

InterLab FCC Measurement/Technical Report on

WLAN transceiver in

Tablet Computer INARI10-LTBN-1

According to: Title 47 CFR chapter I part 15 subpart E

FCC ID: 2ABVH-INARI101 IC: 11875A-INARI101

Report Reference: MDE_AAVAM_1402_FCCc

Test Laboratory: 7Layers AG Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Applied Standards and Test Summary	3
0.1	Applied Standards	3
0.2	FCC-IC Correlation Table	4
0.3	Measurement Summary / Signatures	5
1	Administrative Data	11
1.1	Testing Laboratory	11
1.2	Project Data	11
1.3	Applicant Data	11
1.4	Manufacturer Data	11
2	Test object Data	12
2.1	General EUT Description	12
2.2	EUT Main components	13
2.3	Ancillary Equipment	13
2.4	Auxiliary Equipment	14
2.5	EUT Setups	15
2.6	Operating Modes	15
2.7	Special software used for testing	16
2.8	Product labelling	16
3	Test Results	17
3.1	Conducted emissions (AC power line)	17
3.2	Emission bandwidth (26 dB / 99 %)	20
3.3	Maximum conducted output power	25
3.4	Peak Power Spectral Density	30
3.5	Peak Excursion	35
3.6	Frequency Stability	41
3.7	Undesirable Emissions / General Field Strength Limits; Restricted Band and Radiated Emission Limits, Band Edge	42
4	Test Equipment	49
5	Photo Report	58
6	Setup Drawings	58

0 Applied Standards and Test Summary

0.1 Applied Standards

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- Part 15, Subpart E Unlicensed National Information Infrastructure Devices
- § 15.403 Definitions
- § 15.407 General technical requirements

Notes:

The tests were selected and performed with reference to the FCC OET "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, 789033 D01 General U-NII Test Procedures v01r03, April 8, 2013" and is hereinafter referred to as "UNII-Guideline".

Instead of applying ANSI C63.4–1992, the newer ANSI C63.4–2009 is applied.

Testing performed with 100% Duty Cycle

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary / Signatures.

0.2 FCC-IC Correlation Table

Correlation of measurement requirements for UNII / LE-LAN (e.g. WLAN 5 GHz) equipment

UNII equipment +)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.403 (i) (26 dB)	RSS-210 Issue 8: A9.2, 9.4 (99%)
Peak conducted output power	§ 15.407 (a) (1),(2),(3),(4)	RSS-210 Issue 8: A9.2, 9.4
Peak power spectral density	§ 15.407 (a) (1),(2),(3),(5)	RSS-210 Issue 8: A9.2, 9.4
Peak excursion	§ 15.407 (a) (6)	N/A
Transmitter undesirable emissions; General Field Strength Limits, Restricted Bands	15.407 (b) § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A9.2, 9.4
Frequency stability	§ 15.407 (g)	RSS-Gen Issue 3: 7.2.6, 4.7
Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	§ 15.407 (h)	RSS-210 Issue 8: A9.2, 9.4
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3; RSS Gen Issue 3: 6 *)

*) Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

+) Devices operating in the band 5725-5825 MHz may also be tested as DTS equipment, FCC §15.247 / Digital Modulation Systems IC RSS-210, Annex 8, where operation up to 5850 MHz is permitted.

0.3 Measurement Summary / Signatures

FCC Part 15, Subpart C Conducted emissions (AC p	ower line)	§ 15.207	
The measurement was per		a to ANSI C63 4	
OP-Mode	Setup	Port	Final Result
n-mode, CH 56, 20 MHz,	Setup_ab01	AC Port (power line)	passed
6.5 Mbps			passoa
FCC Part 15, Subpart E		§ 15.403 (i)	
26dB Emission bandwidth			
The measurement was per	formed accordin	g to FCC § 15.31	
OP-Mode	Setup	Port	Final Result
a-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
a-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 38, 40 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 46, 40 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 54, 40 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 62, 40 MHz	Setup_ag01	Temp.ant.connector	no verdict
n-Mode, CH 102, 40 MHz	Setup_ag01	Temp.ant.connector	no verdict
	Satur ag01	Temp.ant.connector	no verdict
n-Mode, CH 110, 40 MHz n-Mode, CH 134, 40 MHz	Setup_ag01 Setup_ag01	remp.ant.connector	no veruici

FCC Part 15, Subpart E

§ 15.407 (a)(1,2,3,4)

Maximum Conducted Output Power					
The measurement was performed according to FCC § 15.31					
OP-Mode	Setup	Port	Final Result		
a-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 38, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 46, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 54, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 62, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 102, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 110, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 134, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		

FCC Part 15, Subpart E Peak Power Spectral Density

§ 15.407 (a)(1,2,3,5)

Peak Power Spectral Density					
The measurement was performed according to FCC § 15.31					
OP-Mode	Setup	Port	Final Result		
a-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
a-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 38, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 46, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 54, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 62, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 102, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 110, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		
n-Mode, CH 134, 40 MHz	Setup_ag01	Temp.ant.connector	Passed		

FCC Part 15, Subpart E Peak Excursion § 15.407 (a)(6)

Peak Excursion			
The measurement was per	formed according	to FCC § 15.31	
OP-Mode	Setup	Port	Final Result
a-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
a-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 36, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 44, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 48, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 52, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 56, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 64, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 100, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 116, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 140, 20 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 38, 40 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 46, 40 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 54, 40 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 62, 40 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 102, 40 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 110, 40 MHz	Setup_ag01	Temp.ant.connector	Passed
n-Mode, CH 134, 40 MHz	Setup_ag01	Temp.ant.connector	Passed

FCC Part 15, Subpart E Frequency Stability

§ 15.407 (g)

The measurement was performed according to FCC § 15.31					
OP-Mode Setup Port Final Result					
a-Mode, CH 52, 20 MHz	Setup_ah01	Temp.ant.connector	Passed*		

FCC Part 15, Subpart E Undesirable Emissions

§ 15.407 (b)(1,2,3,4)

Undesirable Emissions				
The measurement was performed according to ANSI C63.4				
OP-Mode	Setup	Port	Final Result	
a-Mode, CH 36, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 44, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 48, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 52, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 56, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 64, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 100, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 116, 20 MHz	Setup_ae01	Enclosure	passed	
a-Mode, CH 140, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 36, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 44, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 48, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 52, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 56, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 64, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 100, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 116, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 140, 20 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 38, 40 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 46, 40 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 54, 40 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 62, 40 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 102, 40 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 110, 40 MHz	Setup_ae01	Enclosure	passed	
n-Mode, CH 134, 40 MHz	Setup_ae01	Enclosure	passed	

General Field Strength Lim	its; Restricted B	ands and	
Radiated Emission Limits			
The measurement was per	formed accordin	g to ANSI C63.4	
OP-Mode	Setup	Port	Final Result
a-Mode, CH 36, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 44, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 48, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 52, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 56, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 64, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 100, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 116, 20 MHz	Setup_ae01	Enclosure	passed
a-Mode, CH 140, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 36, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 44, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 48, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 52, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 56, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 64, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 100, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 116, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 140, 20 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 38, 40 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 46, 40 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 54, 40 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 62, 40 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 102, 40 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 110, 40 MHz	Setup_ae01	Enclosure	passed
n-Mode, CH 134, 40 MHz	Setup_ae01	Enclosure	passed
FCC Part 15, Subpart E		§ 15.407 (h)	

The measurement was performed according to FCC § 15.31					
OP-Mode	Setup	Port	Final Result		
-	-	-	Not performed		

N/A not applicable

Responsible for Accreditation Scope: Responsible for Test Report:

Administrative Data 1

1.1 Testing Laboratory

Company Name:	7Layers AG
Address	Borsigstr. 1

sigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell DiplIng. Andreas Petz DiplIng. Marco Kullik
Report Template Version:	2014-04-16

Report Template Version:

1.2 Project Data

Responsible for testing and report:	Patrick Lomax		
Date of Test(s):	2014-02-28 to 2014-08-26		
Date of Report:	2014-10-12		

1.3 Applicant Data

va Mobile OY
hkatehtaankatu 2 130 Oulu land
Kari Räisänen
ase see at applicant data

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test:	IEEE 802.11a/b/g/n WLAN transceiver
Type Designation:	INARI10-LTBN-1
Kind of Device:	Tablet Computer
(optional)	
Voltage Type:	DC
Voltage Level:	4.8 V
Tested Modulation Type:	DBPSK; OFDM:BPSK; OFDM:64-QAM

General product description:

Tablet computer with integrated WiFi and cellular modem.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 a/b/g/n, 2.4 and 5 GHz) and Bluetooth module with two antennas. The main antenna is used for WLAN and Bluetooth, the auxiliary antenna for WLAN MIMO modes. In IEEE 802.11n mode it supports 20 MHz and 40 MHz bandwidth channels (both with MCS7), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively.

The EUT also supports MIMO technology with a maximum data rate of 300 Mbit/s (MCS15).

The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 a/n modes, working in the 5 GHz bands. In IEEE 802.11n mode, it was tested with 20 MHz and 40 MHz channel bandwidth in SISO and MIMO mode.

This tablets (INARI10-LTBN-1) implements the identical Bluetooth/WLAN radio system from the previously tested Inari8-3GAN-1 (FCC ID: 2ABVH-INAR81) and inherits the results from its testing.

*Testing performed with 100% Duty Cycle.

The EUT provides the following ports:

Ports Enclosure AC-Port (at AE1) DC Port (Micro-USB, only charging) USB-Port HDMI-Port

The main components of the EUT are listed and described in chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
EUT A (Code: DE1004000a g01)	WLAN transceiver in Tablet Computer	INARI8- 3GAN-1*	IN14060102	Pre- production sample	Windows 8.1
Remark: EUT e EUT B (Code: DE1004000a b01)	equipped with a WLAN transceiver in Tablet Computer	temporary ante INARI8- 3GAN-1*	nna connector. IN14060109	Pre- production sample	Windows 8.1
Remark: EUT e EUT D (Code: DE1004000a h01)	equipped with in WLAN transceiver in Tablet Computer	ntegral antennas INARI8- 3GAN-1* ntegral antennas	IN14060108	Pre- production sample	Windows 8.1
EUT E (Code: DE1004003a D01) Remark: EUT e	WLAN transceiver in Tablet Computer equipped with in	INARI 10- LTBN-1 ntegral antennas	KX14190232	Pre- production sample	Windows 8.1

NOTE: The short description is used to simplify the identification of the EUT in this test report. * This tablets (INARI10-LTBN-1) implements the identical WLAN radio system from the previously tested Inari8-3GAN-1 (FCC ID: 2ABVH-INAR81) and inherits the results from its testing.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status
AE1	AC/DC power	Delta	T01135100016	REV.: 00	-
(Code:	supply	Electronics	71A		
DE104000ac		INC., ADP-			
dc03)		10BW C			

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status
AUX1	Dummy battery (for supply by external DC power source)	– (AAVAM self- built)	-	_	-

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_ag01	EUT A + AUX1	setup for the conducted tests (besides 99% bandwidth)
Setup_ab02	EUT B + AE1	setup for conducted measurements, AC-Power Line
Setup_ae03	EUT E + AE1	setup for radiated measurements
Setup_ah01	EUT D + AUX1	setup for the conducted tests 99% bandwidth (for IC)

2.6 Operating Modes

2.6.1 Test Channels

UNII-Su	bband 1 5250 MHz	,	UNII-Subband 2A 5250 – 5350 MHz			UNII-Subband 2C 5470 – 5725 MHz			UNII-Subband 3 5725 – 5825 MHz		
			5250 – 5350 MHZ 5470 – 5725 MHZ Channel No./Frequency [MHz]):			-	5725 - 5	023 10112	_		
Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор
36	44	48	52	56	64	100	116	140	-	-	-
5180	5220	5240	5260	5280	5320	5500	5580	5700	-	-	-
40 MHz ⁻	Test Char	nnels:	(Channel	No./Freq	uency	[MHz]):					
Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор
38	-	46	54	-	62	102	110	134	-	-	-
5190	-	5230	5270	-	5310	5510	5550	5670	-	-	-

COMMENT: Sub-band 3 not tested!

2.6.2 Data Rates

SISO:

WLAN a-Mode; 20 MHz; 6 Mbit/s
WLAN n-Mode; 20 MHz; 72.2 Mbit/s (MCS7, besides AC Mains emission test)

MIMO:

WLAN n-Mode; 40 MHz; 300 Mbit/s

2.7 Special software used for testing

The applicant provided the prepared EUTs (i.e. pre-installed) where a software called "WLANCONTROLLER.EXE" can be started via an icon on the desktop.

All radiated tests have been performed while a power table was applied to reach a nominal RMS output power of approx. 12 dBm, all conducted tests have been performed with a changed power table reducing the nominal RMS by approx. 3 dB for the n-modes.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C 63.4

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1. EMI receiver settings:

- Detector: Quasi-Peak

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz)	QP Limit (dBµV)	AV Limit (dBµV)
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

Temperature:	24 °C
Air Pressure:	1009 hPa
Humidity:	36 %

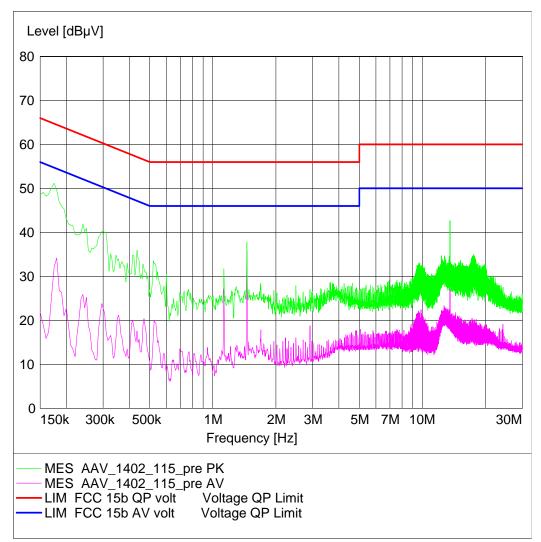
Op. Mode

Op. Mode	Setup	Port
Mode 5280 MHz, n-mode, 6.5 Mbps	Setup_ab01	AC Port of AE1

Power line	Frequency MHz	Measured value QP dBµV	Measured value AV dBµV	QP Limit dBµV	AV Limit dBµV	Margin QP dB	Margin AV dB
N	0.195	54.3	-	64.0	-	9.7	-
L1	0.530	41.1	-	56.0	-	14.9	-
N	13.565	46.7	_	60.0	-	13.3	_

Remark: The chosen operating mode is selected as representative mode to generate "worst-case" conditions, i.e. high power consumption.

3.1.4 Measurement Plot (showing the highest value, "worst case")


```
AC MAINS CONDUCTED
```

```
Class B
```

EUT:	(DE1004003ad01)
Manufacturer:	AAVA Mobile
Operating Condition:	WLAN TX on 2437 MHz, NFC on, pinging, GSM 1900 traffic mode
Test Site:	7 layers Ratingen
Operator: Test Specification: Comment: Start of Test:	URO ANSI C63.4; FCC 15.107 / 15.207 computer peripheral setup with docking station, 120 V / 60 Hz 01.10.2014 / 09:08:00

SCAN TABLE: "FCC Voltage"

з							
	Short Desc	ription:		FCC Voltage			
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	150.0 kHz	30.0 MHz	5.0 kHz	<u>MaxPeak</u> Average	20.0 mg	9 kHz	ESH3-Z5

3.2 Emission bandwidth (26 dB / 99 %)

Standard FCC Part 15, Subpart E

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth (26 dB and 99%).

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings (26 dB bandwidth):

- Resolution Bandwidth (RBW): 200 kHz (approx. 1 % of emission bandwidth)
- Video Bandwidth (VBW): 300 kHz
- Detector: Peak
- Trace: Maxhold
- Sweeps: > 200
- Sweeptime: auto (coupled)

Note:

The analyser settings are according to "UNII-Guideline" method "C) Emission bandwidth".

Analyzer settings (99 % bandwidth):

- Resolution Bandwidth (RBW): 500 kHz (approx. ≥ 1 % of the span)
- Video Bandwidth (VBW): 2 MHz (RBW/VBW = 1/3 not possible, next higher value)
- Detector: Sample
- Trace: Maxhold
- Sweeps: ≥ 200
- Sweeptime: auto (coupled)

Note:

The analyser settings are according to IC RSS-210.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart E, §15.403 (i)

There exists no applicable limit. The test was performed to determine the limits for the "Maximum Conducted Output Power" test case. Therefore no verdict was assigned.

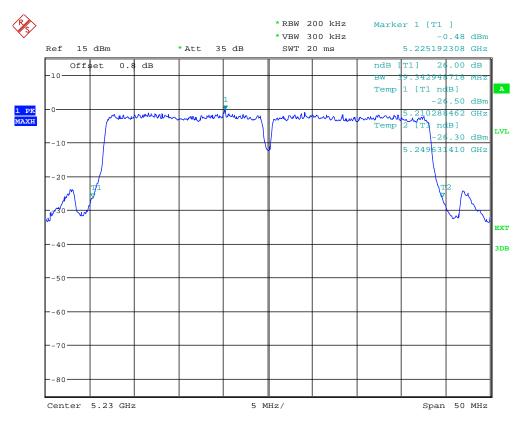
3.2.3 Test Protocol

Temperature:	21–24 °C
Air Pressure:	1005–1014 hPa
Humidity:	32-43 %

SISO:

WLAN a-Mode; 20 MHz; 6 Mbit/s							
UNII- Subband	Channel No.	Frequency [MHz]	26 dB Bandwidth [MHz]	99 % Bandwidth [MHz]			
1	36	5180	19.744	16.827			
	44	5220	19.615	16.747			
	48	5240	19.679	16.667			
2A	52	5260	19.744	16.827			
	56	5280	19.679	16.747			
	64	5320	19.744	16.667			
2C	100	5500	19.679	16.747			
	116	5580	19.744	16.747			
	140	5700	19.744	16.747			

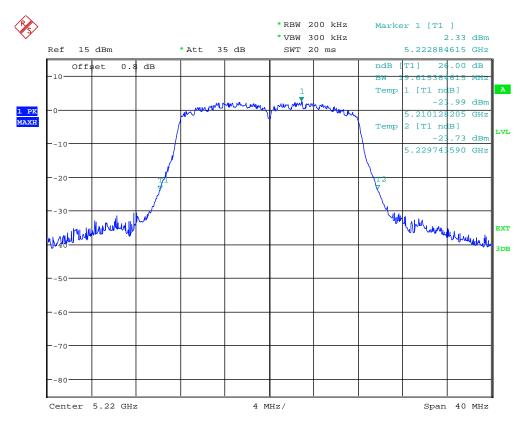
WLAN n-M				
1	36 5180		20.000	17.628
	44	5220	19.936	17.628
	48	5240	20.064	17.628
2A	52	5260	19.936	17.628
	56	5280	19.872	17.708
	64	5320	19.936	17.628
2C	100	5500	20.000	17.628
	116	5580	19.936	17.628
	140	5700	19.936	17.628


MIMO:

WLAN n-M				
1	38 5190		39.423	36.458
	46	5230	39.342	36.378
2A	54	5270	39.503	36.458
	62	5310	39.423	36.458
2C	102	5510	39.343	36.378
	110	5550	39.343	36.458
	134	5670	39.503	36.378

	20 MHz BW:	40 MHz BW:
Maximum [MHz]:	20.064	39.503
Minimum [MHz]:	19.615	39.342

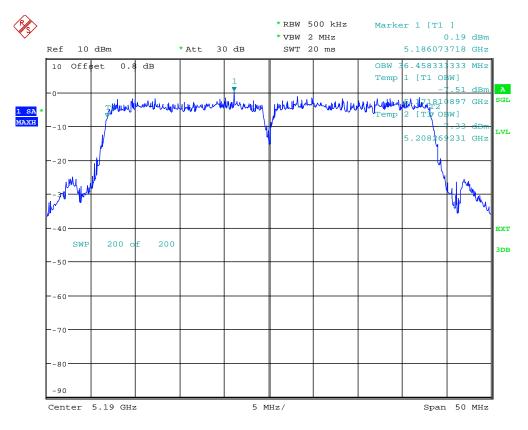
3.2.4 Measurement Plot (showing the highest value, "worst case")



20 MHz bandwidth:

Date: 2.APR.2014 15:03:36

40 MHz bandwidth:



Date: 2.APR.2014 13:16:50

Example plot of measurement the 99 % bandwidth

WLAN n-Mode; 40 MHz; 300 Mbit/s

Date: 17.APR.2014 07:59:43

3.3 Maximum conducted output power

Standard FCC Part 15, Subpart E

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The EUT was connected to spectrum analyser via a short coax cable with a known loss.

Analyser settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Detector: RMS
- Trace: Average / Power Averaging Mode
- Sweeps: 100
- Sweeptime: coupled
- Trigger: sweep trigger (gated triggering)

Note:

The analyser settings are according to "UNII-Guideline" method SA-1.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart E, §15.407 (a) (1) For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands: Limit: 50 mW (17 dBm) or 4 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

FCC Part 15, Subpart E, §15.407 (a) (2)

For systems using digital modulation techniques in the 5.25 - 5.35 GHz and 5.47 - 5.725 GHz bands:

Limit: 250 mW (24 dBm) or 11 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

FCC Part 15, Subpart E, §15.407 (a) (3) For systems using digital modulation techniques in the 5.725 – 5.825GHz bands: Limit: 1 W (30 dBm) or 17 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

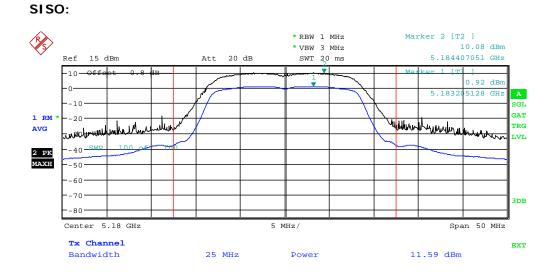
3.3.3 Test Protocol

Temperature:	21–24 °C
Air Pressure:	1005–1014 hPa
Humidity:	32-43 %

SISO:

WLAN a-N	/lode; 20 N				
UNII- Subband	Channel No.	Frequency [MHz]	Output Power [dBm]	Limit [dBm]	Margin to Limit [dB]
1	36	5180	11.6	17.0	5.4
	44	5220	11.4	16.9	5.5
	48	5240	11.6	16.9	5.3
2A	52	5260	11.7	24.0	12.3
	56	5280	11.7	23.9	12.2
	64	5320	11.5	24.0	12.5
2C	100	5500	11.0	23.9	12.9
	116	5580	10.4	24.0	13.6
	140	5700	10.3	24.0	13.7

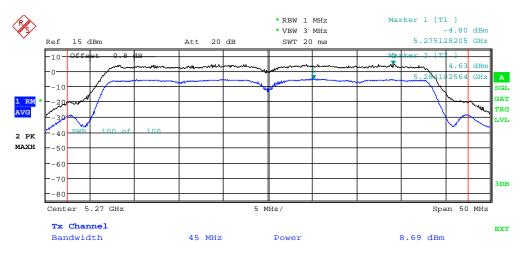
WLAN n-N	/lode; 20 N	/Hz; 72.2 Mb	it/s		
1	36	5180	7.5	17.0	9.6
	44	5220	6.8	17.0	10.2
	48	5240	7.0	17.0	10.0
2A	52	5260	7.0	24.0	17.0
	56	5280	7.3	24.0	16.7
	64	5320	7.0	24.0	17.0
2C	100	5500	7.1	24.0	16.9
	116	5580	6.5	24.0	17.5
	140	5700	6.0	24.0	18.0


	Maximum [dBm]:	20 MHz:	11.7	40 MHz:	-
--	----------------	---------	------	---------	---

MIMO:

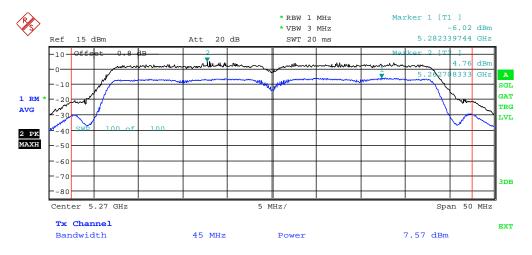
WLAN n-N	/lode; 40 M					
UNII- Channel Subband No.		Outpu Frequency Power [MHz] [dBm]		Limit [dBm]	Margin to Limit [dB]	
1	1 38		10.7	17.0	6.3	
46		5230	10.8	17.0	6.2	
2A 54		5270	11.2	24.0	12.8	
62		5310	11.0	24.0	13.0	
2C 102		5510	10.6	24.0	13.4	
110		5550	10.4	24.0	13.6	
134		5670	9.8	24.0	14.2	
Maximum	[dBm]:	20 MHz:	-	40 MHz:	11.2	

3.3.4 Measurement Plot (showing the highest value, "worst case")



Date: 2.APR.2014 11:42:35

MIMO:


AUX Antenna Connector:

Date: 4.APR.2014 09:25:23

MAIN Antenna Port:

Date: 4.APR.2014 09:13:15

3.4 Peak Power Spectral Density

Standard FCC Part 15, Subpart E

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the Peak Power Spectral Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The EUT was connected to spectrum analyser via a short coax cable with a known loss.

Analyser settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Detector: RMS
- Trace: Average / Power Averaging Mode
- Sweeps: 100
- Sweeptime: coupled
- Trigger: sweep trigger (gated triggering)
- Marker: Peak

Note:

The analyser settings are according FCC Public Note "UNII-Guideline" method SA-1.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart E, §15.407 (a) (1) For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands: Limit: 4 dBm/MHz

FCC Part 15, Subpart E, §15.407 (a) (2) For systems using digital modulation techniques in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz bands: Limit: 11 dBm/MHz

FCC Part 15, Subpart E, \$15.407 (a) (3) For systems using digital modulation techniques in the 5.725 – 5.825GHz bands: Limit: 17 dBm/MHz

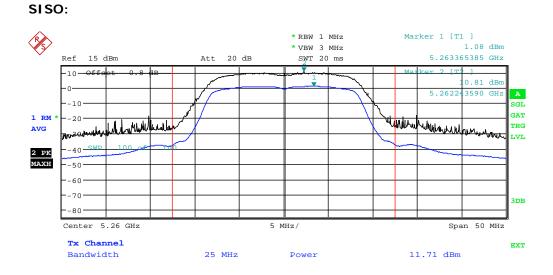
3.4.3 Test Protocol

Temperature:	21–24 °C
Air Pressure:	1005–1014 hPa
Humidity:	32-43 %

SISO:

WLAN a-M					
UNII- Subband	Channel No.	Frequency [MHz]	Power Density [dBm/MHz]	Limit [dBm]	Margin to Limit [dB]
1	36	5180	0.9	4.0	3.1
	44	5220	0.7	4.0	3.3
	48	5240	0.9	4.0	3.1
2A	52	5260	1.1	11.0	9.9
	56	5280	1.0	11.0	10.0
	64	5320	0.9	11.0	10.1
2C	100	5500	0.4	11.0	10.6
	116	5580	-0.3	11.0	11.3
	140	5700	-0.3	11.0	11.3

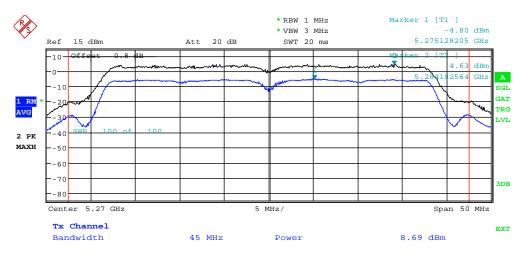
WLAN n-N Mbit/s	lode; 20 MH	z; 72.2			
1	36	5180	-3.3	4.0	7.3
	44	5220	-3.7	4.0	7.7
	48		-3.8	4.0	7.8
2A	52	5260	-3.7	11.0	14.7
	56	5280	-3.3	11.0	14.3
	64	5320	-3.7	11.0	14.7
2C	100	5500	-3.7	11.0	14.7
	116	5580	-4.2	11.0	15.2
	140	5700	-4.8	11.0	15.8
Γ		1	1	1	


	Maximum [dBm/MHz]:	20 MHz:	1.1	40 MHz:	-	
--	--------------------	---------	-----	---------	---	--

МІ	MO:	

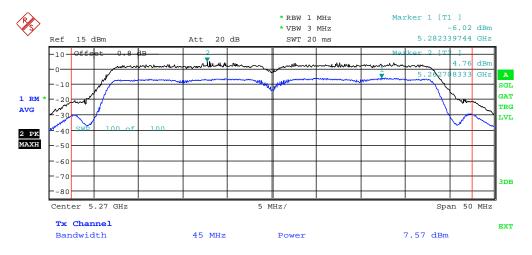
WLAN n-M					
1	38	5190	-2.9	4.0	6.9
	46	5230	-2.8	4.0	6.8
2A	54	5270	-2.4	11.0	13.4
	62	5310	-2.5	11.0	13.5
2C	102	5510	-2.7	11.0	13.7
	110	5550	-3.1	11.0	14.1
134		5670	-3.5	11.0	14.5
Maximum	[dBm/MHz]: 20 MHz	: -	40 MHz:	-2.4

3.4.4 Measurement Plot (showing the highest value, "worst case")



Date: 2.APR.2014 11:40:07

MIMO:



Date: 4.APR.2014 09:25:23

MAIN Antenna Port:

Date: 4.APR.2014 09:13:15

3.5 Peak Excursion

Standard FCC Part 15, Subpart E

The test was performed according to: FCC §15.31

3.5.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the Peak Excursion measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The EUT was connected to spectrum analyser via a short coax cable with a known loss.

Analyser settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Detector: Peak
- Trace: Maxhold
- Sweeps: 200
- Sweeptime: 100 ms
- Marker: Peak

Note:

The analyser settings are according FCC Public Note "UNII-Guideline" method SA-1.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart E, § 15.407 (a), (6)

Peak excursion must not exceed 13 dB compared to the Peak Power Spectral Density.

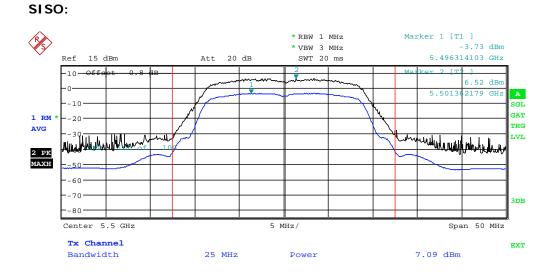
3.5.3 Test Protocol

Temperature:	21–24 °C
Air Pressure:	1005–1014 hPa
Humidity:	32-43 %

SISO:

WLAN a-Mo	de; 20 MHz	z; 6 Mbit/s					
UNII- Subband	Channel No.	Frequency [MHz]	PPSD [dBm/ MHz]	Peak Value [dBm/ MHz]	Peak Excursion [dB]	Limit [dB]	Margin to Limit [dB]
1	36	5180	0.9	10.1	9.2	13.0	3.8
	44	5220	0.7	10.6	9.9	13.0	3.1
	48	5240	0.9	10.4	9.5	13.0	3.5
2A	52	5260	1.1	10.8	9.7	13.0	3.3
	56	5280	1.0	10.1	9.1	13.0	3.9
	64	5320	0.9	10.4	9.5	13.0	3.5
2C	100	5500	0.4	9.4	9.0	13.0	4.0
	116	5580	-0.3	9.2	9.5	13.0	3.5
	140	5700	-0.3	8.5	8.8	13.0	4.2

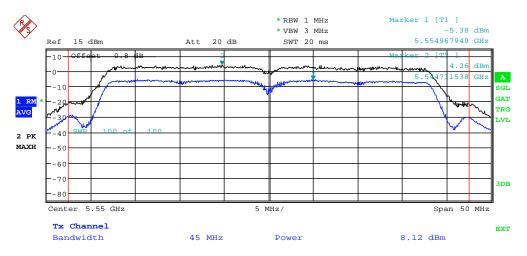
WLAN n-Mode; 20 MHz; 72.2 Mbit/s									
1	36	51	80	-3.3	6.8	8	10.1	13.0	2.9
	44	52	20	-3.7	6.3	3	10.0	13.0	3.0
	48		40	-3.8	6.3	3	10.0	13.0	3.0
2A	52	52	60	-3.7	6.0	6	10.2	13.0	2.8
56		52	80	-3.3	6.0	6	9.9	13.0	3.1
	64		20	-3.7	6.3	3	10.1	13.0	2.9
2C	100		00	-3.7	6.!	5	10.3	13.0	2.8
	116		5580		5.	7	9.9	13.0	3.1
	140 5		00	-4.8	5.0	0	9.7	13.0	3.3
Maximum [Maximum [dB]: 20 MHz: 10.				ИHz:	-			



MIMO:

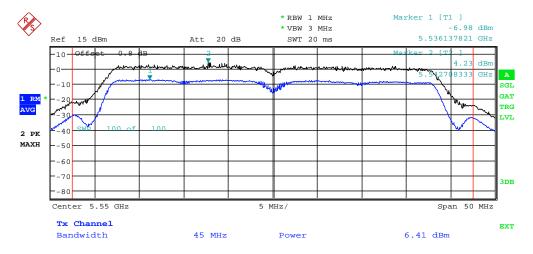
UNII- Subband	Channel No.	Frequency [MHz]	PPSD [dBm/ MHz]	Peak Value [dBm/ MHz]	Peak Excursion [dB]	Limit [dB]	Margin to Limit [dB]
1	38	5190	-2.9	7.3	10.2	13.0	2.8
	46	5230	-2.8	7.4	10.2	13.0	2.8
2A	54	5270	-2.4	7.7	10.1	13.0	2.9
	62	5310	-2.5	7.7	10.2	13.0	2.8
2C	102	5510	-2.7	7.2	9.9	13.0	3.1
	110	5550	-3.1	7.3	10.4	13.0	2.6
	134	5670	-3.5	6.6	10.1	13.0	2.9

3.5.4 Measurement Plot (showing the highest value, "worst case")



Date: 4.APR.2014 08:49:59

MIMO:



Date: 4.APR.2014 09:29:13

MAIN Antenna Port:

Date: 4.APR.2014 09:17:06

3.6 Frequency Stability

Standard FCC Part 15, Subpart E

3.6.1 Test Description

The Equipment Under Test (EUT) was set up in an temperature chamber to perform the frequency stability test.

The results recorded, were measured while the EUT is transmitting a modulated signal on the required frequency.

The EUT was connected to spectrum analyser via a short coax cable with a known loss.

3.6.2 Test Requirements / Limits

FCC Part 15, Subpart E, § 15.407 (g)

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

3.6.3 Test Protocol

Temperature:24 °CAir Pressure:1009 hPaHumidity:40 %

WLAN a-Mode; 20 MHz; 6 Mbit/s Nominal Measured Freq. Freq. UNII-Freq. Voltage Channel Temp. Freq. Error Error Subband [MH<u>z]</u> [°C] [V] [kHz] [%] No [MHz] 23 2A 52 3.80 5260.004000 4.000 0.000 5260.0 52 55 4.36 102.323 0.002 5260.0 5260.102323 52 5260.0 55 3.50 5259.990667 -9.333 0.000 52 5260.0 -10 4.36 5260.017575 17.575 0.000 52 5260.0 -10 3.50 5260.027332 27.332 0.001

3.7 Undesirable Emissions / General Field Strength Limits; Restricted Band and Radiated Emission Limits, Band Edge

Standard FCC Part 15, Subpart C & E

The test was performed according to: ANSI C 63.4

3.7.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The Loop antenna HFH2-Z2 is used.

- **Step 1:** pre measurement
- Anechoic chamber
- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF–Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs
- Turntable angle range: -180 to 180°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180 to 180°
- Turntable step size: 45°
- Height variation range: 1 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $\pm 22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by ± 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

Settings for step 3:

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -22.5° to +22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value **Step 4:** final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz

- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average

- RBW = VBW = 1000 kHz

In the frequency range 25 – 40 GHz the measurement was performed conducted.

For the data rates in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at mode a. Typically, the measurement is performed in the frequency range 1 to 15 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.7.2 Test Requirements / Limits

FCC Part 15 Subpart E , §15.407 (b)(1,2,3,4):

All emissions outside of the related UNII sub-band shall not exceed an EIRP limit of -27 dBm/MHz. For UNII sub-band 3 additionally a relaxed EIRP limit of -17 dBm/MHz can be applied for frequencies 10 MHz or greater above or below the band edge.

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)		surement ance (m)	Calculated Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	59.1 dB	(48.5 - 13.8) + 30 dB = > 78.5 - 43.8
0.49 - 1.705	24000/F(kHz)	30	19.1 dB	(48.9 - 23.0) + 10 dB = > 58.9 - 33.0
1.705 – 30	30	30	19.1 dB	29.5 + 10 dB => 39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.7.3 Test Protocol

Temperature:	21–25 °C
Air Pressure:	983–1025 hPa
Humidity:	32-43 %

Limit types:

RB – Emissions falls into a "Restricted Band" according FCC 15.205

UE - "Undesirable Emission Limit" according FCC 15.407

BE - Band Edge Limit

3.7.3.1 Undesirable Emissions

WLAN	WLAN a-Mode; 20 MHz; 6 Mbit/s							
	Channel	Spurious	Spurious				Margin	
Ch.	Frequency	Frequency	Level	Detec	RBW	Limit	to Limit	Limit
No	[MHz]	[MHz]	[dBµV/m]	-tor	[kHz]	[dBµV/m]	[dB]	Туре
64	5320	5092.5	48.5	PEAK	1000	74.0	25.5	RB
64	5320	5092.5	38.0	AV	1000	54.0	16.0	RB
157	5785	1881.5	58.4	PEAK	1000	74.0	15.6	RB
157	5785	1881.5	34.7	AV	1000	54.0	19.3	RB

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

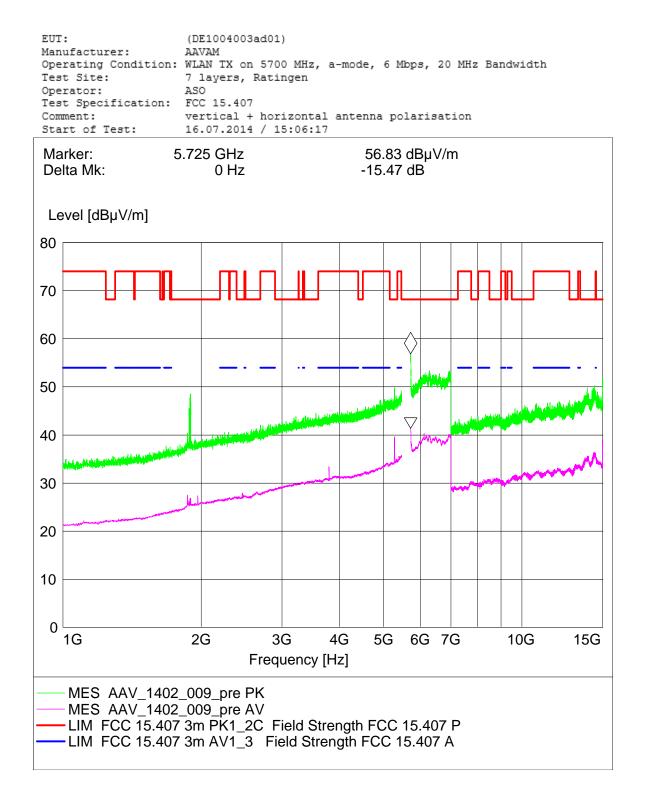
WLAN	I n-Mode; 20 I	MHz; 72.2 Mbi	it/s					
	Channel	Spurious	Spurious				Margin	
Ch.	Frequency	Frequency	Level	Detec	RBW	Limit	to Limit	Limit
No	[MHz]	[MHz]	[dBµV/m]	-tor	[kHz]	[dBµV/m]	[dB]	Туре
52	5260	1881.5	58.5	PEAK	1000	74.0	15.5	RB
52	5260	1966.5	52.5	PEAK	1000	74.0	21.5	RB
52	5260	2465.5	48.4	PEAK	1000	74.0	25.6	RB
52	5260	1881.5	58.5	PEAK	1000	74.0	15.5	RB
56	5280	1894.0	61.4	PEAK	1000	78.0	16.6	RB
149	5745	1885.5	55.0	PEAK	1000	68.0	13.0	RB

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

WLAN	WLAN n-Mode; 40 MHz; 300 Mbit/s							
Ch. No	Channel Frequency [MHz]	Frequency [MHz]	Spurious Level [dBµV/m]	Detec -tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
38	5190	5150	53.24	PEAK	1000	54.0	0.76	RB
149	5755	5722	56.09	PEAK	1000	74.0	17.91	RB

Remark: No spurious emissions in the range 20 dB below the limit found.

3.7.3.2 Band Edge


WLAN	a-Mode; 20 M	MHz; 6 Mbit/s						
	Channel	Band Edge	Spurious				Margin	
Ch.	Frequency	Frequency	Level	Detec	RBW	Limit	to Limit	Limit
No	[MHz]	[MHz]	[dBµV/m]	-tor	[kHz]	[dBµV/m]	[dB]	Туре
36	5180	5150.0	49.9	PEAK	1000	74.0	24.1	BE
36	5180	5150.0	37.8	AV	1000	54.0	16.2	BE
64	5320	5350.0	49.6	PEAK	1000	74.0	24.4	BE
64	5320	5350.0	37.9	AV	1000	54.0	16.1	BE
100	5500	5470.0	55.8	PEAK	1000	68.0	12.2	BE
140	5700	5725.0	56.8	PEAK	1000	68.0	11.2	BE
149	5745	5725.0	58.5	PEAK	1000	78.0	19.5	BE
165	5825	5850.0	54.8	PEAK	1000	78.0	23.2	BE

WLAN	I n-Mode; 20 I	MHz; 72.2 Mbi	t/s					
Ch. No	Channel Frequency [MHz]	Band Edge Frequency [MHz]	Spurious Level [dBµV/m]	Detec -tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
36	5180	5150.0	47.0	PEAK	1000	74.0	27.0	BE
36	5180	5150.0	41.6	AV	1000	54.0	12.4	BE
64	5320	5350.0	47.7	PEAK	1000	74.0	26.3	BE
64	5320	5350.0	41.5	AV	1000	54.0	12.5	BE
100	5500	5470.0	50.6	PEAK	1000	68.0	17.4	BE
140	5700	5725.0	50.5	PEAK	1000	68.0	17.5	BE
149	5745	5725.0	54.4	PEAK	1000	78.0	23.6	BE
165	5825	5850.0	51.0	PEAK	1000	78.0	27.0	BE

WLAN	I n-Mode; 40 l	MHz; 300 Mbit	t/s					
Ch.	Channel Frequency	Band Edge Frequency	Spurious Level	Detec	RBW	Limit	Margin to Limit	Limit
No	[MHz]	[MHz]	[dBµV/m]	-tor	[kHz]	[dBµV/m]	[dB]	Туре
38	5190	5150.0	48.1	PEAK	1000	74.0	25.9	BE
38	5190	5150.0	39.2	AV	1000	54.0	14.8	BE
62	5310	5350.0	49.20	PEAK	1000	74.0	24.8	BE
62	5310	5350.0	39.0	AV	1000	54.0	15.0	BE
102	5510	5470.0	55.2	PEAK	1000	68.0	12.8	BE
134	5670	5725.0	46.8	PEAK	1000	68.0	21.2	BE
151	5755	5725.0	65.1	PEAK	1000	78.0	12.9	BE
159	5795	5850.0	47.4	PEAK	1000	78.0	30.6	BE

3.7.4 Measurement Plot Band Edge (showing the highest value, "worst case")

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 2
Manufacturer:	Frankonia
Description:	Anechoic Chamber for radiated testing
Туре:	10.58x6.38x6.00 m ³
	NSA (FCC)

2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ FCC listing 96716 3m Part15/18	none	Frankonia 2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 1, Lab 2
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/07/29 2014/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID:

Lab 1, Lab 2 Signalling equipment for various wireless technologies. Description:

Single Devices for Digital Signalling Devices

•			
Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit CBT	СВТ	100589	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co KG
	HW/SW Status		Date of Start Date of End
	K21 4v21, K22 4v21, K23 4v21, K43 4v21, K53 4v21, K56 4v22, K59 4v22, K61 4v22, K62 4v22, K65 4v22, K66 4v22, K67 4v22, Firmware: μP1 8v50 02.05.06 	K57 4v22, K58 4v22, K63 4v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V B54V14, B56V14, B68 3v04, B99 SW options: K21 4v11, K22 4v11, K23 4v11, K28 4v10, K42 4v11, K43 4v11, K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	5, PCMCIA, U65V02 K24 4v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co KG

Test Equipment Emission measurement devices

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 dur	ing calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID:	Lab 3
Description:	Ex-Tech 520
Serial Number:	05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Radio Lab Test Equipment

Lab ID:Lab 2Description:Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name Broadband Power Divide SMA	Type	Serial Number	Manufacturer
	1WA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/24 2014/07/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11

Test Equipment Shielded Room 07

Lab ID:	Lab 3
Description:	Shielded Room 4m x 6m

Test Equipment T/A Logger 13

Lab ID:	Lab 1, Lab 2
Description:	Lufft Opus10 TPR
Type:	Opus10 TPR
Serial Number:	13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00))	13936	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 03

Lab ID:	Lab 2
Description:	Lufft Opus10
Serial Number:	7482

Single Devices for T/H Logger 03

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogge 03 (Environ)	erOpus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 12

Lab ID:	Lab 1
Description:	Lufft Opus10
Serial Number:	12482

Single Devices for T/H Logger 12

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalog 12 (Environ)	gerOpus10 THI (8152.00)	12482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/01/06

Test Equipment T/H Logger 15

Lab ID:	Lab 3
Description:	Lufft Opus10
Serial Number:	13985

Single Devices for T/H Logger 15

Single Device Name Type	Serial N	umber Manufacturer
ThermoHygro DataloggerOpus10 THI 15 (Environ)	(8152.00) 13985	Lufft Mess- und Regeltechnik GmbH
Calibration D	Details	Last Execution Next Exec.
Customized of	calibration	2013/01/07 2015/01/06

Test Equipment Temperature Chamber 01

Lab ID:	Lab 3
Manufacturer:	see single devices
Description:	Temperature Chamber KWP 120/70
Type:	Weiss
Serial Number:	see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/12 2016/03/11

Test Equipment Temperature Chamber 05

Lab ID:	Lab 2
Manufacturer:	see single devices
Description:	Temperature Chamber VT4002
Туре:	Vötsch
Serial Number:	see single devices

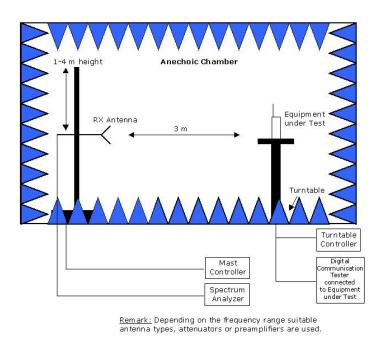
Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/11 2016/03/10

Test Equipment WLAN RF Test Solution

Lab ID:	Lab 3
Manufacturer:	7 layers AG
Description:	Regulatory WLAN RF Tests
Type:	WLAN RF
Serial Number:	001

Single Devices for WLAN RF Test Solution


Single Device Name	Туре	Serial Number	Manufacturer
Arbitrary Waveform Generator	TGA12101	284482	
Power Meter NRVD	NRVD	832025/059	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/26 2014/08/25
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/28 2014/08/27
Power Supply	NGSM 32/10 Calibration Details	2725	Last Execution Next Exec.
	Standard calibration		2013/06/20 2015/06/19
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/27 2014/08/26
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/06 2015/01/05
	HW/SW Status		Date of Start Date of End
	FSU FW Update to v4.61 SP3, K5 v4	4.60 and K73 v4.61	2011/12/05
Spectrum Analyser	FSU3	200046	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/20 2014/06/30
	HW/SW Status		Date of Start Date of End
	Firmware Version 4.51 SP1 Option FS-K72 4.50 SP1 Option FS-K73 4.50 SP1		2011/12/07
TOCT Switching Unit	Switching Unit	040107	7 layers, Inc.
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
2002	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

5 Photo Report

Please refer to external report.

6 Setup Drawings

Drawing 1:Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.