, K53 4v10, K65 4v10, K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05 SW: K62, K69		2007/01/02 2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID: Description:

Serial Number:

Lab 1, Lab 2 Equipment for emission measurements see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
EMI Receiver / Spectrum Analyser	ESR 7	101424	Rohde & Schwarz
-,,	Calibration Details		Last Execution Next Exec.
	Initial Factory Calibration		2014/11/13 2016/11/12
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/10
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/10
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/06/24 2017/06/23
Spectrum Analyser	FSW 43 <i>Calibration Details</i>	103779	Rohde & Schwarz Last Execution Next Exec.
	Initial Factory Calibration		2014/11/17 2016/11/16
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 c	during calibration	2009/12/03

Test Equipment Multimeter 03

Lab ID:	Lab 2	
Description:	Fluke 177	
Serial Number:	86670383	

Single Devices for Multimeter 03

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Multimeter 12

Lab ID:	Lab 3
Description:	Ex-Tech 520
Serial Number:	05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
(,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID:	Lab 3
Description:	Regulatory Bluetooth RF Tests
Type:	Bluetooth RF
Serial Number:	001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.
Bluetooth Signalling Unit CBT	CBT	100302	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/29 2015/08/28
Power Meter NRVD	NRVD Calibration Details	832025/059	Last Execution Next Exec.
	Standard calibration		2014/08/29 2015/08/28
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/28 2015/08/27
Power Supply	NGSM 32/10 Calibration Details	2725	Last Execution Next Exec.
	Standard calibration		2013/06/20 2015/06/19
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
Normarini S	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/29 2015/08/28
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

Test Equipment Shielded Room 02

Lab ID:	Lab 1
Manufacturer:	Frankonia
Description:	Shielded Room for conducted testing
Type:	12 qm
Serial Number:	none

Test Equipment Shielded Room 07

Lab ID:	Lab 3
Description:	Shielded Room 4m x 6m

Test Equipment T/A Logger 13

Lab ID:	Lab 1, Lab 2
Description:	Lufft Opus10 TPR
Type:	Opus10 TPR
Serial Number:	13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- und Regeltechnik GmbH
. ,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/26

Test Equipment T/H Logger 02

Lab ID:	Lab 1
Description:	Lufft Opus10
Serial Number:	7489

Single Devices for T/H Logger 02

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogger 02 (Environ)	Opus10 THI (8152.00)	7489	Lufft Mess- und Regeltechnik GmbH
. ,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/26

Test Equipment T/H Logger 12

Lab ID:	Lab 2
Description:	Lufft Opus10
Serial Number:	12482

Single Devices for T/H Logger 12

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogger 12 (Environ)	Opus10 THI (8152.00)	12482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/03/09

Test Equipment T/H Logger 15

Lab ID:	Lab 3
Description:	Lufft Opus10
Serial Number:	13985

Single Devices for T/H Logger 15

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogger 15 (Environ)	Opus10 THI (8152.00)	13985	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/03/09

Test Equipment Temperature Chamber 01

Lab ID:	Lab 3
Manufacturer:	see single devices
Description:	Temperature Chamber KWP 120/70
Туре:	Weiss
Serial Number:	see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/12 2016/03/11

- 5 Annex
- 5.1 Additional Information for Report

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report:

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Additional documents

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.4-2014 is applied.

Description of Methods of Measurements

Conducted emissions (AC power line)

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C 63.4,

Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4.

The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads. The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 5 kHz

- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords.

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations: 1) Neutral lead - reference ground (PE grounded)

- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range	QP Limit	AV Limit
(MHz)	(dBµV)	(dBµV)
0.15 - 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 - 30	60	50

Used conversion factor: Limit $(dB\mu V) = 20 \log (Limit (\mu V)/1\mu V)$.

Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth. The resolution bandwidth for measuring the reference level and the occupied bandwidth was 30 kHz.

The EUT was connected to the spectrum analyzer via a short coax cable.

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to

Reference: MDE_AAVAM_1408_FCCb_rev1 According to:Title 47 CFR chapter I part 15 subpart C FCC ID: 2ABVH-INARI51 IC: 11875A-INARI51 m hopping rate from a pseudo randomly ordered list of d equally on the average by each transmitter. The system

channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz.

Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The resolution bandwidth for measuring the output power was set to 3 MHz. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (1) (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW) ==> Maximum Output Power: 30 dBm

Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

- Frequency range: 30 – 25000 MHz

- Resolution Bandwidth (RBW): 100 kHz

- Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C 63.4,

Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration.

The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

- Anechoic chamber

- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

Measurement above 30 MHz and up to 1 GHz
 Step 1: Preliminary scan
 Preliminary test to identify the highest amplitudes relative to the limit.
 Settings for step 1:
 Detector: Peak-Maxhold

- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs (BT Timing 1.25 ms)
- Turntable angle range: -180 to +180°

- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180 to +180°
- Turntable step size: 45°
- Height variation range: 1 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height
- The last two values have now the following accuracy:
- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m
- Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $+/-22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -22.5° to +22.5° around the determined value
- Height variation range: -0.25 m to +0.25 m around the determined value
- Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

- EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz: The measurement distance was reduced to 1.4 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a standard gain horn antenna (18–25 GHz) are used, the steps 2–4 are omitted. Step 1 was performed with one height of the receiving antenna only.

- EMI receiver settings:
- Detector: Peak, Average
- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. For the enhanced data rate packets the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at basic data rate. Typically, the measurement for these packets is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the basic data rate. Please refer to the results for the used frequency range.

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency (MHz) 0.009 - 0.49 0.49 - 1.705 1.705 - 30	Limit (µV/m) 2400/F(kHz) 24000/F(kHz) 30	Measurement distance (m) 300 30	Limit @ 10 m distand (dBµV/m) 48.513.8 + 59.1 dE 33.823.0 + 19.1 dE 29.5 + 19.1	3 = 107.672.9
Frequency (MHz) 30 - 88 88 - 216 216 - 960 above 960	Limit (µV/m) 100 150 200 500	Measurement distance (m) 3 3 3 3 3	Limit (dBµV/m) 40.0 43.5 46.0 54.0	

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C 63.4, FCC §15.31

Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower band edge by a conducted measurement and

2. show compliance of the higher band edge by a radiated and conducted measurement.

For the first measurement the EUT is set to transmit on the lowest channel (2402 MHz). The lower band edge is 2400 MHz.

Analyzer settings: - Detector: Peak

- RBW = 100 kHz

- VBW = 300 kHz

VDW- 500 KHZ

For the second measurement the EUT is set to transmit on the highest channel (2480 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak

- RBW= 100 kHz

- VBW= 300 kHz

EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Test Requirements / Limits

FCC Part 15.247 (d) "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall

Reference: MDE_AAVAM_1408_FCCb_rev1 According to:Title 47 CFR chapter I part 15 subpart C FCC ID: 2ABVH-INARI51 IC: 11875A-INARI51 be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the measurement of the lower band edge the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the measurement of the higher band edge the limit is "specified in Section 15.209(a)".

Dwell time

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is independent from the modulation pattern. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s

with:

- hop rate = 1600 * 1/s for DH1 packets = 1600 s-1

- hop rate = 1600/3 * 1/s for DH3 packets = 533.33 s-1

- hop rate = 1600/5 * 1/s for DH5 packets = 320 s-1

- number of hopping channels = 79

- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

Channel separation

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

Test Description

The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern. The EUT was connected to spectrum analyzer via a short coax cable. Analyzer settings:

- Detector: Peak-Maxhold
- Span: 3 MHz
- Centre Frequency: a mid frequency of the 2.4 GHz ISM band
- Resolution Bandwidth (RBW): 30 kHz
- Video Bandwidth (VBW): 100 kHz
- Sweep Time: Coupled

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

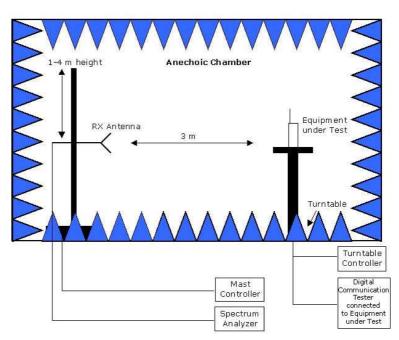
Number of hopping frequencies

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

Test Description

The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern. The EUT was connected to spectrum analyzer via a short coax cable.


- Analyzer settings:
- Detector: Peak-Maxhold
- Centre frequency: 2442 MHz
- Frequency span: 84 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: Coupled

Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces

November, 2014

To Whom This May Concern

Correlation of measurement requirements for FHSS (e.g. Bluetooth[®]) equipment from FCC and IC

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-210 Issue 8: A8.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-210 Issue 8: A8.4 (2)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13/8.9/8.10; RSS-210 Issue 8: A8.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-210 Issue 8: A8.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-210 Issue 8: A8.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-210 Issue 8: A8.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-210 Issue 8: A8.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3; RSS Gen Issue 4: 5 / 7 *)

*) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30-960 MHz or if these are scanner receivers.

Revision History

Report version control				
Version	Release date	Change Description	Version validity	
initial	2015-07-23		invalid	
rev1	2015-08-18	 ANSI 63.4:2009 replaced by ANSI 63.4:2014 Summarizing radiated spurious emissions results and worst case setup Adding conducted emissions results on AC mains Adding IEEE 802.11n (5 GHz) to the supported features 	valid	

6 Index

1 Administrative Data	2
1.1 Project Data	2
1.2 Applicant Data	2
1.3 Test Laboratory Data	2
1.4 Signature of the Testing Responsible	2
1.5 Signature of the Accreditation Responsible	3
2 Test Object Data	3
2.1 General OUT Description	3
2.2 Detailed Description of OUT Samples	4
2.3 OUT Features	5
2.4 Setups used for Testing	6
3 Results	6
3.1 General	6
3.2 List of the Applicable Body	7
3.3 List of Test Specification	7
3.4 Summary	8
3.5 Detailed Results	12
3.5.1 15c.1 Conducted emissions (AC power line) §15.207	12
3.5.2 15c.2 Spurious radiated emissions §15.247 (d), §15.35 (b), §15.209	15
3.5.3 15c.3 Occupied bandwidth §15.247 (a) (1)	16
3.5.4 15c.4 Peak power output §15.247 (b) (1)	33
3.5.5 15c.5 Spurious RF conducted emissions §15.247 (d)	51
3.5.6 15c.6 Band edge compliance §15.247 (d)	60
3.5.7 15c.7 Dwell time §15.247 (a) (1) (iii)	75
3.5.8 15c.8 Channel separation §15.247 (a) (1)	77
3.5.9 15c.9 Number of hopping frequencies §15.247 (a) (1) (iii)	79
4 Test Equipment Details	81
4.1 List of Used Test Equipment	81

	Reference: MDE_AAVAM_1408_FCCb_rev1
	According to:Title 47 CFR chapter I part 15 subpart C
	FCC ID: 2ABVH-INARI51
	IC: 11875A-INARI51
5 Annex	90
5.1 Additional Information for Report	90
6 Index	102