

Inter**Lab**

FCC Measurement/Technical Report on

NFC transceiver INARI10-LTBN-1

Report Reference: MDE_AAVAM_1402_FCCa

FCC ID: 2ABVH-INARI101 IC: 11875A-INARI101

Test Laboratory:

7Layers AG Borsigstr. 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7Layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

O	Sun	nmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adn	ninistrative Data	5
1	.1 .2 .3 .4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2	Tes	t object Data	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Special software used for testing Product labelling	6 7 7 7 8 8 8
3	Tes	t Results	9
3 3	3.1 3.2 3.3 3.4 3.5	Conducted emissions (AC power line) Spurious radiated emissions Occupied bandwidth Spectrum mask Frequency tolerance	9 11 15 16 17
4	Tes	t Equipment	19
5	Pho	to Report	25
6	Set	up Drawings	25
7	FCC	and IC Correlation of measurement requirements	26
8	Ann	nex measurement plots	27
8	3.1 3.2 3.3 3.4	Radiated emissions AC Mains conducted Occupied bandwidth Spectrum mask	27 30 31 33

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an intentional radiator operating at 13.56 MHz

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-13 Edition) and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.205 Restricted bands of operation

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.215 Additional provisions to the general radiated emission limitations

§ 15.225 Operation within the band 13.110-14.010 MHz

Note:

Instead of applying ANSI C63.4–1992, which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C § 15.207 Conducted Emissions AC Power line The measurement was performed according to ANSI C63.4 2009 **OP-Mode** Setup **Final Result** op-mode 1 Setup_01 AC port (power line) passed FCC Part 15, Subpart C §15.209 Radiated Emissions The measurement was performed according to ANSI C63.4 2009 **OP-Mode Final Result** Setup Port op-mode 1 Setup 01 Enclosure passed FCC Part 15, Subpart C § 15.215 Occupied Bandwidth The measurement was performed according to FCC § 2.1049 10-1-13 Edition OP-Mode **Final Result** Setup Port op-mode 1 Setup_02 Enclosure passed FCC Part 15, Subpart C § 15.225 Spectrum Mask The measurement was performed according to ANSI C63.4 2009 OP-Mode **Final Result** Setup Port op-mode 1 Setup 01 Enclosure passed FCC Part 15, Subpart C § 15.225

0.3 Report revision

Frequency Tolerance

OP-Mode

op-mode 2

Report version control					
Version Release date Changes Version					
001	29.09.2014	Section 4 of the initial version	valid		

Port

Enclosure

The measurement was performed according to FCC § 2.1055

Setup

Setup_01

Responsible for Accreditation Scope:

Responsible for Test Report:

10-1-13 Edition

Final Result

passed

1 Administrative Data

1.1 Testing Laboratory

i.i resting Edboratory	
Company Name:	7Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the Laboratory accreditation no.:	following accreditation organisation: DAkkS D-PL-12140-01-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Andreas Petz DiplIng. Marco Kullik
Report Template Version:	2012-03-14
1.2 Project Data	
Responsible for testing and report:	Patrick Lomax
Date of Test(s): Date of Report:	2014-03-21 to 2014-03-24 2014-09-29
1.3 Applicant Data	
Company Name:	Aava Mobile Oy
Address:	Nahkatehtaankatu 2 90130 Oulu Finland
Contact Person: Phone: Fax: E-Mail:	Mr. Kari Räisänen +3588373800 +49 (0) 2102 749 380 kari.raisanen@aavamobile.com
1.4 Manufacturer Data	
Company Name:	please see applicant data
Address:	
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under TestTablet computer with embedded cellular modem

and WLAN/BT

Type Designation: INARI10-LTBN-1

Kind of Device: 13.56 MHz NFC transceiver

(optional)

Voltage Type: DC of AC/DC converter or DC (internal battery)

Voltage level: 120 – 240 V, 50 – 60 Hz AC / 3.8 V DC

General product description:

The INARI10-LTBN-1 is a tablet computer with embedded cellular modem and WLAN/BT. It supports the following technologies: WCDMA, HSDPA, HSDPA, HSPA+, GPRS, EDGE and LTE for cellular communication, IEEE 802.11 a/b/g/n for WiFi, Bluetooth 4.0 + HS and NFC transceiver. The EUT has a built in GPS receiver as well.

This tablets (INARI10-LTBN-1) implements the identical NFC radio system from the previously tested Inari8-3GAN-1 (FCC ID: 2ABVH-INAR81) and inherits the results from its testing.

Specific product description for the EUT:

The object of this test report is the NFC transceiver, operating in 13.56 MHz frequency range.

The EUT provides the following ports:

Ports

- Enclosure
- AC in (@ charger)
- DC in (Micro USB interface @ tablet)
- Audio Jack (3.5 mm @ tablet)
- Data (USB 2.0 Port @ tablet)
- DC in (12 V @ docking station)
- Data (LAN @ docking station)
- Data (docking connector)
- Data (2 x USB 2.0 Port @ docking station)
- Data (1 x USB 3.0 Port @ docking station)
- Data (HDMI @ docking station)

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	Inari8-	Variant:	IN140	Pre-Prod Sample	Win.8.1	-
(Code:	3GAN-C1 *	AB-W, B	60109	IMEI:	Pro.	
DE1004000ab01)				866274011175167		
Remark:	EUT A is equip	ped with an inte	gral anter	nna (gain = 2.15 dBi).		
EUT B	Inari8-	Variant:	IN140	Pre-Prod Sample	Win.8.1	-
(Code:	3GAN-A1*	AB-W, B	60123	IMEI:	Pro.	
DE1004000ad02)				866274011175209		
Remark:	Remark: EUT B is equipped with an integral antenna (gain = 2.15 dBi).					

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	FCC ID
AE 1	Docking Station (DS)	AavaMobile	XHH40560983	_	_	-
AE 2	AC/DC adapter for DS (USA st.)	Toshiba, Model: PA396U-1ACA	G71C000CK110; TO113510001671A	-	-	_
AE 3	USB Cable, Type A <=> Micro USB	28AWG/1P+24A WG/2C E326508, AWM 2725, 1m	-	-	-	-
AE 4	dummy battery module	AavaMobile/ INARI	#3	_	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX 1 (Code DE1004000	NFC Tag	UPM RAFLATRAC Race Track		25_17	-	-
tag1)						

^{*} This tablets (INARI10-LTBN-1) implements the identical NFC radio system from the previously tested Inari8-3GAN-1 (FCC ID: 2ABVH-INAR81) and inherits the results from its testing.

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale	
Setup_01	EUT B + AUX 1	EUT reading a tag (representative setup for radiated	
		measurements)	
Setup_02	EUT A + AUX 1 + AE 4	EUT reading a tag (representative setup for radiated	
		measurements in normal and extreme conditions)	
Setup_03	EUT A + AE 1-3 + AUX 1	EUT reading a tag (representative test for radiated emissions	
		measurements above 30 MHz)	
Setup_04	EUT A + AE 1-3 + AUX 1	setup for test "AC Mains conducted"	

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	modulated carrier signal	EUT is transmitting a periodic modulated signal
		and is continuously reading TAG information.

2.7 Special software used for testing

NXP Application version 1.6.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu H \mid\mid 50$ Ohm Line Impedance Stabilization Network (LISN) which meets the requirements of ANSI C63.4, Annex B, in the frequency range of the measurements. The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak Maxhold
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 5 kHzIF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords
- AC Mains supplied at 120 V / 60 Hz

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-PeakIF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz) QP Limit (dBμV) AV Limit (dBμV) 0.15 – 0.5 66 to 56 56 to 46 0.5 – 5 56 46 5 – 30 60 50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 39 %

Op. ModeSetupPortop-mode 1Setup_04AC Port (power line)

Power line	Frequency MHz	Measured value dBµV	Delta to limit dBµV	Remarks
L1	0.210	51.3	11.9	QP-detector
N	0.280	42.0	18.8	QP-detector
N	0.420	38.2	19.2	QP-detector
L1	13.560	45.7	4.3	OP-detector

Remark: Please see annex for the measurement plot.

The operating frequency (wanted signal / carrier) of the EUT is set to 13.56 MHz (NFC) by the manufacturer and cannot be changed.

The conducted emission found in the last row of the table above, clearly corresponds to the fixed transmitter frequency of the EUT. It was determined, that this emission on the AC mains is based on radiated coupling into the test setup. Therefore, for the assessment of the test result, the fixed transmitter frequency of the EUT is not considered.

The chosen operating mode is selected as representative mode to generate "worst-case" conditions, i.e. high power consumption.

3.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_AAVAM_1402_FCCa Page 10 of 33

3.2 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.2.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10 mDetector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHzMeasuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 µs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step, the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: –22.5° to +22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated, which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m)+59.1dB
0.49 - 1.705	24000/F(kHz)	30	Limit (dBµV/m)+19.1dB
1.705 – 30	30	30	Limit (dBµV/m)+19.1dB

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.2.3 Test Protocol

Temperature: 23 - 24 °C

Air Pressure: 1009 – 1011 hPa

Humidity: 38 – 41 %

3.2.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP Peak AV		QP	Peak	AV	QP/Peak	AV	
-	_	-	_	_	_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. Please refer to the plot in the annex.

3.2.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port	
op-mode 1	Setup_03	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
vertical	30.120	27.6	1	-	40.0	-	ı	12.4	_
vertical	30.780	29.5	ı	-	40.0	_	ı	10.5	-
vertical	31.320	27.7	1	-	40.0	_	1	12.3	1
vertical	48.000	27.4	ı	-	40.0	_	j	12.6	1
vertical	49.080	24.4	ı	-	40.0	_	I	15.6	1
vertical	72.000	27.2	1	-	40.0	_	1	12.8	1
vertical	87.960	33.1	ı	-	40.0	_	ı	6.9	1
vertical	103.980	40.1	ı	-	43.5	_	I	3.4	1
vertical	180.000	36.0	1	_	43.5	_	1	7.5	1
horizontal	939.960	33.6	_	_	46.0	_	_	12.4	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

3.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

3.3 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case

3.3.2 Test Requirements / Limits

(widest) occupied bandwidth.

FCC Part 15, Subpart C, §15.215 (c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. ...

3.3.3 Test Protocol

Temperature: 23 °C
Air Pressure: 1010 hPa
Humidity: 39 %

Op. Mode	Setup	Port
op-mode 1	Setup_02	Enclosure

99% bandwidth kHz	Remarks
430.862 kHz	The 99% bandwidth from 13.346072 MHz to 13.776934 MHz is contained within the designated frequency band 13.110 MHz to
	kHz

Remark: Please see annex for the measurement plot.

3.3.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_AAVAM_1402_FCCa Page 15 of 33

3.4 Spectrum mask

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.225

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Anechoic chamberAntenna distance: 10 m

- Detector: Peak-Maxhold

- Frequency range: 13.06 - 14.06 MHz

Frequency steps: 5 kHzIF-Bandwidth: 10 kHz

- Measuring time / Frequency step: 100 ms

3.4.2 Test Limits

FCC Part 15, Subpart C, §15.225 (a-d), and §15.209, corrected by the means of the extrapolation of §15.31 due to the reduced measuring distance from 30 m to 10 m.

3.4.3 Test Protocol

Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 39 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Maximum value dBµV/m	Limit dBµV/m	Remarks
-32.16	103	measuring distance 10 m

Remark: Please see annex for the measurement plot.

3.4.4 Test result: Spectrum mask

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_AAVAM_1402_FCCa Page 16 of 33

3.5 Frequency tolerance

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.225

3.5.1 Test Description

The Equipment Under Test (EUT) is placed in a temperature chamber.

The frequency drift during temperature and voltage variation is measured by the means of a spectrum analyzer with frequency counter function.

The temperature was varied from -20 °C to +50 °C. At +20 °C the extreme power supply voltages of 85% to 115% DC are applied. After reaching each target temperature and waiting sufficient time allowing the temperature to stabilize, one measurement is performed immediately after powering on the EUT, and two further measurements are performed after 5 and 10 minutes continuous operation of EUT.

3.5.2 Test Limits

FCC Part 15, Subpart C, §15.225 (e): The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Test Protocol

Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_02 Enclosure

Temperature	Voltage	Time	Frequency	Delta
/ °C	/ V	/ min.	/ MHz	/ Hz
50	3.8	0	13.559905	-102
50	3.8	5	13.559899	-101
50	3.8	10	13.559898	-95
40	3.8	0	13.559912	-88
40	3.8	5	13.559906	-94
40	3.8	10	13.559903	-97
30	3.8	0	13.559925	-75
30	3.8	5	13.559922	-78
30	3.8	10	13.559918	-82
20	4.35	0	13.559936	-64
20	4.35	5	13.559933	-67
20	4.35	10	13.559932	-68
20	3.8	0	13.559935	-65
20	3.8	5	13.559933	-67
20	3.8	10	13.559932	-68
20	3.5	0	13.559934	-66
20	3.5	5	13.559933	-67
20	3.5	10	13.559932	-68
10	3.8	0	13.559948	-51
10	3.8	5	13.559948	-52
10	3.8	10	13.559949	-50
0	3.8	0	13.559965	-35
0	3.8	5	13.559964	-36
0	3.8	10	13.559965	-35
-10	3.8	0	13.559985	-25
-10	3.8	5	13.559984	-26
-10	3.8	10	13.559984	-26
-20	3.8	0	13.560022	22
-20	3.8	5	13.560021	21
-20	3.8	10	13.560021	21

Remark: The limit is a delta of max. ± 1356 Hz (0.01 %).

3.5.3 Test result: Frequency tolerance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab 1D: Lab 2

Manufacturer: Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

NSA (FCC) 2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Type	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ FCC listing 96716 3m Part15/18	none	Frankonia 2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer: Rohde & Schwarz GmbH & Co.KG
Description: EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Туре	Serial Number	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/10 2016/01/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/08 2016/01/31

Single Devices for Auxiliary Equipment for Conducted emissions (continued)

Single Device Name	Type	Serial Number	Manufacturer
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

-	· · ·		
Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/06/04 2014/06/03
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trillithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Pyramidal Horn Antenr 26,5 GHz	na 3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenr 40 GHz	na 3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 2, Lab 3Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/07/29 2014/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide	erWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/05/03 2014/05/02
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
Standard	Standard calibration		2013/06/24 2014/06/23
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH &
	Standard calibration		Co.KG 2013/04/30 2014/04/29
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch
VO.3311 00	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/11 2016/03/10

Test Equipment Temperature Chamber 01

Lab ID: Lab 4

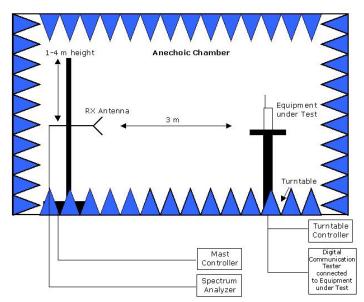
Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01


Single Device Name	Type	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11
	Customized calibration		2014/03/12 2016/03/11

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber: Measurements below 1 GHz: Semi-anechoic, conducting ground plane.

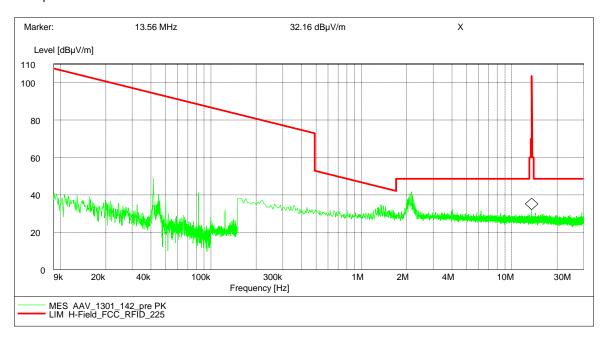
7 FCC and IC Correlation of measurement requirements

The following table shows the correlation of measurement requirements for Radio equipment operating in the Band 13.110-14.010 MHz from FCC and IC..

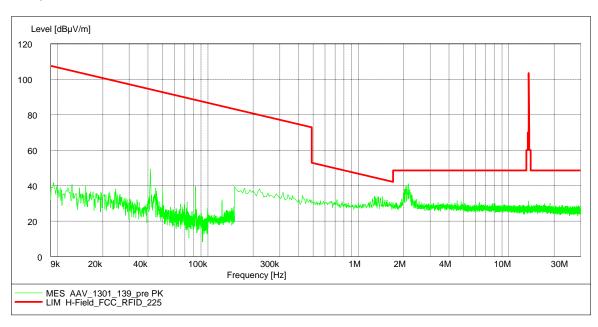
Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Out-of-band emissions	§ 15.225 (d)	RSS-Gen Issue 3: 7.2.5; RSS-210 Issue 8: A2.6
In-band emissions	§ 15.225 (a) / (b) / (c)	RSS-210 Issue 8: A2.6
Frequency stability	§ 15.225 (e)	RSS-210 Issue 8: A2.6
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3 RSS-Gen Issue 3: 6 *)
Handling of active and passive tag devices of RFID application	§ 15.225 (f)	RSS-Gen Issue 3: 7.1.8

^{*)} Receivers operating below 30 MHz are exempted with respect to Notice 2012-DRS0126.

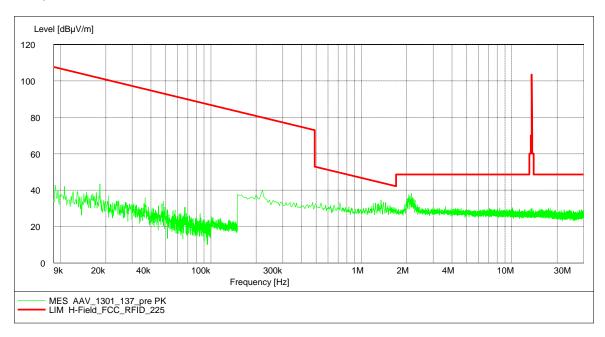


8 Annex measurement plots

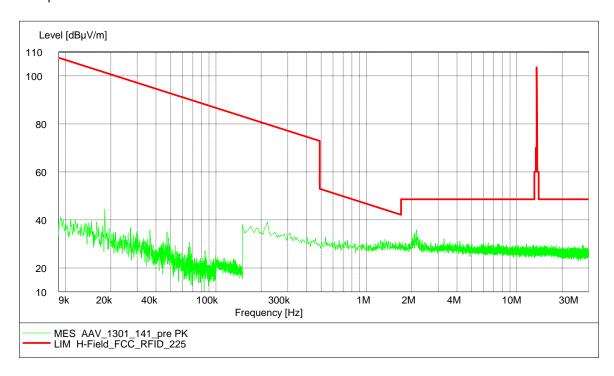

8.1 Radiated emissions

8.1.1 Radiated emissions (f < 30 MHz)

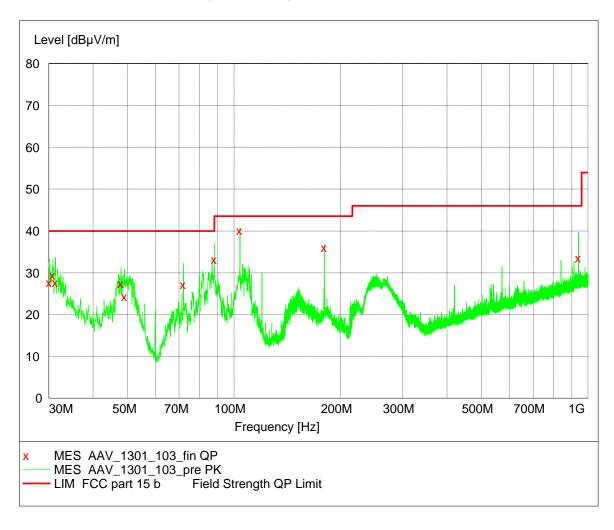
Antenna position 90° EUT position horizontal



Antenna position 90° EUT position vertical

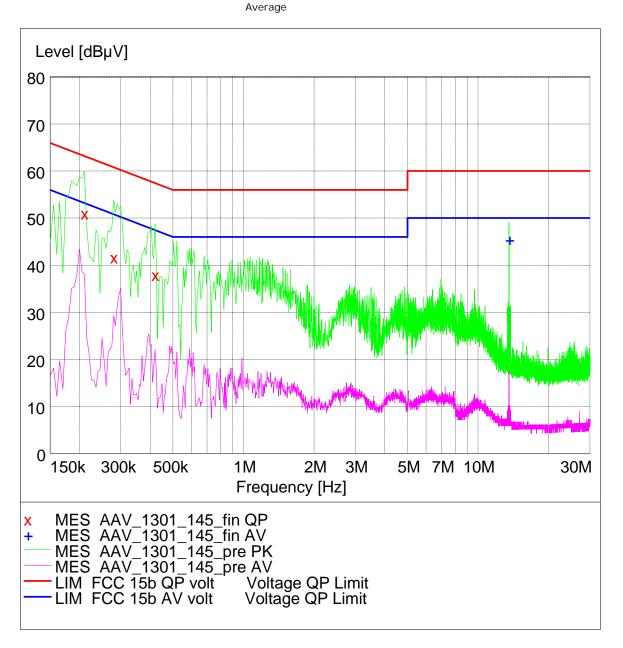


Antenna position 0° EUT position vertical



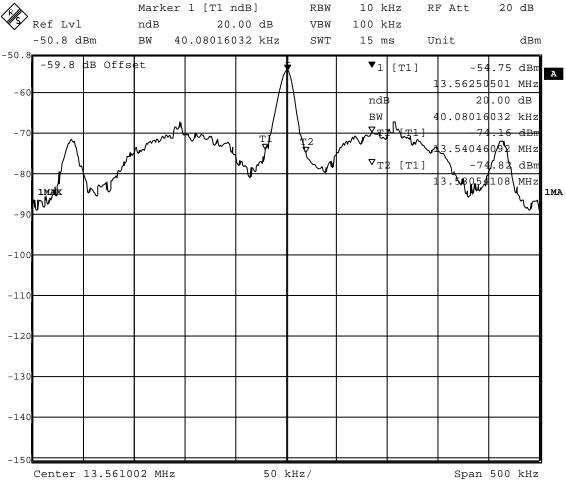
Antenna position 0° EUT position horizontal

8.1.2 Radiated emissions (f > 30 MHz)

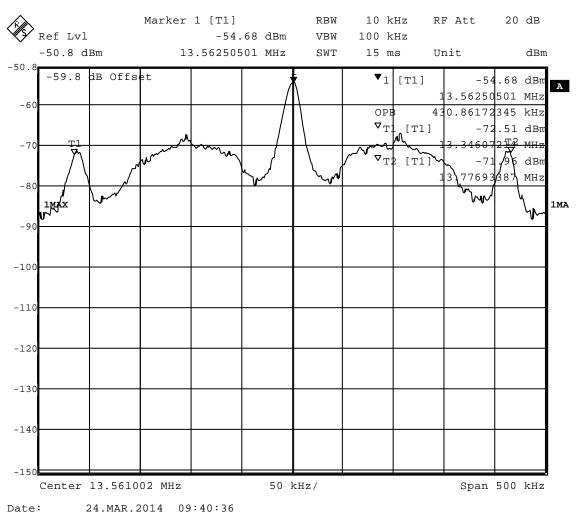


8.2 AC Mains conducted

Short Description:
Start Stop
Frequency Frequency
150.0 kHz 30.0 MHz

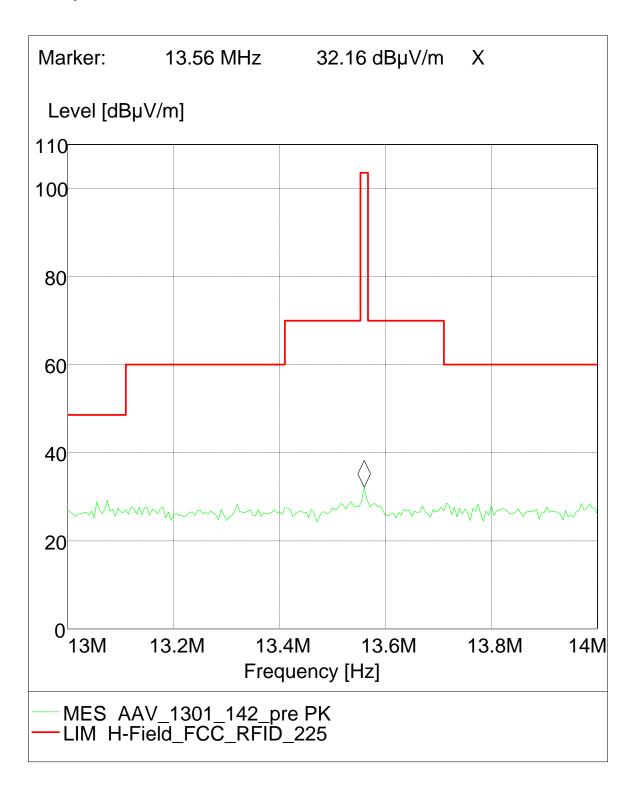

Step Petector
Width
5.0 kHz MaxPeak

Meas. Time 20.0 ms IF Transducer Bandw. 9 kHz ESH3-Z5


8.3 Occupied bandwidth

Date: 24.MAR.2014 09:38:42

20 dB occupied bandwidth



Date: 24.MAR.2014 09.40.50

99% occupied bandwidth.

8.4 Spectrum mask

