

FCC Radio Test Report

FCC ID: 2ABVH-AX211D2W

Report No. Equipment Model Name Brand Name Applicant Address Manufacturer Address Factory Address	: AAVA
Equipment Class	: 6XD - 15E 6 GHz Low Power Indoor Client
Radio Function	: U-NII 6 GHz (U-NII 5, U-NII 6, U-NII 7, U-NII 8)
FCC Rule Part(s) Measurement Procedure(s)	 FCC CFR Title 47, Part15, Subpart E (15.407) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2023/11/1 : 2023/11/16 ~ 2023/11/30 2024/1/17 ~ 2024/1/19 : 2024/1/19

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Eddie Lee, Engineer

Jerry Chuarlg, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

		CONTENTS	
1	SUMMA	RY OF TEST RESULTS	5
1.1		FACILITY	6
1.2		SUREMENT UNCERTAINTY	6
1.3		ENVIRONMENT CONDITIONS	6
1.4	TABL	E OF PARAMETERS OF TEST SOFTWARE SETTING	7
2		AL INFORMATION	8
2.1	DESC	RIPTION OF EUT	8
2.2	TEST	MODES	12
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	14
2.4	SUPF	PORT UNITS	15
3	AC POW	/ER LINE CONDUCTED EMISSIONS TEST	16
3.1	LIMIT		16
3.2	TEST	PROCEDURE	16
3.3	DEVI	ATION FROM TEST STANDARD	16
3.4	TEST	SETUP	17
3.5	TEST	RESULT	17
4		RABLE EMISSIONS TEST	18
4.1	LIMIT		18
4.2	TEST	PROCEDURE	19
4.3	DEVI	ATION FROM TEST STANDARD	20
4.4	TEST	SETUP	20
4.5	EUT (OPERATING CONDITIONS	21
4.6	TEST	RESULT – BELOW 30 MHZ	21
4.7	TEST	RESULT – 30 MHZ TO 1 GHZ	21
4.8	TEST	RESULT – ABOVE 1 GHZ	21
5	MAXIMU	IM E.I.R.P. TEST	22
5.1	LIMIT		22
5.2	TEST	PROCEDURE	22
5.3	DEVI	ATION FROM TEST STANDARD	23
5.4	TEST	SETUP	24
5.5	EUT (OPERATING CONDITIONS	24
5.6	TEST	RESULT	24
6	CONTEN	NTION-BASED PROTOCOL TEST	25
6.1	LIMIT	S	25
6.2	TEST	PROCEDURE	25
6.3	DEVI	ATION FROM TEST STANDARD	26
6.4	TEST	SETUP	27
6.5	EUT (OPERATING CONDITIONS	27
6.6	TEST	RESULT	27
7	LIST OF	MEASURING EQUIPMENTS	28
8		ST PHOTO	30
9	EUT PH	OTOS	30
	ENDIX A	AC POWER LINE CONDUCTED EMISSIONS	31
	ENDIX A	UNDESIRABLE EMISSIONS - 30 MHZ TO 1 GHZ	36
	ENDIX D	UNDESIRABLE EMISSIONS - ABOVE 1 GHZ	39
	ENDIX D	MAXIMUM E.I.R.P.	149
	ENDIX E	CONTENTION-BASED PROTOCOL	155

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-7-2310G005	R00	Original Report.	2024/1/12	Invalid
BTL-FCCP-7-2310G005	R01	Added the Contention-based protocol	2024/1/19	Valid
		test.		

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.407(b)(9)	AC power line conducted emissions	APPENDIX A	Pass	
15.407(b)(6)(9)	Undesirable emissions	APPENDIX B APPENDIX C	Pass	
15.407(a)(4)(5)(6)(7)(8)	Maximum e.i.r.p.	APPENDIX D	Pass	
15.407(d)(6)	Contention-based protocol	APPENDIX D	Pass	NOTE(5)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This is to request a Class II permissive change for FCC ID: 2ABVH-AX211D2W (This FCC ID is change ID based on Intel Mobile Communications, the original application information follow as model: AX211D2W, FCC ID: PD9AX211D2, approved on 04/26/2021)
 The major change filed under this application is: Change #1: Implementation in new platform (Model number: INARI-D-10-WIG-1, Product name: Tablet) Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.
- (5) Contention-Based Protocol Uses conducted method for testing.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

ect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

 ☑
 C05
 □
 CB08
 □
 CB11
 □
 CB15
 □
 CB16

 □
 SR05
 ☑
 SR010
 □
 CB15
 □
 CB16

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

 \Box C06 \boxtimes CB21 \Box CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

Test Item	U,(dB)
Output Power	0.3669
Contention-based protocol	-

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 45 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	Refer to data	AC 120V	Kevin Zhen
Radiated emissions above 1 GHz	Refer to data	AC 120V	Kevin Zhen
Output Power	21.1 °C, 69 %	AC 120V	Jerry Chuang
Contention-based protocol	21.7 °C, 45 %	AC 120V	Cora Lin

Test Software			D	RTU.0354	4.22	.200.0	
			UNII-5				
Mode	5955 MHz	2	6175		(6415 MHz	Data Rat
E 802.11ax (HE20)	2.375 / 1.7	5	2.5 /	1.875		2.5/2	HE0
Mode	5965 MHz	2	6165	MHz		6405 MHz	Data Rat
E 802.11ax (HE40)	5.5 / 5			5.125	5	.625 / 5.25	HE0
Mode	5985 MHz		6145	MHz	(6385 MHz	Data Rat
E 802.11ax (HE80)	8.25 / 7.62	5	8.375	/ 7.75	8	.25 / 7.875	HE0
Mode	6025 MHz	2	6345	MHz			Data Rat
E 802.11ax (HE160)	11.25 / 10.8	75	11.25 /	11.125			HE0
			UNII-6				
Mode	6435 MHz		6475	MHz		6515 MHz	Data Rat
E 802.11ax (HE20)	2.625 / 1.87		2.62			2.625 / 2	HE0
Mode	6445 MHz		6485				Data Rat
E 802.11ax (HE40)	5.625 / 5.12		5.625		_		HE0
Mode	6465 MHz		6545				Data Rat
E 802.11ax (HE80)	8.25 / 7.87		8.375		_		HE0
Mode	6505 MHz		0.0101	0.125			Data Rat
E 802.11ax (HE160)	11.375 / 11.1						HE0
- 002.110x (ITE 100)	11.0707 11.1	20					TIE0
			UNII-7				
Mode	6535 MHz	2	6695	MHz	(6855 MHz	Data Rat
E 802.11ax (HE20)	2 / 1.25		2.125	/ 1.625		2 / 1.75	HE0
Mode	6525 MHz	2	6565 MHz	6685 MHz	6845 MHz		Data Rat
E 802.11ax (HE40)	5.5 / 5.125	5	4.625 / 4.25	5 / 4.75	4.875/ 4.75		HE0
Mode	6625 MHz	2	6785	MHz			Data Rat
E 802.11ax (HE80)	7.75 / 7.37	5	7.3	375			HE0
Mode	6665 MHz	2					Data Rat
E 802.11ax (HE160)	10.625						HE0
NA. J.	0075 1411		UNII-8	7005 14		7445 1411	
	6875 MHz		95 MHz	7095 M		7115 MHz	Data Rat
E 802.11ax (HE20)	2 / 1.75		/ 1.625	2.125 /	1.5	-9.625	HE0
	6885 MHz		85 MHz				Data Rat
E 802.11ax (HE40)	4.875 / 4.75		5 / 4.625	7005 14			HE0
	6865 MHz	694	45 MHz	7025 M			Data Rat
E 802.11ax (HE80)	7.375		7.5	7.625 / 7.	3/5		HEO
Mode	6985 MHz						Data Rat
E 802.11ax (HE160)	10.625 / 10.5				_		HE0

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Intel® Wi-Fi 6E AX211	
Model Name	AX211ND2W	
Brand Name	Intel	
Model Difference	N/A	
Power Supply Rating	DC 3.3V from host equipment	
Platform information		
Equipment	Tablet	
Model Name	INARI-D-10-WIG-1	
Brand Name	AAVA	
Model Difference	N/A	
Power Source	1# DC voltage supplied from AC adapter. (support unit). 2# Battery supplied.	
Power Rating	1# I/P: 100-240V~50/60Hz O/P:12V === 2A 2# DC 7.7V/4830mAh	
Products Covered	1* Battery: AMME4974	
WIFI+BT Module	Intel® Wi-Fi 6E AX211 / AX211NGW	
Operation Band	UNII-5: 5925 MHz ~ 6425 MHz UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6875 MHz UNII-8: 6875 MHz ~ 7125 MHz	
Maximum E.I.R.P. for UNII-5	IEEE 802.11ax (HE20): 7.44 dBm (0.0055 W) IEEE 802.11ax (HE40): 10.73dBm (0.0118 W) IEEE 802.11ax (HE80): 13.23 dBm (0.0210 W) IEEE 802.11ax (HE160): 15.94 dBm (0.0393 W)	
Maximum E.I.R.P. for UNII-6	IEEE 802.11ax (HE20): 7.44 dBm (0.0055 W) IEEE 802.11ax (HE40): 10.72 dBm (0.0118 W) IEEE 802.11ax (HE80): 13.20 dBm (0.0209 W) IEEE 802.11ax (HE160): 15.92 dBm (0.0391 W)	
Maximum E.I.R.P. for UNII-7	IEEE 802.11ax (HE20): 6.71 dBm (0.0047 W) IEEE 802.11ax (HE40): 10.68 dBm (0.0117 W) IEEE 802.11ax (HE80): 12.45 dBm (0.0176 W) IEEE 802.11ax (HE160): 15.20 dBm (0.0331 W)	
Maximum E.I.R.P. for UNII-8	IEEE 802.11ax (HE20): 6.69 dBm (0.0047 W) IEEE 802.11ax (HE40): 9.95 dBm (0.0099 W) IEEE 802.11ax (HE80): 12.50 dBm (0.0178 W) IEEE 802.11ax (HE160): 15.15 dBm (0.0327 W)	
Operating Software	Windows	
Test Model	INARI-D-10-WIG-1	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

	UNII-5							
IEEE 802.1	1ax (HE20)	IEEE 802.1			1ax (HE80)	IEEE 802.11ax (HE160)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	5955	3	5965	7	5985	15	6025	
5	5975	11	6005	23	6065	47	6185	
9	5995	19	6045	39	6145	79	6345	
13	6015	27	6085	55	6225			
17	6035	35	6125	71	6305			
21	6055	43	6165	87	6385			
25	6075	51	6205					
29	6095	59	6245					
33	6115	67	6285					
37	6135	75	6325					
41	6155	83	6365					
45	6175	91	6405					
49	6195							
53	6215							
57	6235							
61	6255							
65	6275							
69	6295							
73	6315							
77	6335							
81	6355							
85	6375							
89	6395							
93	6415							

UNII-6									
IEEE 802.1	1ax (HE20)	IEEE 802.1	1ax (HE40)	IEEE 802.1	1ax (HE80)	IEEE 802.11	1ax (HE160)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
97	6435	99	6445	103	6465	111	6505		
101	6455	107	6485	119	6545				
105	6475								
109	6495								
113	6515								

			UN	11-7			
IEEE 802.1	1ax (HE20)	IEEE 802.1			1ax (HE80)	IEEE 802.12	lax (HE160)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
117	6535	115	6525	135	6625	143	6665
121	6555	123	6565	151	6705	175	6825
125	6575	131	6605	167	6785		
129	6595	139	6645				
133	6615	147	6685				
137	6635	155	6725				
141	6655	163	6765				
145	6675	171	6805				
149	6695	179	6845				
153	6715						
157	6735						
161	6755						
165	6775						
169	6795						
173	6815						
177	6835						
181	6855						
	(1) = = = = = = = = = = = = = = = = = = =		UN		(1.1		(1) = (
IEEE 802.1		IEEE 802.1	1ax (HE40)	IEEE 802.11ax (HE80) IEEE 802.11ax (HE160			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
185	6875	187	6885	183	6865	207	6985
189	6895	195	6925	199	6945		
193	6915	203	6965	215	7025		
197	6935	211	7005				
201	6955	219	7045				
205	6975	227	7085				
209	6995						
213	7015						
217	7035						
221	7055						
225	7075						
229	7095						
233	7115						

(3) Table for Filed Antenna:

(4) BT&BLE:

Antenna	Brand	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
2	Pulse	W3006	Chip	N/A	2400-2500	-0.6

WIFI:

Antenna	Brand	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
					2400-2500	1.2
1	Pulse	W3006	Chip	N/A	5150-5850	3.0
					5925-7125	3.0
					2400-2500	-0.6
2	Pulse	W3006	Chip	N/A	5150-5850	3.0
					5925-7125	2.8

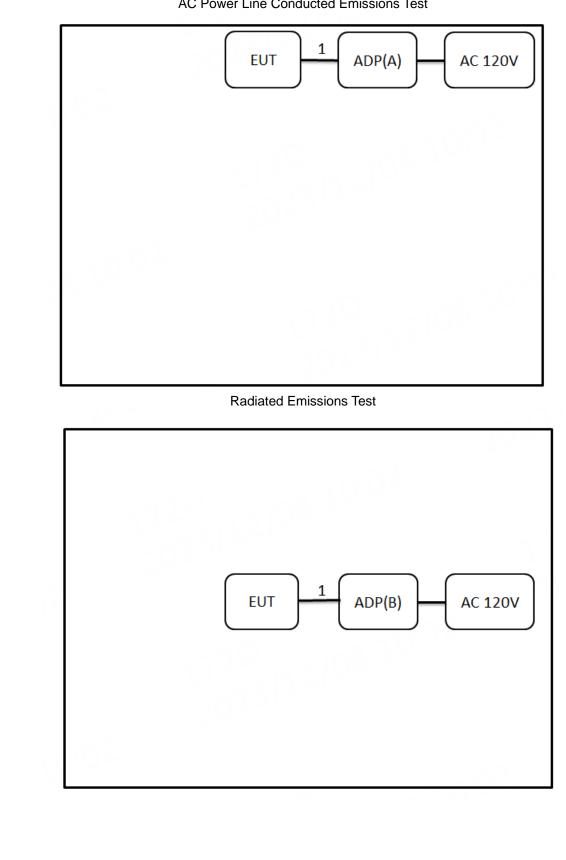
NOTE:

 This EUT supports CDD, and all antennas have the same gain, Directional gain = GANT+Array Gain. For power measurements, Array Gain=0dB (NANT≤4), so the Directional gain=3.

2) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	IEEE 802.11ax (HE160)	79	-
	IEEE 802.11ax (HE20)	1/93 97/113 117/181 185/233	
	IEEE 802.11ax (HE40)	3/91 99/107 115/179 187/227	
	IEEE 802.11ax (HE80)	7/87 103/119 135/167 183/215	Bandedge
Transmitter Radiated Emissions	IEEE 802.11ax (HE160)	15/79 111 143 207	
(above 1GHz)	IEEE 802.11ax (HE20)	1/45/93 97/105/113 117/149/181 185/209/229/233	
	IEEE 802.11ax (HE40)	3/43/91 99/107 115/123/147/179 187/227	Henryda
	IEEE 802.11ax (HE80)	7/39/87 103/119 135/167 183/199/215	Harmonic
	IEEE 802.11ax (HE160)	15/79 111 143 207	
Output Power	IEEE 802.11ax (HE20)	1/45/93 97/105/113 117/149/181 185/209/229/233	
	IEEE 802.11ax (HE40)	3/43/91 99/107 115/123/147/179 187/227	
	IEEE 802.11ax (HE80)	7/39/87 103/119 135/167 183/199/215	-
	IEEE 802.11ax (HE160)	15/79 111 143 207	
	IEEE 802.11ax (HE20)	45, 105	
Contention-based protocol	IEEE 802.11ax (HE160)	149, 209 15, 111 143, 207	-


NOTE:

- (1) For radiated emission 18GHz-40GHz test, use the worst case of radiated emission 1GHz~18GHz have been pre-tested and in this report only recorded the worst case.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical I) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.

2.3 **BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED**

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 0.

AC Power Line Conducted Emissions Test

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	SAMSUNG	EP - TA800	N/A	Furnished by test lab.
В	ADP	PHIHONG	AO18A-59CFA	N/A	Supplied by test requester.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	0.6m	USB-C to USB-C	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

LIMIT 3.1

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ш	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ι	-18.33

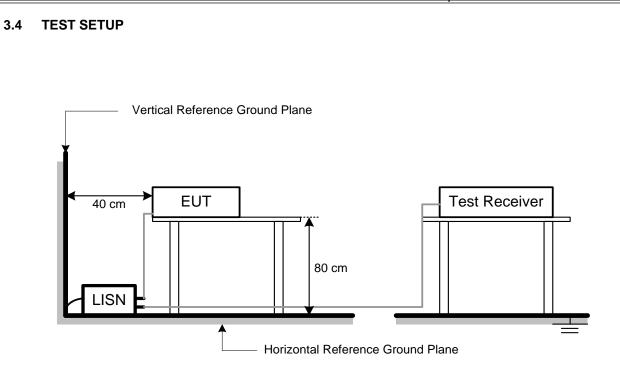
The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 **TEST PROCEDURE**

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- The LISN is spaced at least 80 cm from the nearest part of the EUT chassis. d
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 **DEVIATION FROM TEST STANDARD**

No deviation.

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 UNDESIRABLE EMISSIONS TEST

4.1 LIMIT

According to 15.407(b)(6) the limits are as follows: For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz.

According to FCC KDB 987594 D02, clause G. Unwanted Emission Measurement: Use guidance in KDB 789033 for measurements below 1000 MHz and above 1000 MHz. Unwanted emissions outside of restricted bands are measured with a RMS detector. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit

Item	Maximum e.i.r.p. Limit	Maximum field strength Limit @ 3m
Any emissions outside of the	Peak: -7 dBm/MHz	88.2 dBuV/m
5.925-7.125 GHz band	Average: -27 dBm/MHz	68.2 dBuV/m

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

NOTE:

- (1) e.i.r.p. Limit (dBuV/m at 3m) = Power Limit(dBm) + 95.2. (Referring to FCC KDB 987594 D02, clause G.2.d)(iii))
- (2) Emission level (dBuV/m) = $20\log$ Emission level (uV/m).
- 3 m Emission level = 10 m Emission level + $20\log(10 \text{ m/3 m})$.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain (if use) Margin Level = Measurement Value - Limit Value Calculation example:

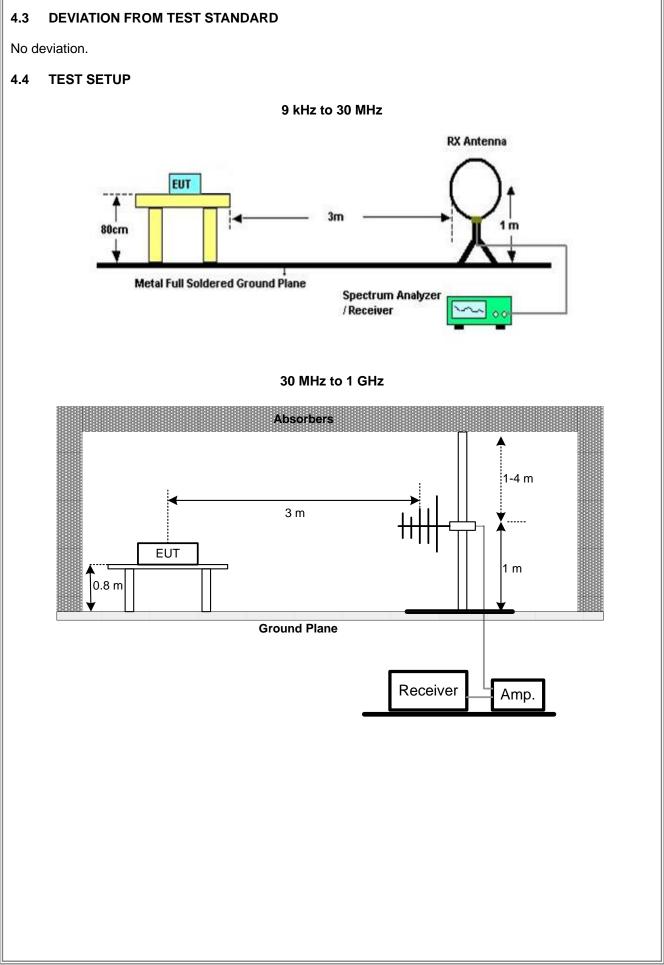
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	Π	21.22

Measurement Value		Limit Value		Margin Level
21.22	1	68.2	=	-46.98

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

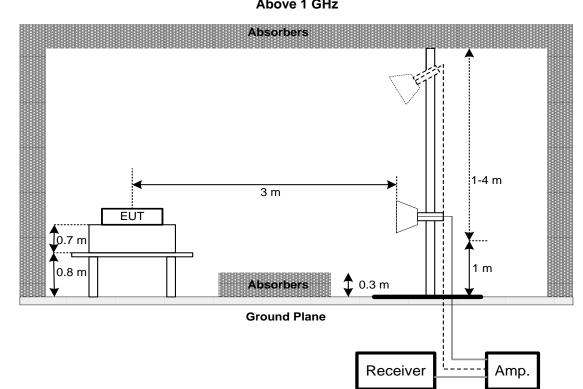
4.2 TEST PROCEDURE

Referring to FCC KDB 987594 D02, clause G. and FCC KDB 789033 D02, clause G. Unwanted Emission Measurement:


For measurements below 30 MHz:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

For measurements 30 MHz to 40 GHz:


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (between 30 MHz to 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (between 1 GHz to 40 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (between 30 MHz to 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (between 30 MHz to 1 GHz)

4.5 **EUT OPERATING CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

NOTE:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

TEST RESULT – BELOW 30 MHZ 4.6

There were no emissions found below 30 MHz within 20 dB of the limit.

TEST RESULT – 30 MHZ TO 1 GHZ 4.7

Please refer to the APPENDIX B.

4.8 **TEST RESULT – ABOVE 1 GHZ**

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 MAXIMUM E.I.R.P. TEST

5.1 LIMIT

Equipment Category	Band	Maximum e.i.r.p. Limit
Standard power access point*	U-NII 5 (5.925-6.425 GHz)	·
Fixed client*	U-NII 7 (6.525-6.875 GHz)	36 dBm
	U-NII 5 (5.925-6.425 GHz)	
Indoor access point	U-NII 6 (6.425-6.525 GHz)	
Subordinate device	U-NII 7 (6.525-6.875 GHz)	30 dBm
	U-NII 8 (6.875-7.125 GHz)	
	U-NII 5 (5.925-6.425 GHz)	30 dBm and the device must limit its
Standard power access point	U-NII 6 (6.425-6.525 GHz)	power to no more than 6 dB below its
client devices	U-NII 7 (6.525-6.875 GHz)	associated standard power access
	U-NII 8 (6.875-7.125 GHz)	point's authorized transmit power
	U-NII 5 (5.925-6.425 GHz)	
Indoor access point client	U-NII 6 (6.425-6.525 GHz)	24 dBm
devices	U-NII 7 (6.525-6.875 GHz)	24 0011
	U-NII 8 (6.875-7.125 GHz)	
		above 30 degrees as measured from the
horizon must not exceed 125 mW	(21 dBm).	

According to 15.407(a)(11):

The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

5.2 TEST PROCEDURE

Referring to FCC KDB 987594 D02, clause E. and FCC KDB 789033 D02, clause E. 3 Measurement using a Power Meter (PM):

- a. The maximum peak conducted output power was performed in accordance with method of clause E. 3. a) Method PM (Measurement using an RF average power meter):
 - (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
 - The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
 - (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal.
 - (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25%).
- b. The maximum peak conducted output power was performed in accordance with method of clause E. 3. b) Method PM-G (Measurement using a gated RF average power meter): Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Referring to FCC KDB 987594 D02, clause H. Measurement of emission at elevation angles higher than 30° from horizon:

Note: Elevation angle is defined as 0° is horizontal and 90° is straight-up.

For fixed infrastructure, not electrically or mechanically steerable beam antenna

a. If elevation plane radiation pattern is available:

- (i) Determine the device intended mounting elevation angle and define 0° reference angle on the elevation plane radiation pattern.
- (ii) Indicate any radiation pattern between 30° and 90° which has the highest gain.
- (iii) Calculate the EIRP based on this highest gain and conducted output power.
- (iv) Compare to the 125 mW limit to establish compliance.
- (v) Include the elevation pattern data in the application filing with the test report to show how the calculations are made.

Note: For MIMO devices, take the maximum gain of each antenna and apply the guidance in KDB Publication 662911 for calculating the overall gain including directional gain for the maximum EIRP calculation.

- b. If the elevation plane radiation pattern is not available, but the antenna type (such as dipole omnidirectional, Yagi, parabolic, or sector antenna) has a symmetrical elevation plane pattern referenced at the main beam and all lobes on the main beam elevation plane have highest gains, then the following measurement method is acceptable to determine compliance:
 - (i) Determine the device's intended mounting elevation angle referenced to the horizon.
 - (ii) Rotate the EUT antenna by 90° around the main beam axis in a horizontal position to transform the measurement in elevation angle into an azimuth angle and define a 0° reference angle based on the device's intended mounting elevation angle.
 - (iii) Move the test antenna along the horizontal arc, or rotate the turntable with the EUT antenna placed at the center, between 30° and 90° relative to the 0° reference angle, and then continuing down from 90° to 30° on the other side of the pattern, while maintaining the test antenna pointing with constant distance to the EUT antenna. Search for the spot which has the highest measured emission. Both horizontal and vertical polarization shall be investigated to determine the maximum radiated emission level.

Note: Moving the test antenna along the horizontal arc, or rotating the turntable, shall be performed in an angular step size as small as possible, but not larger than 3°.

- (iv) Calculate the EIRP based on the highest measured emission. Compare to the limit of 125 mW to determine compliance.
- (v) The antenna pattern measurements must be included in the filing.

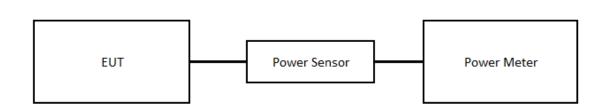
For All Other Antenna Types

For all other antenna types (such as patch antennas, array antennas, antennas with irregular radiator shapes, etc.) which have any combination of following characteristics:

- Asymmetrical, complex radiation patterns
- 2-D or 3-D steerable beam
- Portable/mobile, not fixed infrastructure device

Provide the following information in the report:

- a. Describe what type of antenna is used.
- b. Determine by calculation, measurement or simulation, all radiation lobes/beams, which have EIRP higher than 125 mW within a 3-dB elevation beamwidth.


Provide an explanation of how these antenna beams are controlled to be kept below the 30° elevation angle. The explanation should include device installation instructions, mechanical control, electro-mechanical control or software algorithms, if the beams are electrically controlled by software.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D.

6 CONTENTION-BASED PROTOCOL TEST

6.1 LIMITS

According to 15.407(d)(6) the limits are as follows:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

According to FCC KDB 987594 D02, clause I. Contention Based Protocol:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contention-based protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm)1. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

6.2 TEST PROCEDURE

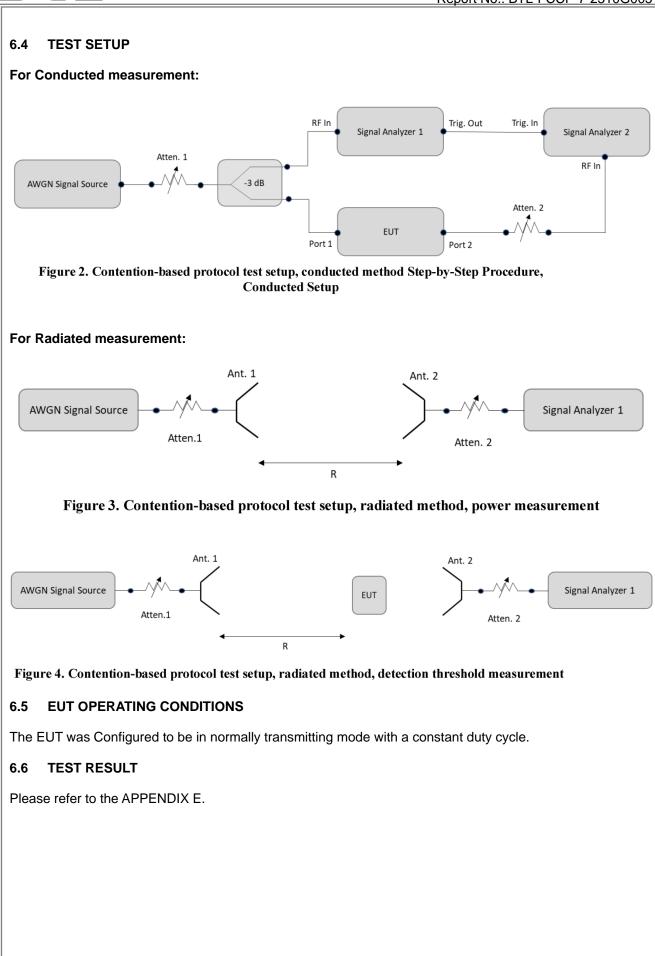
Referring to FCC KDB 987594 D02, clause I. Contention Based Protocol:

Table 1. Criteria to determine number of times detection threshold test may be performed

If	Number of Tests	Placement of Incumbent Transmission
$BW_{EUT} \leq BW_{Inc}$	Once	Tune incumbent and EUT
$BW_{Inc} < BW_{EUT} \le 2BW_{Inc}$	Once	transmissions ($f_{c1} = f_{c2}$) Incumbent transmission is contained within BW_{EUT}
$2BW_{Inc} < BW_{EUT} \le 4BW_{Inc}$	Twice. Incumbent transmission is contained within BW_{EUT}	Incumbent transmission is located as closely as possible to the lower edge and upper edge, respectively, of the EUT channel
$BW_{EUT} > 4BW_{Inc}$	Three times	Incumbent transmission is located as closely as possible to the lower edge of the EUT channel, in the middle of EUT channel, and as closely as possible to the upper edge of the EUT channel

For Conducted measurement:

- a. Configure the EUT to transmit with a constant duty cycle.
- b. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth.
- c. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- d. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step b.
- e. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- f. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT.
- g. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- h. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- i. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- j. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step e, choose a different center frequency for the AWGN signal and repeat the process.


For Radiated measurement:

- a. Using the AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- b. Connect the AWGN signal source to antenna 1 and transmit the signal (RF ON).
- c. Using signal analyzer 1 and antenna 2, measure the AWGN signal power level. Align antenna 2 and antenna 1 to maximize emission.
- d. Using equation $P_2 = P_{\text{meas}} + L G_2$, correct the measured power P_{meas} by the gain of antenna 2, G_2 and all cable losses and attenuations *L* to obtain the AWGN signal power level at antenna 2, P_2 .
- e. Set the corrected power P_2 to an extremely low level (more than 20 dB below the -62 dBm threshold).
- f. Place the EUT exactly where antenna 2 was. Configure the EUT to transmit a constant duty cycle.
- g. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth.
- h. Set the signal analyzer 1 center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of EUT.
- i. Monitor the signal analyzer 1 to verify if AWGN signal has been detected and EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- j. Determine and record the AWGN signal power level at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect the AWGN signal with 90% (or better) level of certainty.
- k. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step a, choose a different center frequency for the AWGN signal and repeat the process.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

7 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2023/9/13	2024/9/12						
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2023/3/30	2024/3/29						
3	EMI Test Receiver	R&S	ESR 7	101433	2023/11/10	2024/11/9						
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A						

	Undesirable Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Preamplifier	EMCI	EMC330N 980850 2023/9		2023/9/6	2024/9/5					
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6					
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20					
4	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5					
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2023/7/10	2024/7/9					
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13					
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13					
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23					
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11					
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2023/5/12	2024/5/11					
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2023/5/12	2024/5/11					
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2023/5/9	2024/5/8					
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2023/5/9	2024/5/8					
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13					
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13					
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

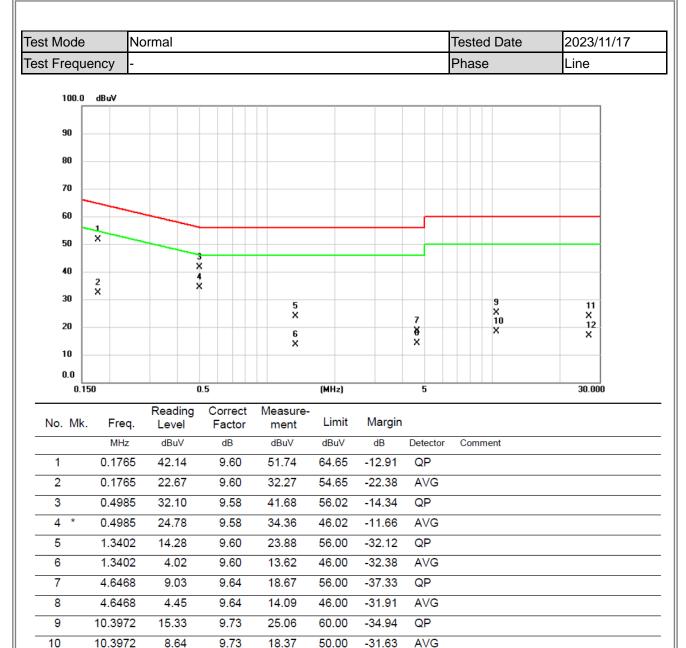
	Maximum e.i.r.p.												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Peak Power Analyzer	Keysight	8990B	MY51000517	2023/3/15	2024/3/14							
2	Power Sensor	Keysight	N1923A	MY58310005	2023/3/15	2024/3/14							
3	Spectrum Analyzer	R&S	FSP 40	101139	2023/3/9	2024/3/8							

	Contention-based protocol												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	MXG Vector Signal Generator	Agilent	N5182B	MY51350711	2023/2/21	2024/2/20							
2	Spectrum Analyzer	Keysight	N9010A	MY54200240	2023/6/26	2024/6/25							
3	Frequency Extender	Keysight	N5182BX07	MY59360246	2023/2/21	2024/2/20							

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

8 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2310G005-2 (APPENDIX-TEST PHOTOS).


9 EUT PHOTOS

Please refer to document Appendix No.: EP-2310G005-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

BIL

REMARKS:

11 12 26.7937

26.7937

(1) Measurement Value = Reading Level + Correct Factor.

9.68

9.68

23.87

16.95

60.00

50.00

-36.13

-33.05

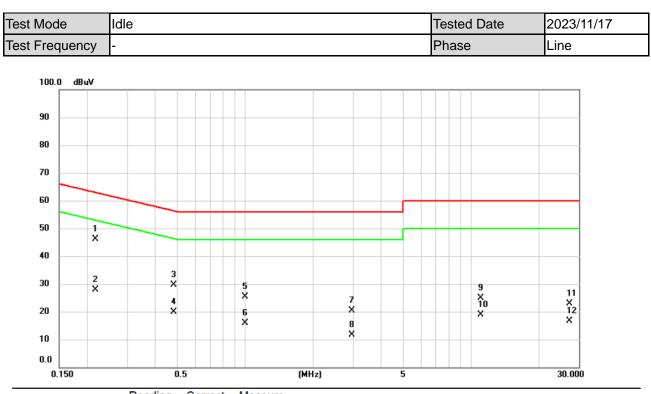
QP

AVG

(2) Margin Level = Measurement Value - Limit Value.

14.19

7.27



est Mode	Normal							d Date	2023/11/17
est Frequency	-						Phase	Ð	Neutral
100.0 dBuV									
90									
80									
70									
60									
50 X									
40		3							
30 2 X		×							
20		4	5			7 X		9 Yo	11
20		1	5 X 6 X			8 ×		×	¥2 ×
10			×			^			
0.0		0.5		(MHz)		5			30.000
	Reading		Measure-	()		-			
No. Mk. Fr	eq. Level	Factor	ment	Limit	Margin				
	Hz dBuV	dB	dBuV	dBuV	dB	Detector	Comm	ient	
1 * 0.1		9.59	49.40	63.77	-14.37	QP			
2 0.1		9.59	29.64	53.77	-24.13	AVG			
3 0.49		9.57	32.81	56.14 46.14	-23.33 -26.09	QP AVG			
4 0.49 5 1.3		9.57 9.59	20.05	46.14	-26.09	QP			
<u> </u>		9.59	10.60	46.00	-39.20	AVG			
7 4.78		9.64	20.08	56.00	-35.92	QP			
8 4.7		9.64	12.15	46.00	-33.85	AVG			
9 11.0	017 12.80	9.76	22.56	60.00	-37.44	QP			
10 11.0	017 7.33	9.76	17.09	50.00	-32.91	AVG			
11 26.04	472 10.46	9.87	20.33	60.00	-39.67	QP			
12 26.04	472 6.06	9.87	15.93	50.00	-34.07	AVG			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

BIL

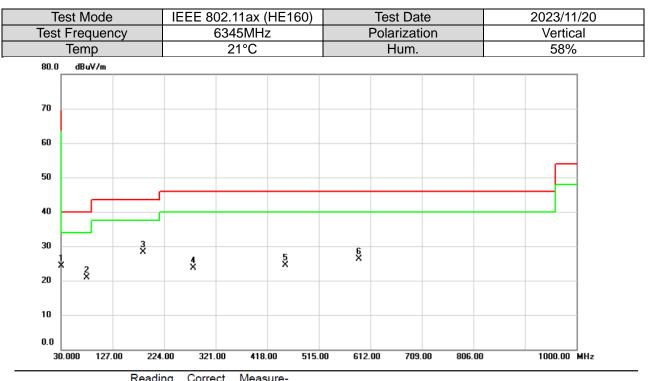
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2181	36.53	9.60	46.13	62.89	-16.76	QP	
2		0.2181	18.39	9.60	27.99	52.89	-24.90	AVG	
3		0.4846	20.04	9.58	29.62	56.26	-26.64	QP	
4		0.4846	10.25	9.58	19.83	46.26	-26.43	AVG	
5		0.9962	15.81	9.58	25.39	56.00	-30.61	QP	
6		0.9962	6.36	9.58	15.94	46.00	-30.06	AVG	
7		2.9776	10.74	9.63	20.37	56.00	-35.63	QP	
8		2.9776	2.08	9.63	11.71	46.00	-34.29	AVG	
9		11.0017	15.12	9.73	24.85	60.00	-35.15	QP	
10		11.0017	9.14	9.73	18.87	50.00	-31.13	AVG	
11		27.3676	13.12	9.68	22.80	60.00	-37.20	QP	
12		27.3676	6.90	9.68	16.58	50.00	-33.42	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

BIL


Test Mode		Idle						Tested Date	2023/11/17
est Frequ	uency	-						Phase	Neutral
100.0) dBuV								
90									
80									
70									
60									
50	1 X		3						
40			×						
30	2		4 ×						
	2 X						7	9 Yo	
20				5 X			¥.	X	¥2 ×
10				8 6			×		
0.0	150		0.5		(MHz)		5		30.000
0.	150			Magazina	[MI12]		5		30.000
No. Mk	k. Fred	Reading ۹. Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.224		9.59	46.09	62.65	-16.56	QP		
2	0.224		9.59	26.09	52.65	-26.56	AVG		
3 *	0.498		9.57	41.46	56.02	-14.56	QP		
4	0.498		9.57	29.85	46.02	-16.17	AVG		
5 6	0.961		9.57 9.57	15.99 7.26	56.00 46.00	-40.01 -38.74	QP AVG		
7	4.952		9.64	17.57	56.00	-38.43	QP		
8	4.952		9.64	12.75	46.00	-33.25	AVG		
9	10.924		9.76	21.60	60.00	-38.40	QP		
9									
10	10.924	2 6.87	9.76	16.63	50.00	-33.37	AVG		
	10.924 26.047		9.76 9.87	16.63 20.00	50.00 60.00	-33.37 -40.00	AVG QP		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX B UNDESIRABLE EMISSIONS - 30 MHZ TO 1 GHZ

No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		30.0000	37.69	-13.32	24.37	40.00	-15.63	peak	
2		79.0497	37.04	-16.22	20.82	40.00	-19.18	peak	
3	*	184.5857	42.07	-13.80	28.27	43.50	-15.23	peak	
4		279.6133	35.45	-11.81	23.64	46.00	-22.36	peak	
5		452.1117	31.64	-7.11	24.53	46.00	-21.47	peak	
6		590.3690	30.55	-4.23	26.32	46.00	-19.68	peak	

(1) Measurement Value = Reading Level + Correct Factor.

					0.44	<u>// IE /</u>	<u> </u>				0000/44	/0.0
	st Mode		IF)2.11ax		60)		est Date		2023/11	
	Frequenc	;y		6	6345MH	Z		Po	olarizatio	n	Horizon	tal
	Temp				21°C				Hum.		58%	
80.0	dBuV/m											1
70												
60												
50												
40 —							c					
30		1 2 X	3 X	4 ×	5 X		× 6					
20		×										
10												
0.0 30.00	00 127.00	224.0	DO	321.0	10 418	.00	515.00	612.00	709.00	806.00	1000.00	MHz
No. Mk.	Freq.	Readin Level		Correc Facto			Limit	Over				
	MHz	dBuV		dB	dBu∖	//m	dBuV/m	dB	Detector	Comment		
1 * 1	88.2393	45.68		-14.25	5 31.4	13	43.50	-12.07	peak			
2 2	16.9513	38.08		-15.20	22.8	38	46.00	-23.12	peak			

3

4

5

6

239.9727

281.8767

359.9617

479.9507

(1) Measurement Value = Reading Level + Correct Factor.

-13.38

-11.72

-9.87

-6.65

25.60

26.23

29.56

32.43

46.00

46.00

46.00

46.00

-20.40

-19.77

-16.44

-13.57

peak

peak

peak

peak

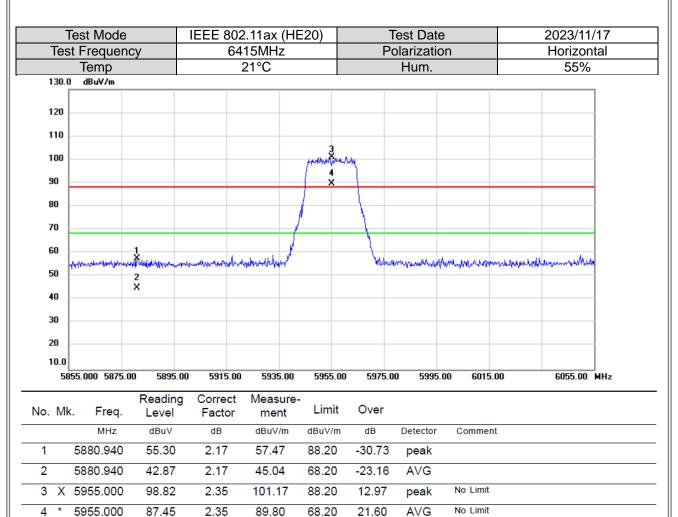
(2) Margin Level = Measurement Value - Limit Value.

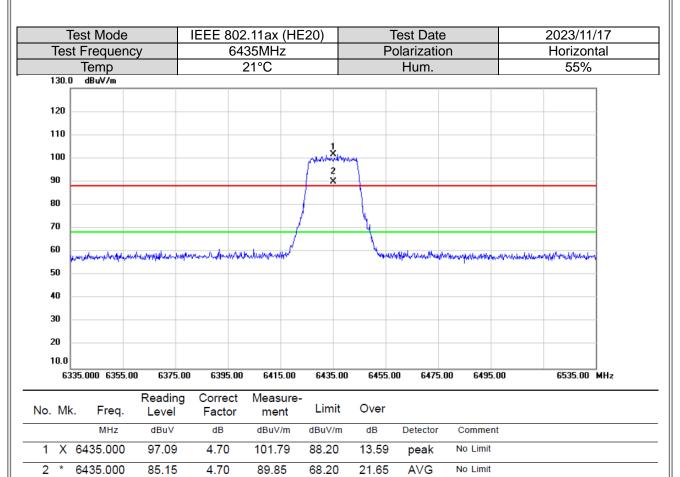
38.98

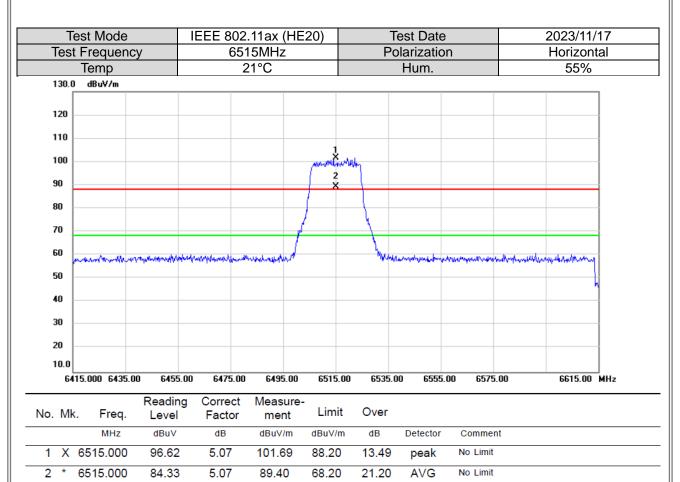
37.95

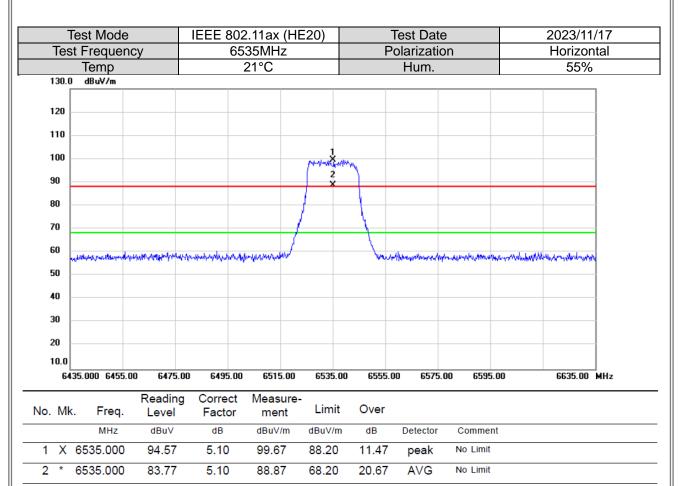
39.43

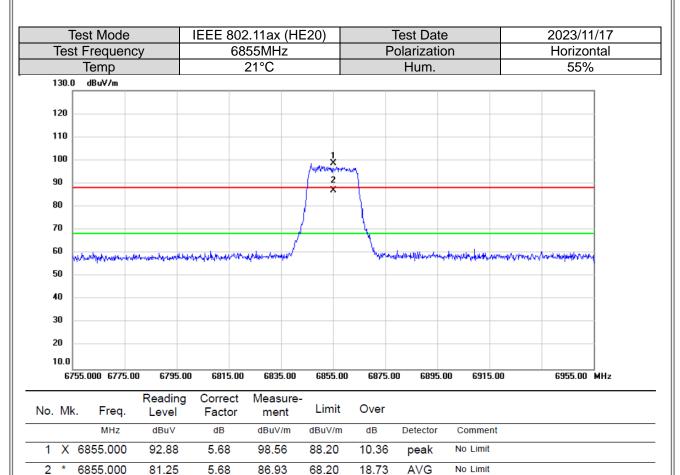
39.08

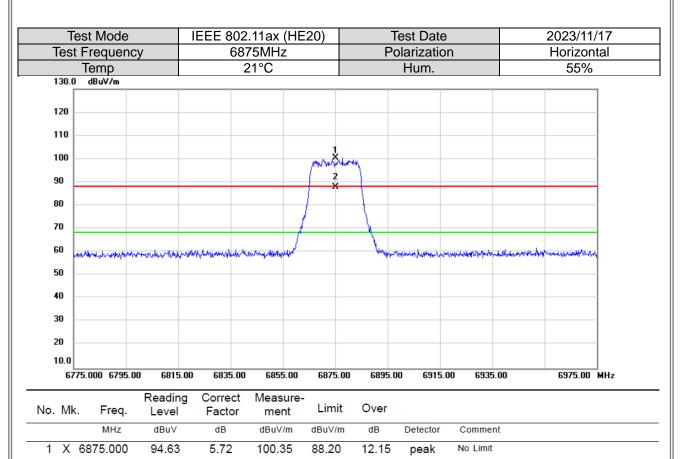

APPENDIX C UNDESIRABLE EMISSIONS - ABOVE 1 GHZ


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


(1) Measurement Value = Reading Level + Correct Factor.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


(1) Measurement Value = Reading Level + Correct Factor.


(1) Measurement Value = Reading Level + Correct Factor.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

2 *

6875.000

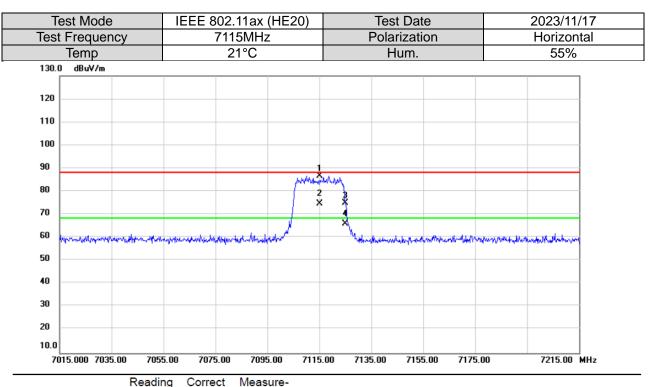
(1) Measurement Value = Reading Level + Correct Factor.

5.72

87.81

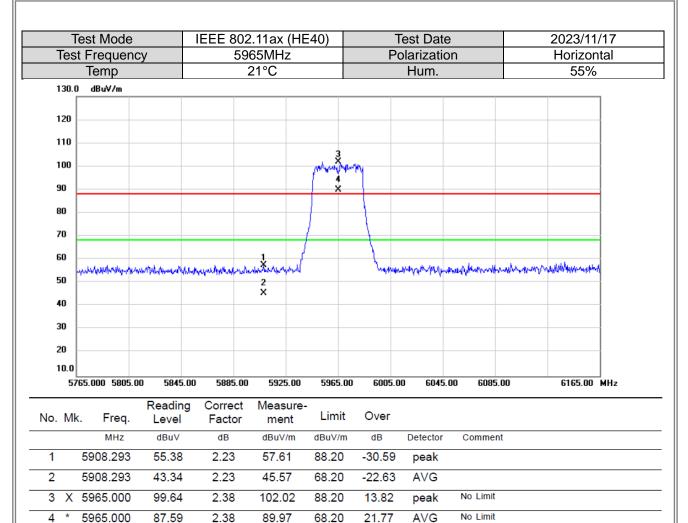
68.20

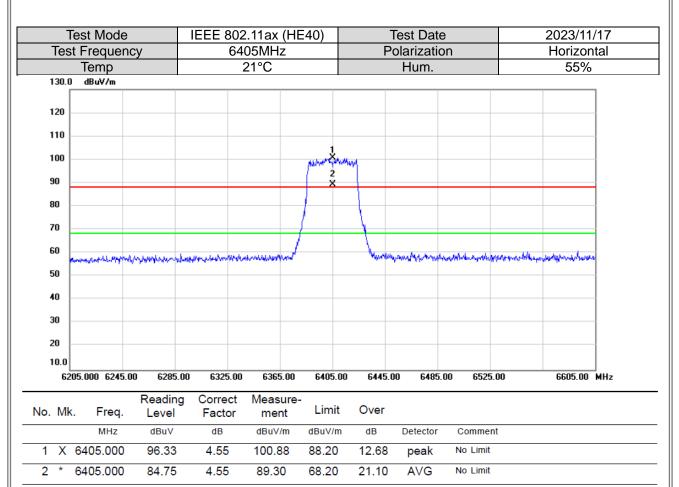
19.61


AVG

No Limit

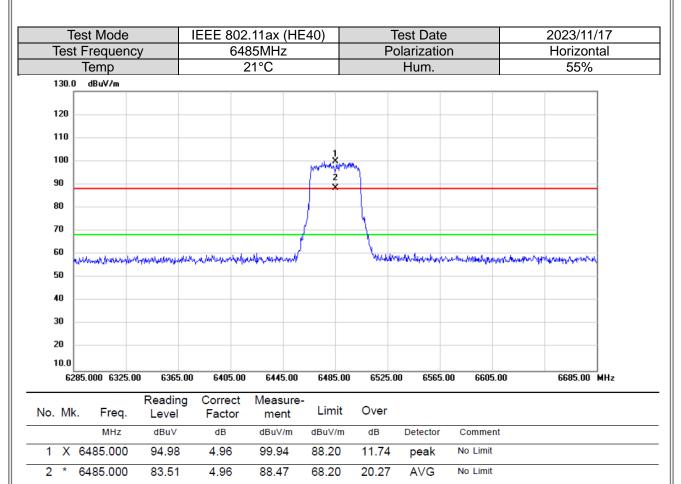
(2) Margin Level = Measurement Value - Limit Value.

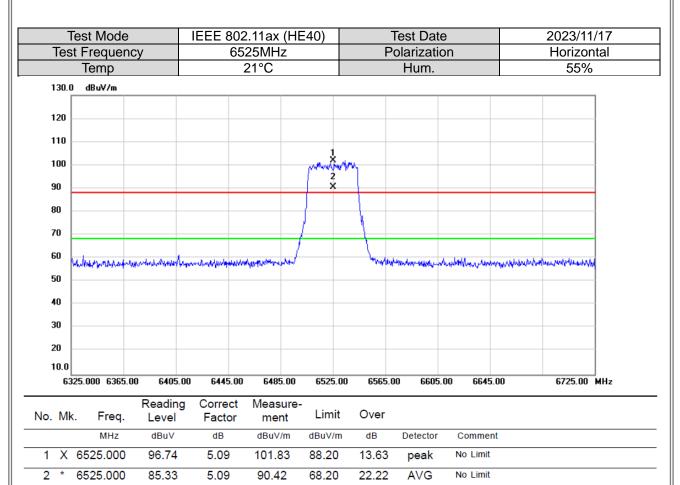

82.09

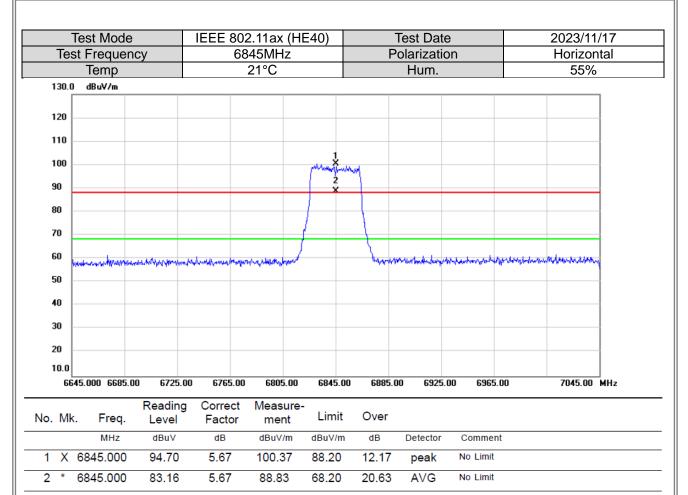

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7115.000	80.73	5.93	86.66	88.20	-1.54	peak	No Limit
2	*	7115.000	68.69	5.93	74.62	68.20	6.42	AVG	No Limit
3		7125.000	69.01	5.93	74.94	88.20	-13.26	peak	
4		7125.000	60.07	5.93	66.00	68.20	-2.20	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

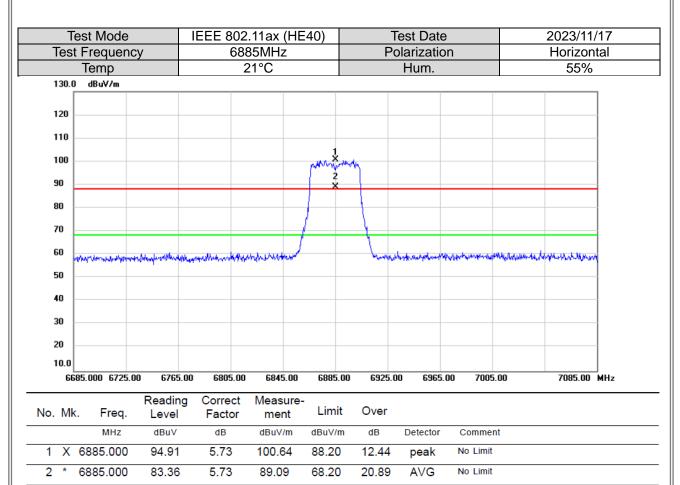
(1) Measurement Value = Reading Level + Correct Factor.


(1) Measurement Value = Reading Level + Correct Factor.

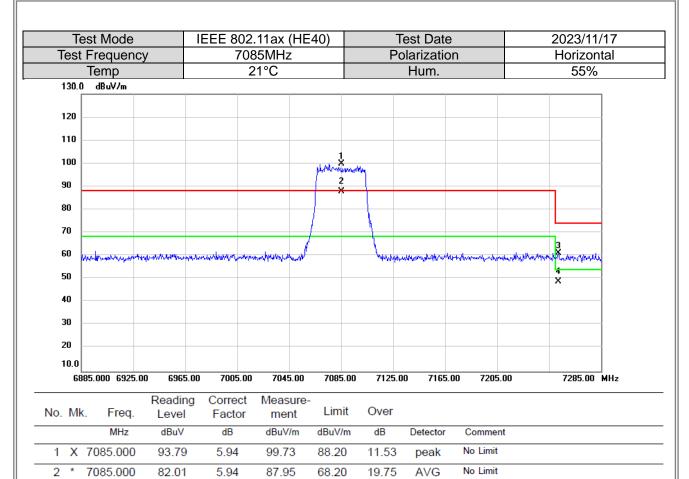

(1) Measurement Value = Reading Level + Correct Factor.



(1) Measurement Value = Reading Level + Correct Factor.



(1) Measurement Value = Reading Level + Correct Factor.



(1) Measurement Value = Reading Level + Correct Factor.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

19.75

-12.94

-5.08

peak

AVG

4 **REMARKS:**

2 *

3

7251.973

7251.973

(1) Measurement Value = Reading Level + Correct Factor.

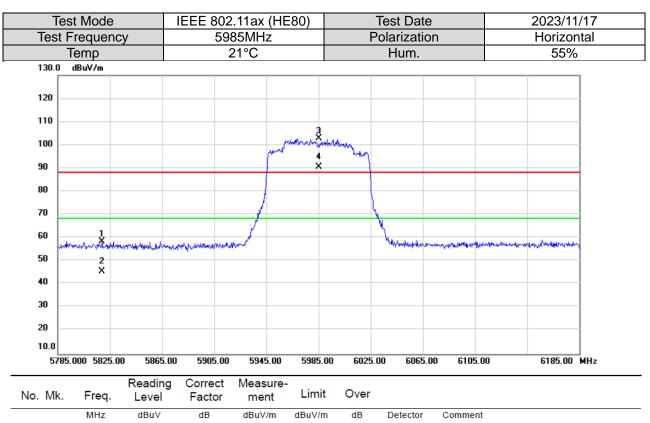
5.91

5.91

61.06

48.92

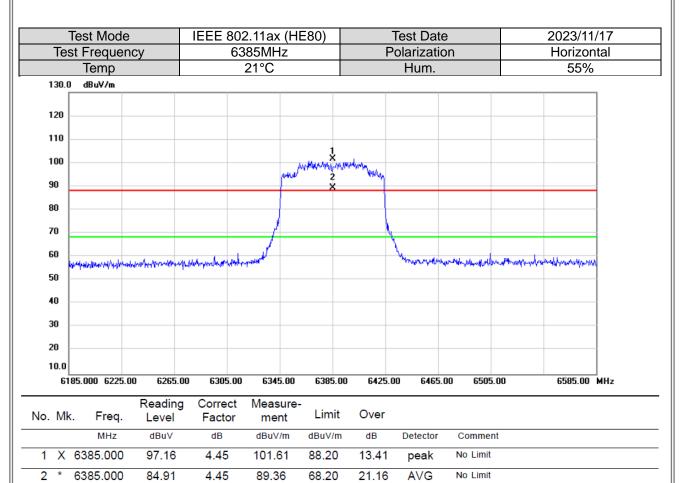
74.00


54.00

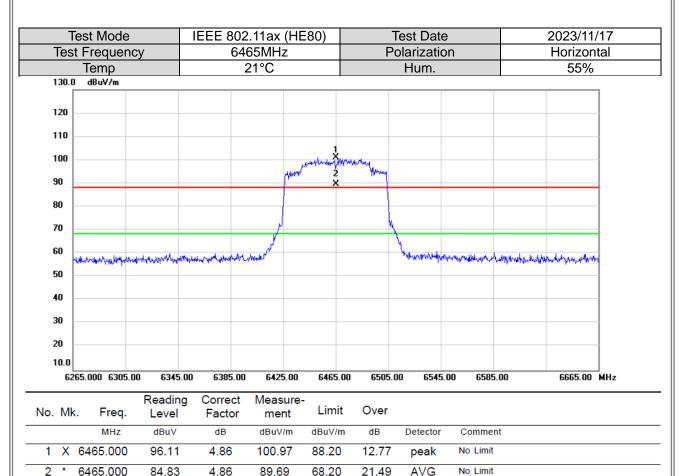
(2) Margin Level = Measurement Value - Limit Value.

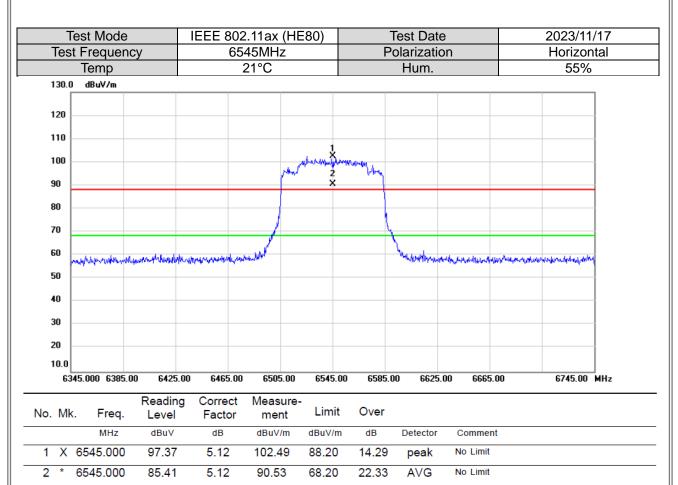
55.15

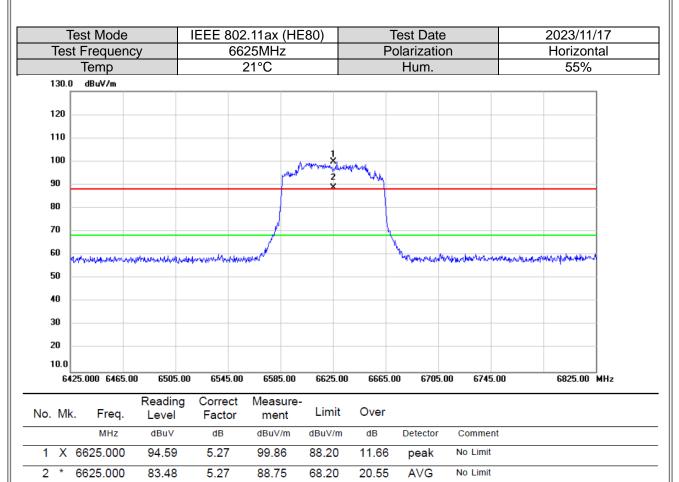
43.01

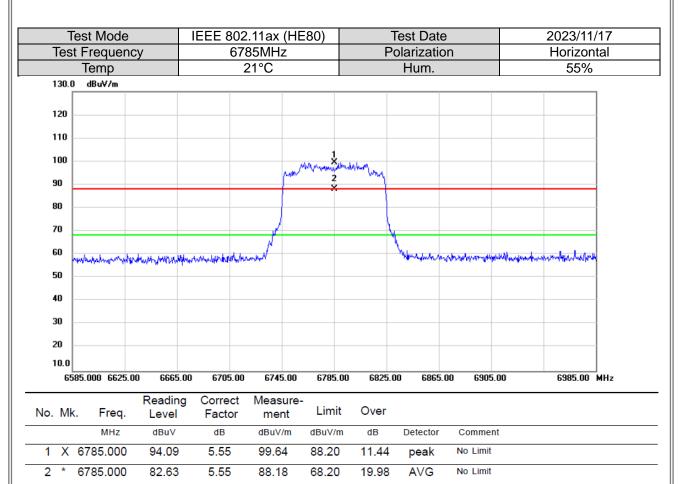


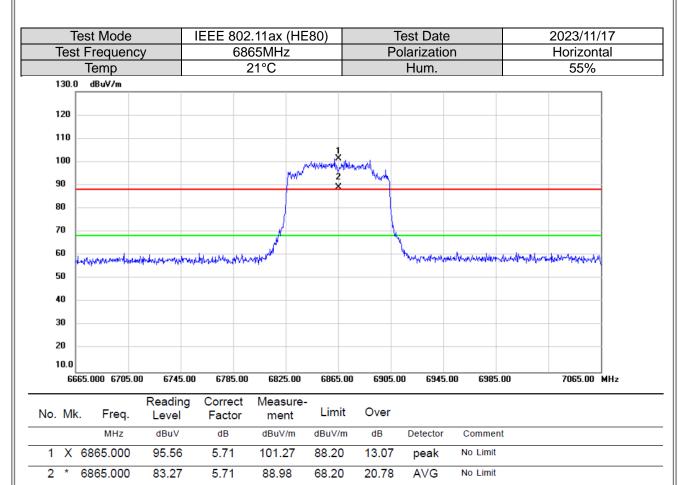
 •••••		LOVOI	1 actor	mont				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
 1	5818.933	56.58	2.02	58.60	88.20	-29.60	peak	
 2	5818.933	43.39	2.02	45.41	68.20	-22.79	AVG	
 3 X	5985.000	100.34	2.42	102.76	88.20	14.56	peak	No Limit
 4 *	5985.000	88.27	2.42	90.69	68.20	22.49	AVG	No Limit

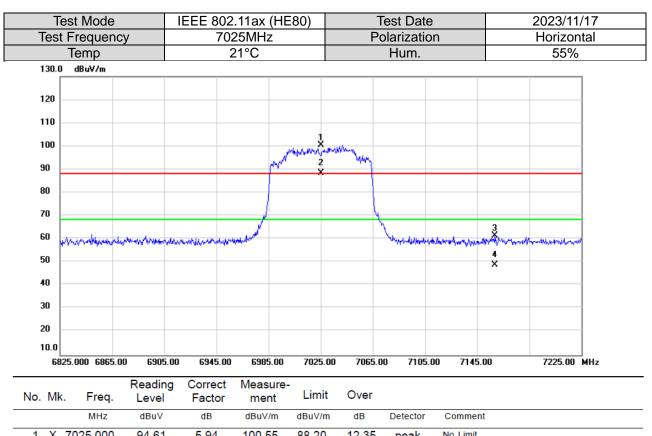

(1) Measurement Value = Reading Level + Correct Factor.

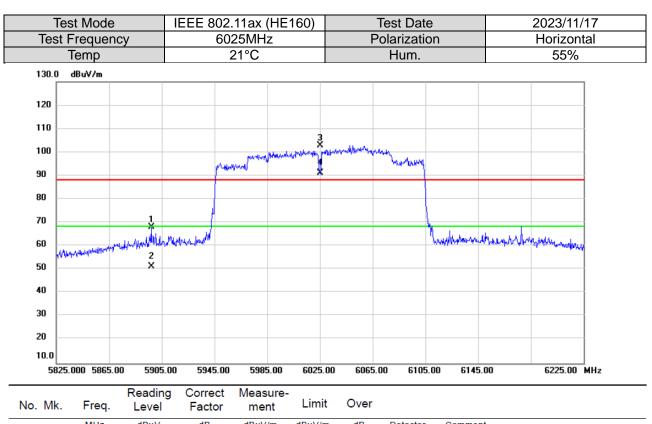

(1) Measurement Value = Reading Level + Correct Factor.


(1) Measurement Value = Reading Level + Correct Factor.

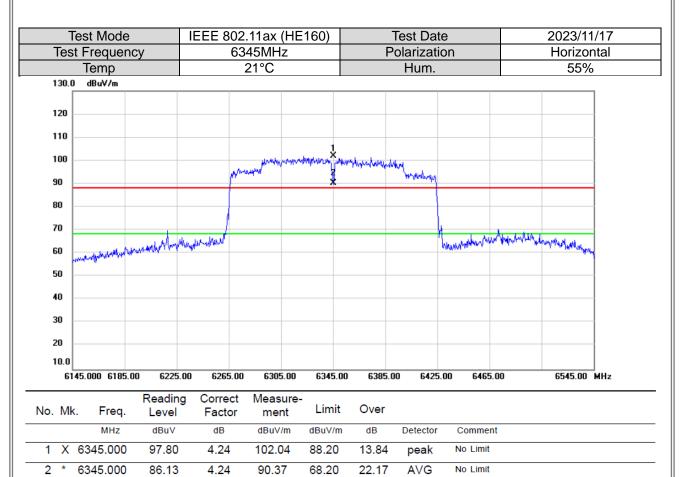

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


(1) Measurement Value = Reading Level + Correct Factor.

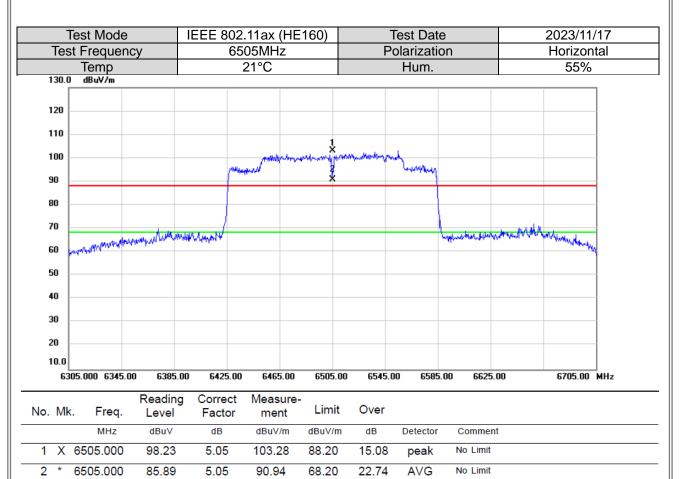

(1) Measurement Value = Reading Level + Correct Factor.

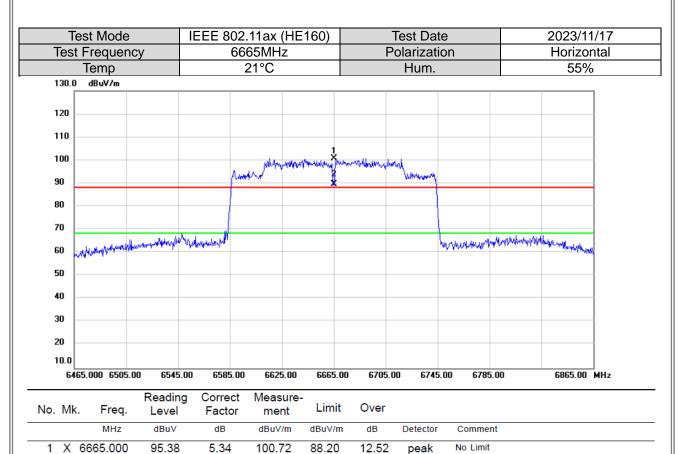

(1) Measurement Value = Reading Level + Correct Factor.

		MITZ	ubuv	uв	ubuv/iii	ubuv/m	uв	Delector	Comment
 1	Х	7025.000	94.61	5.94	100.55	88.20	12.35	peak	No Limit
2	*	7025.000	82.59	5.94	88.53	68.20	20.33	AVG	No Limit
3		7158.813	55.42	5.93	61.35	88.20	-26.85	peak	
4		7158.813	42.99	5.93	48.92	68.20	-19.28	AVG	


(1) Measurement Value = Reading Level + Correct Factor.

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		5897.213	65.78	2.21	67.99	88.20	-20.21	peak	
2		5897.213	48.97	2.21	51.18	68.20	-17.02	AVG	
3	Х	6025.000	100.33	2.58	102.91	88.20	14.71	peak	No Limit
4	*	6025.000	88.55	2.58	91.13	68.20	22.93	AVG	No Limit


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

2 *

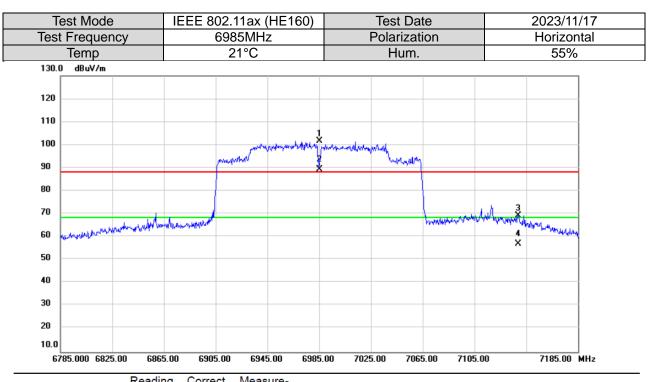
6665.000

(1) Measurement Value = Reading Level + Correct Factor.

5.34

89.65

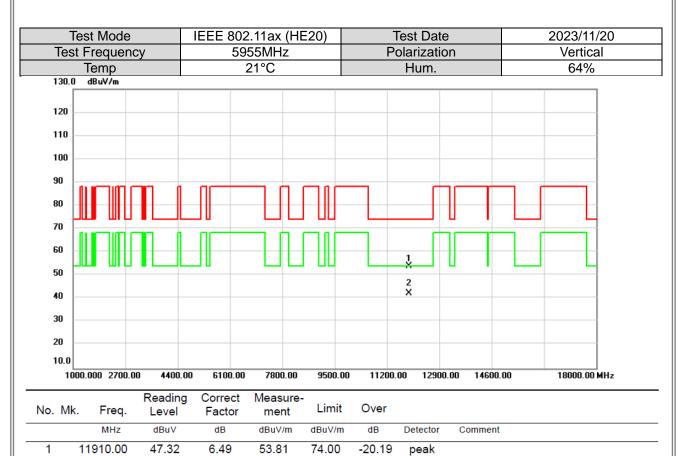
68.20


21.45

AVG

No Limit

(2) Margin Level = Measurement Value - Limit Value.


84.31

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	Х	6985.000	95.83	5.92	101.75	88.20	13.55	peak	No Limit	
2	*	6985.000	83.52	5.92	89.44	68.20	21.24	AVG	No Limit	
3		7139.133	63.43	5.93	69.36	88.20	-18.84	peak		
4		7139.133	51.08	5.93	57.01	68.20	-11.19	AVG		

(1) Measurement Value = Reading Level + Correct Factor.

2 *

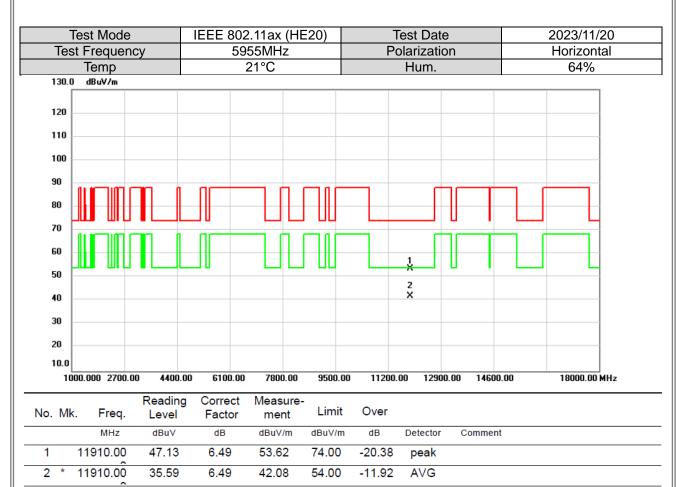
11910.00

(1) Measurement Value = Reading Level + Correct Factor.

6.49

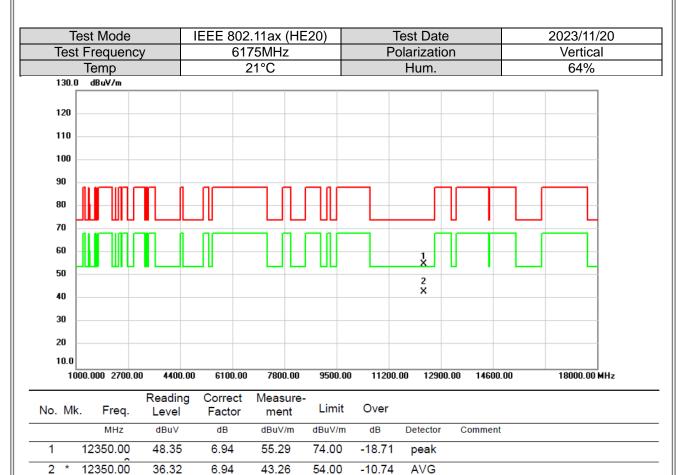
42.14

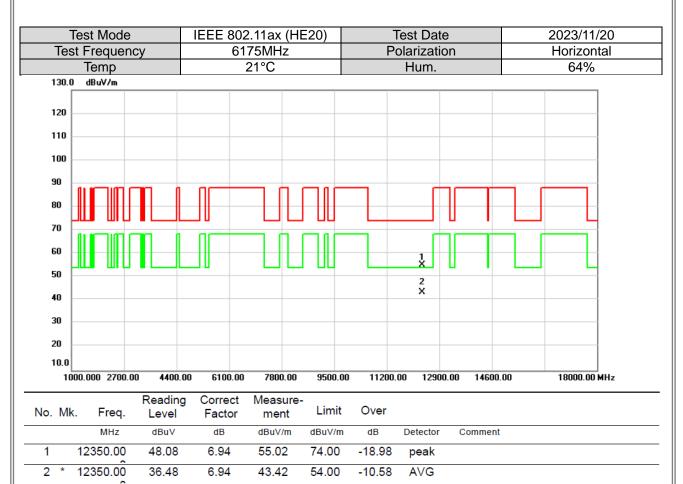
54.00

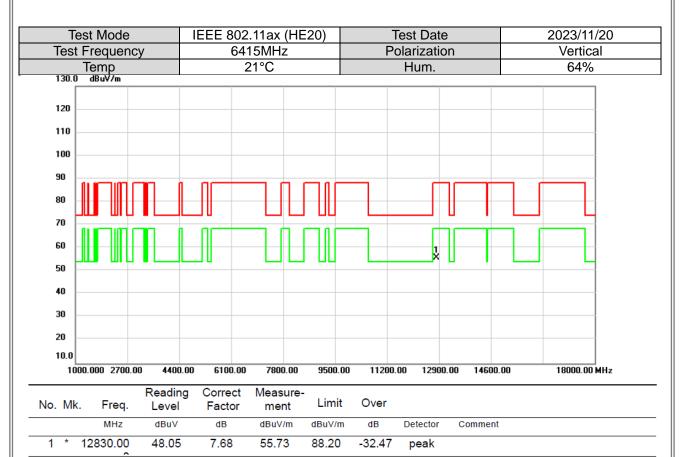

-11.86

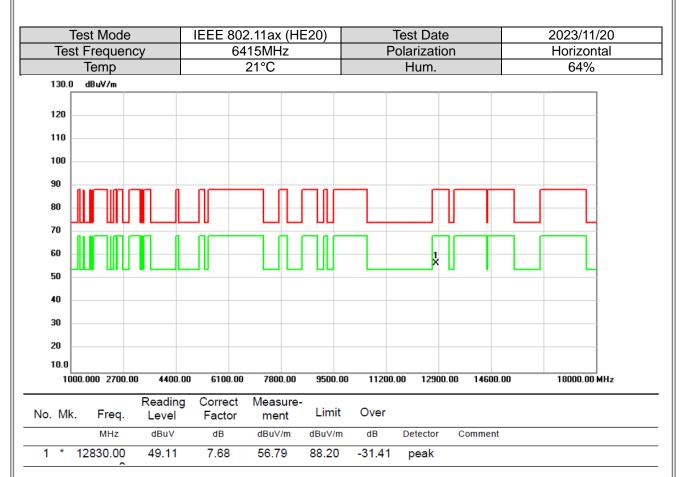
AVG

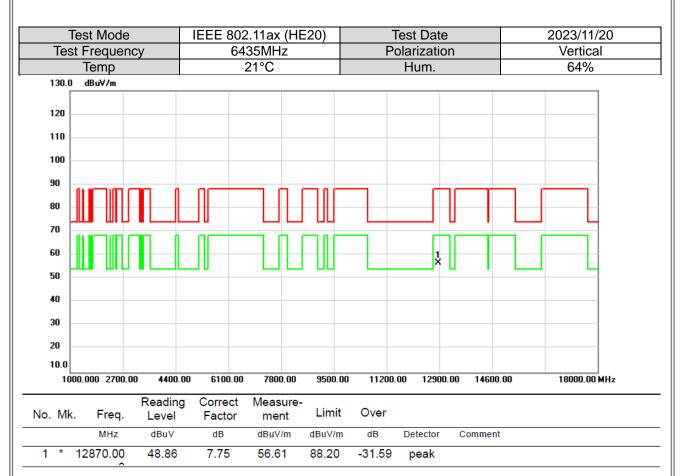
(2) Margin Level = Measurement Value - Limit Value.

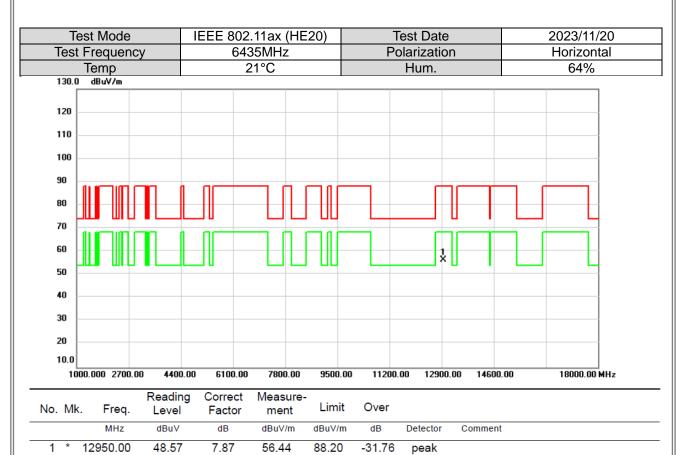

35.65

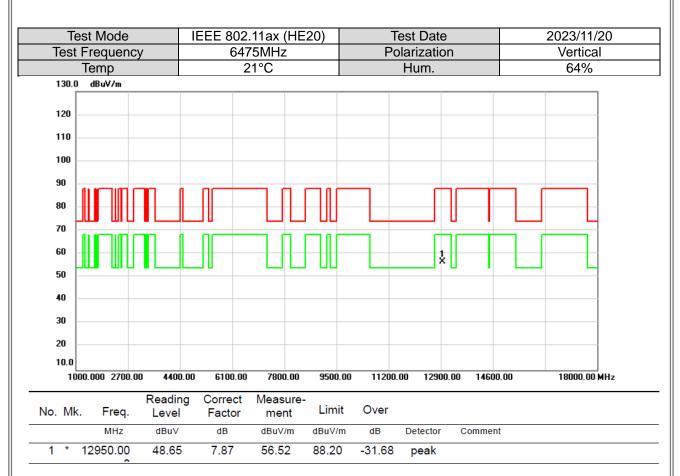

(1) Measurement Value = Reading Level + Correct Factor.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

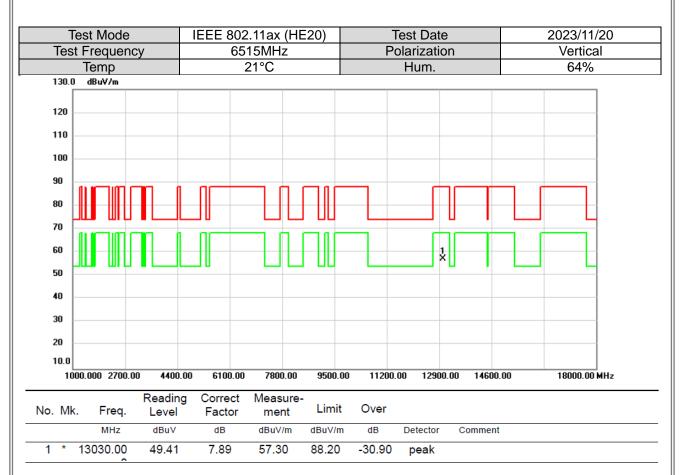

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

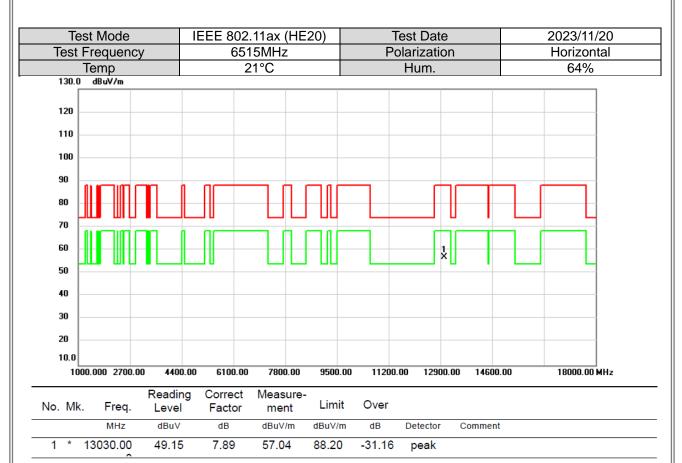

(1) Measurement Value = Reading Level + Correct Factor.

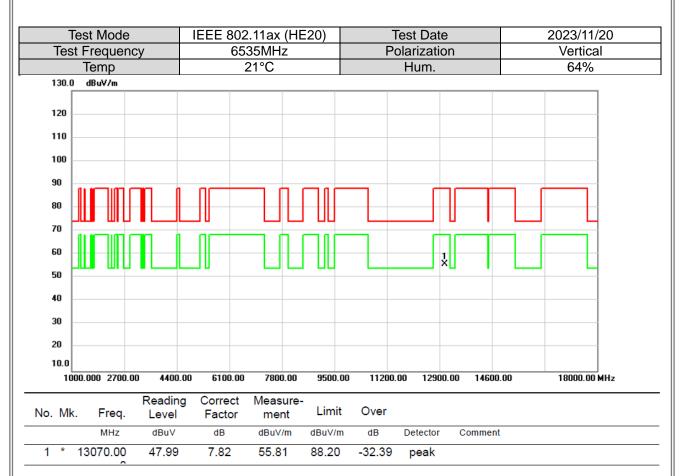

(1) Measurement Value = Reading Level + Correct Factor.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.