

Page 1 of 34

Report No.: KS2211S4767E

	TEST REPORT			
Report No	KS2211S4767E			
FCC ID	2ABUP-FT0309HD			
Applicant	Shenzhen Funpower General Technology Co., Ltd.			
Address:	ROOM 201B,Habor Venture Building, No.1041 Houhai Avenue,Shekou,Nanshan District,Shenzhen City,PRC.			
Manufacturer:	Shenzhen Funpower General Technology Co., Ltd.			
Address:	ROOM 201B,Habor Venture Building, No.1041 Houhai Avenue,Shekou,Nanshan District,Shenzhen City,PRC.			
Product Name:	Remote Control Transmitter			
Model/Type reference::	FT0309HD			
Standard:	47 CFR Part 15.231			
Date of Receipt	November 8, 2022			
Date of Test Date	November 8, 2022 to November 12, 2022			
Date of issue:	November 12, 2022			
Test result:	Pass			
Prepared by:	Poi Zhang			
(Printed name + Signature)	Pai Zheng			
Approved by:	Shy day			
(Printed name + Signature)	Sky Dong			
Testing Laboratory Name . :	KSIGN(Guangdong) Testing Co., Ltd.			
Address:	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China			
reproduced except in full, without	ted completely for legal use with the approval of the applicant. It should not be but the written approval of our laboratory. The client should not use it to claim N. The test results in the report only apply to the tested sample. The test report			

TRF EMC_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China
 Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com

shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to TSTLMS within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample. The report is invalid if

it is not stamped with the "Testing Special Stamp" and the "Riding Seam Stamp".

TABLE OF CONTENTS

Page

1. TEST	SUMMARY	<u> </u>		3
1.1.	Test Standards		\sim	
1.2.	Report Version			
				5
				6
2.1.	General Description	on Of EUT		
2.2.	Accessory Equipm	ent Information	~	6
2.3.	Measurement Inst	ruments List		
				10
3.1.	•			
×				
	2 I N		S (RF)	
10				
4.2.				
- 285				
4.3.				
	4.3.1. E.U.T. Operation	ation:		
	4.3.2. Test Setup I	Diagram:		
4.4.				
4.5				
	97 1 730 1 M N N N N N N N N N N N N N N N N N N	•		
4.6.	Radiated Emission	n (above 1GHz)		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		SALANDARANA AND AND AND AND AND AND AND AND AND	
			2017/	
5. EUT 1	EST PHOTOS		A.	
6. PHUI	UGRAPHS OF EU	UT CONSTRUCTION	4L	

#### TRF EMC_R1

# 1. TEST SUMMARY

# 1.1. Test Standards

KSIGN®

The tests were performed according to following standards: **47 CFR Part 15.231:** Periodic operation in the band 40.66-40.70 MHz and above 70 MHz

# 1.2. Report Version

Revised No.	Date of issue	Description	
01	November 12, 2022	Original	
Aug.			
	Chi.		
1 V			

### TRF EMC_R1



# **1.3. Test Description**

Test Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.231	Part 15.203	Pass
20dB Bandwidth	47 CFR Part 15.231	47 CFR Part 15.231(c)	Pass
Dwell Time	47 CFR Part 15.231	47 CFR Part 15.231(a)(1) & (a)(2)	Pass
Duty Cycle	47 CFR Part 15.231	47 CFR Part 15.231(b) & (e)	Pass
Field Strength of The Fundamental Signal	47 CFR Part 15.231	47 CFR Part 15.231(b)	Pass
Radiated Emission (below 1GHz)	47 CFR Part 15.231	47 CFR Part 15.231	Pass
Radiated Emission (above 1GHz)	47 CFR Part 15.231	47 CFR Part 15.231	Pass

#### TRF EMC_R1



# 1.4. Measurement Uncertainty

Test Items	Measurement Uncertainty	
RSE (30-1000MHz)	± 5.7dB	
RSE (1-18GHz)	± 4.68dB	

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

#### TRF EMC_R1



# 2. GENERAL INFORMATION

# 2.1. General Description Of EUT

Product Name:	Remote Control Transmitter
Model / Type reference:	FT0309HD
Power Supply:	DC3.0V from battery
Operation Frequency:	433.932MHz
Number of Channels:	
Modulation Type:	ASK
Antenna Type:	Internal Antenna
Antenna Gain:	-17.38dBi

# 2.2. Accessory Equipment Information

The EUT was tested as an independent device.

# 2.3. Description of Test Modes

No.	Title	Description of Mode
Test Mode1	TM1	Keep EUT is transmitting mode

### TRF EMC_R1

# 2.4. Measurement Instruments List

	20dE	B Bandwidth		
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
Wideband Radio Communication Tester	R&S	CMU200	115297	2023-03-04
Audio Analyzer	R&S	UPL16	100001	2023-03-04
Shielding box	Gxiong	GX-5915A	2201113	2023-04-23
High Pass Filter	COM-MW Technology Co., Ltd	ZHPF-M1.2-9G- 187	09203403	2023-03-04
Band Stop Filter	COM-MW Technology Co., Ltd	ZBSF6-C820- 920-188	09203401	2023-03-04
Splitter	COM-MW Technology Co., Ltd	ZPD-M1-8-2103	09203407	2023-03-04
Coaxial Cable	BEBES	A40- 2.92M2.92F- 4.5M	1907021	2023-03-04
Hygrothermograph	Anymetre	JB913	1	2023-03-07
Climate Chamber	Angul	AGNH80L	1903042120	2023-03-04
Spectrum Analyzer	HP	8593E	3831U02087	2023-03-04
Dual Output DC Power Supply	Agilent	E3646A	MY40009992	2023-03-04
RF Control Unit	Tonscend	JS0806-2		2023-03-04
Analog Signal Generator	HP	83752A	3344A00337	2023-03-04
Vector Signal Generator	Agilent	N5182A	MY50142520	2023-03-04
Wideband Radio Communication Tester	R&S	CMW500	157282	2023-03-04
Spectrum Analyzer	R&S	FSV40-N	101798	2023-03-04

	Dwell Time				
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
Wideband Radio Communication Tester	R&S	CMU200	115297	2023-03-04	
Audio Analyzer	R&S	UPL16	100001	2023-03-04	
Shielding box	Gxiong	GX-5915A	2201113	2023-04-23	
High Pass Filter	COM-MW Technology Co., Ltd	ZHPF-M1.2-9G- 187	09203403	2023-03-04	
Band Stop Filter	COM-MW Technology Co., Ltd	ZBSF6-C820- 920-188	09203401	2023-03-04	
Splitter	COM-MW Technology Co., Ltd	ZPD-M1-8-2103	09203407	2023-03-04	
Coaxial Cable	BEBES	A40- 2.92M2.92F- 4.5M	1907021	2023-03-04	

#### TRF EMC_R1



			A Contraction of the Contraction	
Hygrothermograph	Anymetre	JB913	$\gamma >$	2023-03-07
Climate Chamber	Angul	AGNH80L	1903042120	2023-03-04
Spectrum Analyzer	HP	8593E	3831U02087	2023-03-04
Dual Output DC Power Supply	Agilent	E3646A	MY40009992	2023-03-04
RF Control Unit	Tonscend	JS0806-2	1	2023-03-04
Analog Signal Generator	HP	83752A	3344A00337	2023-03-04
Vector Signal Generator	Agilent	N5182A	MY50142520	2023-03-04
Wideband Radio Communication Tester	R&S	CMW500	157282	2023-03-04
Spectrum Analyzer	R&S	FSV40-N	101798	2023-03-04
7 107 107 10000000000000000000000000000				

	D	uty Cycle		
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
Wideband Radio Communication Tester	R&S	CMU200	115297	2023-03-04
Audio Analyzer	R&S	UPL16	100001	2023-03-04
Shielding box 📎	Gxiong	GX-5915A	2201113	2023-04-23
High Pass Filter	COM-MW Technology Co., Ltd	ZHPF-M1.2-9G- 187	09203403	2023-03-04
Band Stop Filter	COM-MW Technology Co., Ltd	ZBSF6-C820- 920-188	09203401	2023-03-04
Splitter	COM-MW Technology Co., Ltd	ZPD-M1-8-2103	09203407	2023-03-04
Coaxial Cable	BEBES	A40- 2.92M2.92F- 4.5M	1907021	2023-03-04
Hygrothermograph	Anymetre	JB913	1 <	2023-03-07
Climate Chamber	Angul	AGNH80L	1903042120	2023-03-04
Spectrum Analyzer	HP	8593E	3831U02087	2023-03-04
Dual Output DC Power Supply	Agilent	E3646A	MY40009992	2023-03-04
RF Control Unit	Tonscend	JS0806-2		2023-03-04
Analog Signal Generator	HP	83752A	3344A00337	2023-03-04
Vector Signal Generator	Agilent	N5182A	MY50142520	2023-03-04
Wideband Radio Communication Tester	R&S	CMW500	157282	2023-03-04
Spectrum Analyzer	R&S	FSV40-N	101798	2023-03-04

Field Strength of The Fundamental Signal				
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	1230	2023-04-12

### TRF EMC_R1



			No. Andrews	
Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	2023-03-04
Color Signal Generator	Philips	PM5418	672926	2023-03-04
Broadcast Television Signal Generator	R&S	SFE100	141038	2023-03-04
Analog Signal Generator	Agilent	8648A	3847M00445	2023-03-04
EMI Test Receiver	R&S	ESR	102525	2023-03-04
Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	2023-03-29
Pre-Amplifier	EMCI	EMC051835SE	980662	2023-03-04
Spectrum Analyzer	Keysight	N9020A	MY46471971	2023-03-04
Loop Antenna	Beijin ZHINAN	ZN30900C	18050	2023-03-05

	Radiated Emission (below 1GHz)					
Test Equipment	pment Manufacturer Model No. Serial No.					
Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	1230	2023-04-12		
Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	2023-03-04		
Color Signal Generator	Philips	PM5418	672926	2023-03-04		
Broadcast Television Signal Generator	R&S	SFE100	141038	2023-03-04		
Analog Signal Generator	Agilent	8648A	3847M00445	2023-03-04		
EMI Test Receiver	R&S	ESR	102525	2023-03-04		
Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	2023-03-29		
Pre-Amplifier	EMCI	EMC051835SE	980662	2023-03-04		
Spectrum Analyzer	Keysight	N9020A	MY46471971	2023-03-04		
Loop Antenna	Beijin ZHINAN	ZN30900C	18050	2023-03-05		

	Radiated Emission (above 1GHz)				
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	1230	2023-04-12	
Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	2023-03-04	
Color Signal Generator	Philips	PM5418	672926	2023-03-04	
Broadcast Television Signal Generator	R&S	SFE100	141038	2023-03-04	
Analog Signal Generator	Agilent	8648A	3847M00445	2023-03-04	
EMI Test Receiver	R&S	ESR	102525	2023-03-04	
Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	2023-03-29	
Pre-Amplifier	EMCI	EMC051835SE	980662	2023-03-04	
Spectrum Analyzer	Keysight	N9020A	MY46471971	2023-03-04	
Loop Antenna	Beijin ZHINAN	ZN30900C	18050	2023-03-05	

#### TRF EMC_R1



# 3. Evaluation Results (Evaluation)

# 3.1. Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

### 3.1.1. Conclusion:

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

#### TRF EMC_R1

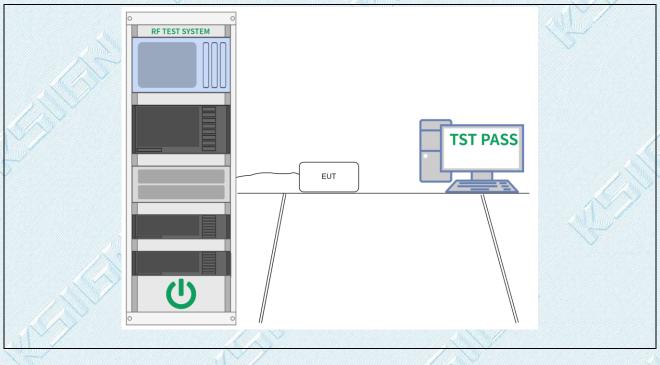


# 4. Radio Spectrum Matter Test Results (RF)

# 4.1. 20dB Bandwidth

Test Requirement:	47 CFR Part 15.231(c)	
Test Limit:	The bandwidth of the emission shall be no wide frequency for devices operating above 70 MHz a devices operating above 900 MHz, the emission the center frequency. Bandwidth is determined a the modulated carrier.	and below 900 MHz. For shall be no wider than 0.5% o
Test Method:	ANSI C63.10-2013, Section 6.9	
	<ul> <li>a) The spectrum analyzer center frequency is second center frequency.</li> <li>The span range for the EMI receiver or spectrum two times and five times the OBW.</li> <li>b) The nominal IF filter bandwidth (3 dB RBW) second center frequency.</li> </ul>	n analyzer shall be between
	5% of the OBW and video bandwidth (VBW) shall be approximately otherwise specified	
	by the applicable requirement.	
	c) Set the reference level of the instrument as re exceeding the	equired, keeping the signal fro
1.2°	maximum input mixer level for linear operation. spectral envelope	n general, the peak of the
87	shall be more than [10 log (OBW/RBW)] below t guidance is given	he reference level. Specific
S	in 4.1.5.2.	
	d) Steps a) through c) might require iteration to tolerances.	adjust within the specified
<b>D</b>	e) The dynamic range of the instrument at the set than 10 dB below the	elected RBW shall be more
Procedure:	target "-xx dB down" requirement; that is, if the r the -20 dB	equirement calls for measurin
	OBW, the instrument noise floor at the selected below the	RBW shall be at least 30 dB
the second s	reference value.	<
	<ul> <li>f) Set detection mode to peak and trace mode to</li> <li>g) Determine the reference value: Set the EUT t</li> <li>carrier or modulated</li> </ul>	
Sec. 1	signal, as applicable. Allow the trace to stabilize marker to the	. Set the spectrum analyzer
	highest level of the displayed trace (this is the re	eference value).
	h) Determine the "-xx dB down amplitude" using Alternatively, this	[(reference value) - xx].
	<ul><li>calculation may be made by using the marker-d</li><li>i) If the reference value is determined by an unn</li><li>EUT modulation</li></ul>	
	ON, and either clear the existing trace or start a analyzer and allow the	new trace on the spectrum
	new trace to stabilize. Otherwise, the trace from j).	
	j) Place two markers, one at the lowest frequence	y and the other at the highest

Shajing, Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com




	frequency of the
25	envelope of the spectral display, such that each marker is at or slightly below the "íxx dB down
	amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value,
	then it shall be as close as possible to this value. The occupied bandwidth is the frequency
	difference between the two markers. Alternatively, set a marker at the lowest frequency of the
×	envelope of the spectral display, such that the marker is at or slightly below the "íxx dB down
	amplitude" determined in step h). Reset the marker-delta function and move the marker to the
S P	other side of the emission until the delta marker amplitude is at the same level as the reference
	marker amplitude. The marker-delta frequency reading at this point is the specified emission
	bandwidth.
	k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
	display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
	be reported in addition to the plot(s).

## 4.1.1. E.U.T. Operation:

Operating Environment:	
Temperature:	23.3 °C
Humidity:	44.2 %
Atmospheric Pressure:	101 kPa
Final test mode:	Test Mode1

# 4.1.2. Test Setup Diagram:



## TRF EMC_R1



### 4.1.3. Test Data:

Channel frequency (MHz)	99%Bandwidth (kHz)	20dB Bandwidth (kHz)		Limit (MHz)
433.932	11.983	5.239		0.25%*=1.0848
Spectrum		1		E ▼
Ref Level -10.0	0 dBm 🛛 🥃	RBW 300 Hz		<u>,</u>
Att	0 dB <b>SWT</b> 6.3 ms 🖷	VBW 1 kHz Mode A	Auto FFT	
●1Pk Max				
-20 dBm		M2	D1[1] Occ Bw	0.03 df 5.2390 kH 11.982633864 kH
-30 dBm			M1[1]	-47.86 dBn 433.9291200 MH
-40 dBm	.830_dBm		R1	
-podBm				
-70 dBm				
-90 dBm			_	
-100 dBm				
CF 433.931754 M	1Hz	691 pts		Span 20.0 kHz
1arker Type   Ref   Trc	X-value	Y-value Fu	nction	Function Result
M1 1		-47.86 dBm		T unction Result
T1 1		-56.04 dBm	Occ Bw	11.982633864 kHz
T2 1		-55.18 dBm		
D1 M1 1 M2 1		0.03 dB -27.83 dBm		
		M	easuring	09.11.2022 16:18:11

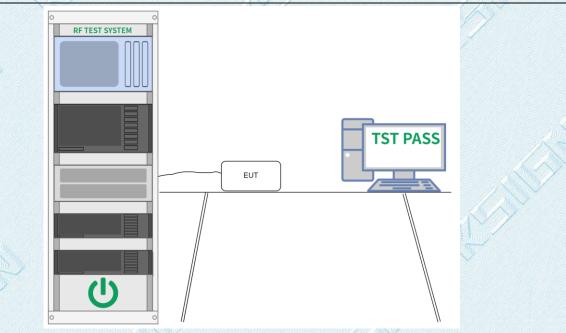
Date: 9.NOV.2022 16:18:11

#### TRF EMC_R1



# 4.2. Dwell Time

Test Desulation 1	47 OED Don't 45 024/o/(4) 8 (-)(0)
Test Requirement:	47 CFR Part 15.231(a)(1) & (a)(2)
	(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
Test Limit:	
	(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
Test Method:	ANSI C63.10-2013, Section 7.8.4
	<ul> <li>a) Span: Zero span, centered on a hopping channel.</li> <li>b) RBW shall be □ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the</li> </ul>
	<ul><li>expected dwell time per channel.</li><li>c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a</li></ul>
	video trigger and trigger delay so that the transmitted signal starts a little to the right of the start
	of the plot. The trigger level might need slight adjustment to prevent triggering when the system
	hops on an adjacent channel; a second plot might be needed with a longer sweep time to show
	two successive hops on a channel.
	d) Detector function: Peak.
LAN CONTRACT	e) Trace: Max hold.
	Use the marker-delta function to determine the transmit time per hop. If this value varies with different
	modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test
	for each variation in transmit time.
Procedure:	Repeat the measurement using a longer sweep time to determine the number of hops over the period
Aug.	specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the
	requirements. Determine the number of hops over the sweep time and calculate the total number of hops in
	the period specified in the requirements, using the following equation:
	(Number of hops in the period specified in the requirements) =
	(number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)
5	The average time of occupancy is calculated from the transmit time per hop multiplied by the number of
	hops in the period specified in the requirements. If the number of hops in a specific time varies with
	different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat
	this test for each variation.
	The measured transmit time and time between hops shall be consistent with the values described in the
	operational description for the EUT.


#### TRF EMC_R1



## 4.2.1. E.U.T. Operation:

Operating Environment:		
Temperature:	23.3 °C	
Humidity:	44.2 %	
Atmospheric Pressure:	101 kPa	AP
Final test mode:	Test Mode1	

# 4.2.2. Test Setup Diagram:



4.2.3. Test Data:

### TRF EMC_R1

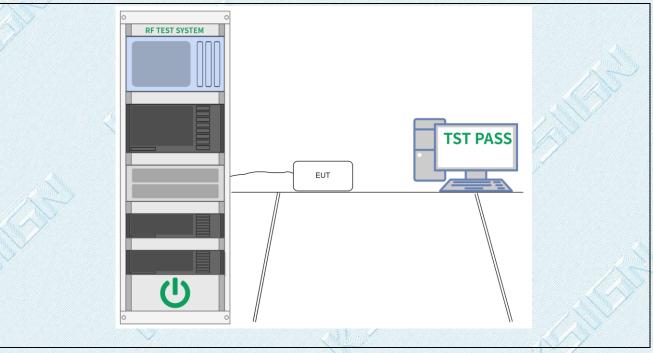


annel frequency (MHz)	One transmission time (second)	Limit (second)
433.932	0.4203	5
SGL	● RBW 100 kHz SWT 10 s ● VBW 300 kHz	
1Pk Max		
-20 dBm	D1[1 M1M1[1	420.3 ms
-30 dBm	- 1	
-40 dBm-		
-50 dBm-		
-60 dBm		
-70 dBm		
-80 dBm		
-90 dBm	in particulation and the source of the sourc	adaptive and a second
190 GBM		
-100 dBm		
CF 433.931754 MHz	691 pts	1.0 s/
	Rea	dy 09.11.2022 16:20:03

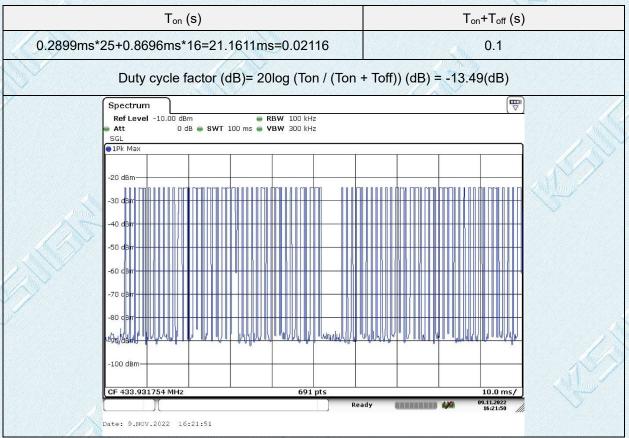
#### TRF EMC_R1



# 4.3. Duty Cycle


Test Requirement:	47 CFR Part 15.231(b) & (e)
Test Limit:	No limit, only for Report Use.
Test Method:	ANSI C63.10-2013, Section 7.8.4
J.	<ul> <li>a) Span: Zero span, centered on a hopping channel.</li> <li>b) RBW shall be □ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel.</li> <li>c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a</li> </ul>
	video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system
×	hops on an adjacent channel; a second plot might be needed with a longer sweep time to show
	two successive hops on a channel.
24	d) Detector function: Peak.
	e) Trace: Max hold.
	Use the marker-delta function to determine the transmit time per hop. If this value varies with different
	modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test
Procedure:	for each variation in transmit time.
	Repeat the measurement using a longer sweep time to determine the number of hops over the period
2	specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the
	requirements. Determine the number of hops over the sweep time and calculate the total number of hops in
	the period specified in the requirements, using the following equation:
	(Number of hops in the period specified in the requirements) =
	(number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)
1. S. P.	The average time of occupancy is calculated from the transmit time per hop multiplied by the number of
	hops in the period specified in the requirements. If the number of hops in a specific time varies with
	different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat
	this test for each variation.
	The measured transmit time and time between hops shall be consistent with the values described in the
	operational description for the EUT.

# 4.3.1. E.U.T. Operation:

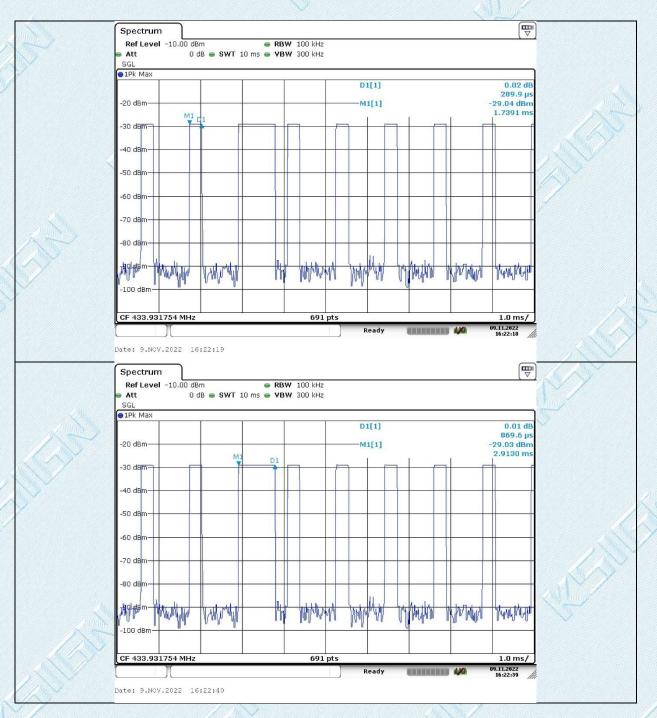

Operating Environment:	
Temperature:	23.3 °C
Humidity:	44.2 %
Atmospheric Pressure:	101 kPa
Final test mode:	Test Mode1
TRF EMC_R1	
	ilding C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou,
Tel: +(86) 0755-2985 2678	Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com



### 4.3.2. Test Setup Diagram:



### 4.3.3. Test Data:



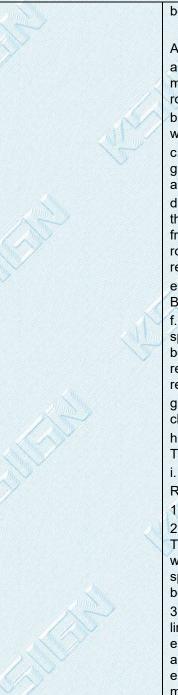

### TRF EMC_R1



#### Page 19 of 34

Report No.: KS2211S4767E




#### TRF EMC_R1

# 4.4. Field Strength of The Fundamental Signal

Test Requirement:	47 CFR Part 15.231(b	)							
X	Fundamental	frequency (MHz) fundamental spurious emissions							
	frequency (MHz)	fundamental							
		(microvolts/meter)	(microvolts/meter)						
	40.66-40.70	2,250	225						
	70-130	1,250	125						
	130-174	¹ 1,250 to 3,750	¹ 125 to 375						
	174-260	3,750	375						
$\sim$	260-470	¹ 3,750 to 12,500	¹ 375 to 1,250						
Test Limit:	Above 470								
	Above 470	12,500	1,250						
			×						
	¹ Linear interpolations.								
	X R								
		and the second sec							
5×									
			t a distance of 3 meters. The						
	tighter limits apply at t	he band edges.							
Test Method:	ANSI C63.10-2013, S	ection 6.5							
24	Below 1GHz:								
N N		e EUT was placed on the to	on of a rotating table 0.9						
		meters above the ground at a 3 meter semi-anechoic chamber. The table was							
		rotated 360 degrees to determine the position of the highest radiation.							
		b. The EUT was set 3 or 10 meters away from the interference-receiving							
	antenna, which was n	antenna, which was mounted on the top of a variable-height antenna tower.							
	c. The antenna height	c. The antenna height is varied from one meter to four meters above the							
		ground to determine the maximum value of the field strength. Both horizontal							
		and vertical polarizations of the antenna are set to make the measurement.							
7	d. For each suspected emission, the EUT was arranged to its worst case and								
		then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to beights 1 meter) and the							
		frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the							
		rotatable table was turned from 0 degrees to 360 degrees to find the maximum							
	•	reading.							
		e. The test-receiver system was set to Peak Detect Function and Specified							
	Bandwidth with Maxin	Bandwidth with Maximum Hold Mode.							
	f. If the emission level	f. If the emission level of the EUT in peak mode was 10dB lower than the limit							
Procedure:	specified, then testing could be stopped and the peak values of the EUT would								
		be reported. Otherwise the emissions that did not have 10dB margin would be							
	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR								
622	in a data sheet.	re-tested one by one using quasi-peak method as specified and then reported in a data sheet							
$\vee$									
0.00		g. Test the EUT in the lowest channel, the middle channel, the Highest							
	channel.								
	h. The radiation measurements are performed in X, Y, Z axis positioning for								
		Transmitting mode, and found the X axis positioning which it is the worst case.							
	i. Repeat above proce	i. Repeat above procedures until all frequencies measured was complete.							
	Remark:	V 1017-10002							
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor								
		2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when							
			. The amplitude of spurious						
			more than 20dB below the						
	limit need not be repo	rted.							
	3. The disturbance be	low 1GHz was very low and	d the harmonics were the						
	ちちちちちち アンスちょうちちょう パンション ひかくひつかく おくちちょう しょうしん しょうしん	and a second	y the above harmonics had						
	N. Comment								
RF EMC R1			1						

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com





been displayed.

#### Above 1GHz:

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.i. Repeat above procedures until all frequencies measured was complete.Remark:

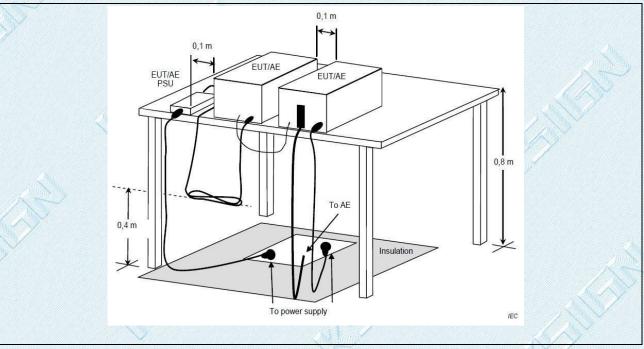
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

## 4.4.1. E.U.T. Operation:

Operating Environment:	N. N
Temperature:	24.6 °C
Humidity:	44.3 %
Atmospheric Pressure:	101 kPa
Final test mode:	Test Mode1


#### TRF EMC_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com

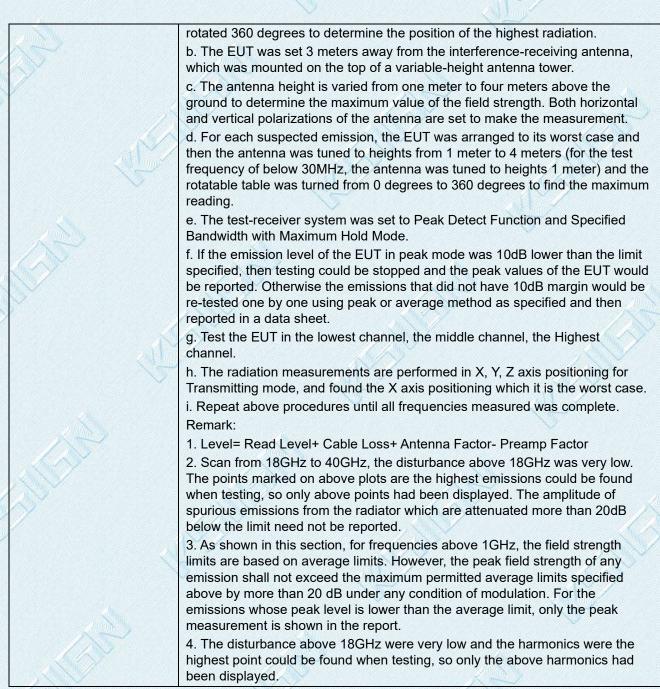


## 4.4.2. Test Setup Diagram:



### 4.4.3. Test Data:

Frequency (MHz)	Peak Level (dBuV/m)	Peak Level Limit (dBµV/m)	Margin (dB)	Polarization
433.932	68.91	100.82	-31.91	Vertical
433.932	81.53	100.82	-19.29	Horizontal


Frequency (MHz)	Peak Level (dBuV/m)	Duty cycle factor(dB)	AV Level (dBuV/m)	AV Level Limit (dBµV/m)	Margin (dB)	Polarization
433.932	68.91	-13.49	55.42	80.82	-25.4	Vertical
433.932	81.53	-13.49	68.04	80.82	-12.78	Horizontal

#### TRF EMC_R1

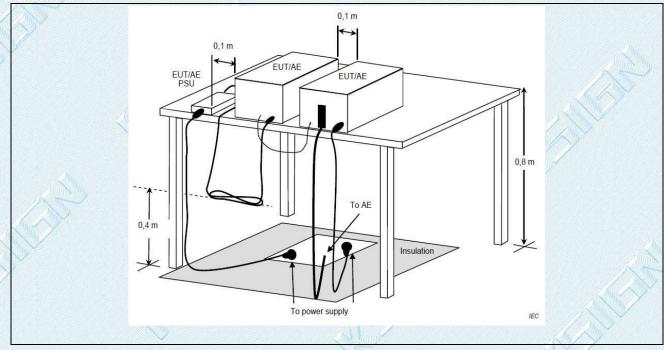


# 4.5. Radiated Emission (below 1GHz)

Field strength (microvolts/meter)Measurement distance (meters)2400/F(kHz)30024000/F(kHz)303030100 **3150 **3200 **35003tion 6.5EUT was placed on the top of a rotating table 0.8d at a 3 meter semi-anechoic chamber. The table was						
2400/F(kHz)       300         24000/F(kHz)       30         30       30         30       30         100 **       3         150 **       3         200 **       3         500       3         tion 6.5         EUT was placed on the top of a rotating table 0.8         d at a 3 meter semi-anechoic chamber. The table was						
24000/F(kHz)       30         30       30         100 **       3         150 **       3         200 **       3         500       3         tion 6.5         EUT was placed on the top of a rotating table 0.8         d at a 3 meter semi-anechoic chamber. The table was						
30       30         100 **       3         150 **       3         200 **       3         500       3         tion 6.5         EUT was placed on the top of a rotating table 0.8         d at a 3 meter semi-anechoic chamber. The table was						
100 **       3         150 **       3         200 **       3         500       3         tion 6.5         EUT was placed on the top of a rotating table 0.8         d at a 3 meter semi-anechoic chamber. The table was						
150 **       3         200 **       3         500       3         tion 6.5       3         EUT was placed on the top of a rotating table 0.8         d at a 3 meter semi-anechoic chamber. The table was						
500       3         tion 6.5       3         EUT was placed on the top of a rotating table 0.8       3         d at a 3 meter semi-anechoic chamber. The table was       3						
tion 6.5 EUT was placed on the top of a rotating table 0.8 d at a 3 meter semi-anechoic chamber. The table was						
EUT was placed on the top of a rotating table 0.8 d at a 3 meter semi-anechoic chamber. The table was						
d at a 3 meter semi-anechoic chamber. The table was						
d at a 3 meter semi-anechoic chamber. The table was						
determine the position of the highest radiation. 10 meters away from the interference-receiving unted on the top of a variable-height antenna tower.						
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						
mission, the EUT was arranged to its worst case and ned to heights from 1 meter to 4 meters (for the test Hz, the antenna was tuned to heights 1 meter) and th ed from 0 degrees to 360 degrees to find the maximum						
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
the EUT in peak mode was 10dB lower than the limit buld be stopped and the peak values of the EUT woul the emissions that did not have 10dB margin would be ing quasi-peak method as specified and then reported						
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.						
ements are performed in X, Y, Z axis positioning for found the X axis positioning which it is the worst case ares until all frequencies measured was complete.						
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor						
2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.						
w 1GHz was very low and the harmonics were the bund when testing, so only the above harmonics had						
1. S						
EUT was placed on the top of a rotating table 1.5 d at a 3 meter fully-anechoic chamber. The table was						



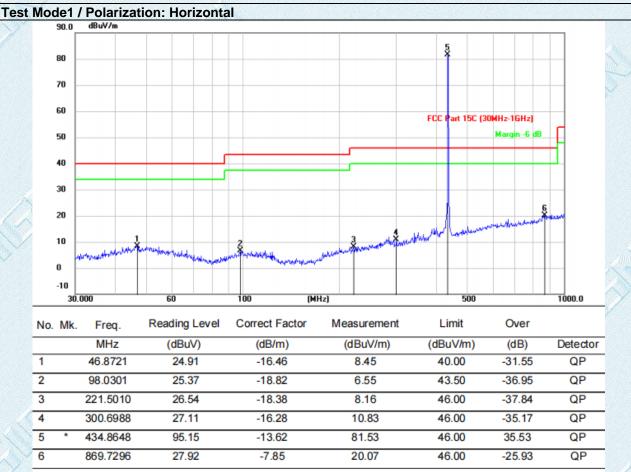
## 4.5.1. E.U.T. Operation:


Operating Environment:	SAX -		
Temperature:	24.6 °C		
Humidity:	44.3 %		
Atmospheric Pressure:	101 kPa		$\wedge$
Final test mode:	Test Mode1	~	Cathorn and

#### TRF EMC_R1

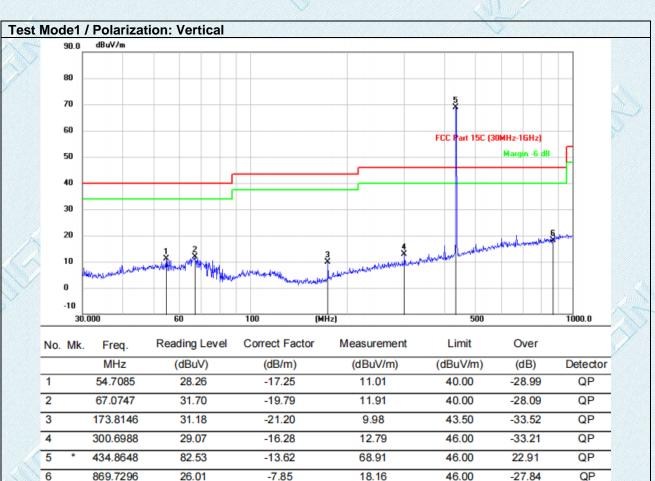


Report No.: KS2211S4767E


## 4.5.2. Test Setup Diagram:



#### TRF EMC_R1

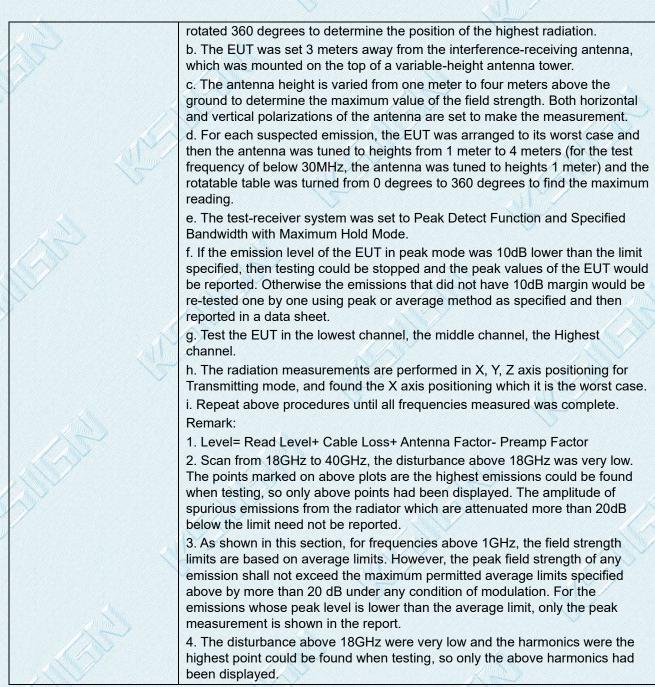



#### 4.5.3. Test Data:



#### TRF EMC_R1






#### TRF EMC_R1

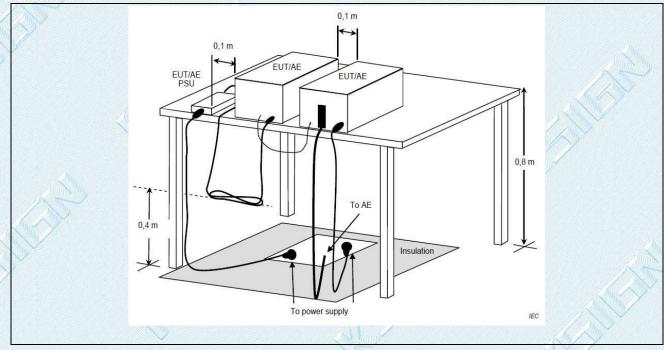


# 4.6. Radiated Emission (above 1GHz)

NUK	2 2						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
50	0.490-1.705	24000/F(kHz)	30				
Test Limit:	1.705-30.0	30	30				
	30-88	100 **	3				
×	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Test Method:	ANSI C63.10-2013, Sect	ion 6.5					
	Below 1GHz:	- March					
	meters above the ground rotated 360 degrees to d b. The EUT was set 3 or antenna, which was mou	EUT was placed on the top of I at a 3 meter semi-anechoic etermine the position of the h 10 meters away from the inte nted on the top of a variable-	chamber. The table was ighest radiation. erference-receiving height antenna tower.				
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						
	then the antenna was tur frequency of below 30MH rotatable table was turne reading.	nission, the EUT was arrange ned to heights from 1 meter to Iz, the antenna was tuned to d from 0 degrees to 360 degr	94 meters (for the test heights 1 meter) and th rees to find the maximur				
>	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
Procedure:	specified, then testing co be reported. Otherwise th	the EUT in peak mode was 1 uld be stopped and the peak ne emissions that did not have ng quasi-peak method as spe	values of the EUT woul e 10dB margin would be				
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.						
	Transmitting mode, and f	ments are performed in X, Y, found the X axis positioning w res until all frequencies meas	hich it is the worst case				
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor						
	2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.						
		1GHz was very low and the und when testing, so only the					
5 AV	Above 1GHz:						
	a. For above 1GHz, the E	EUT was placed on the top of I at a 3 meter fully-anechoic o					



## 4.6.1. E.U.T. Operation:


Operating Environment:	5.05		
Temperature:	24.6 °C		
Humidity:	44.3 %		128
Atmospheric Pressure:	101 kPa		$\sim$
Final test mode:	Test Mode1	~	

### TRF EMC_R1



Report No.: KS2211S4767E

## 4.6.2. Test Setup Diagram:



#### TRF EMC_R1



### 4.6.3. Test Data:

$\wedge \gamma$				Field S	Stre	ength of Har	monic			
	Test Ch	anne				433.84MHz				
Frequency (MHz)	Reading Level (dBuV/m)	Fac	rect ctor B)	Final lev (dBuV/m	000073	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
1301.52	52.36	-9.	56	42.80		80.83	-38.03	Vertical		
1735.36	53.51	-10	.01 43.50			80.83	-37.33	Vertical	2	
2169.50	62.75	-10	.99	51.76		80.83	-29.07	Vertical		
3037.50	68.00	-10	.52	57.48		80.83	-23.35	Vertical	Deelt	
1301.52	55.73	-9.	56	46.17		80.83	-34.66	Horizontal	Peak	
1735.36	56.28	-10	.03	46.25		80.83	-34.58	Horizontal		
2169.50	63.08	-10	.99	52.09		80.83	-28.74	Horizontal		
3037.50	65.70	-10	.52	55.18		80.83	-25.65	Horizontal		
Correct Facto	r=Antenna F	actor	+ Ca	ble Loss -l	Prea	amplifier Fac	tor			
Frequency (MHz)	Peak Le (dBuV/i			ty cycle actor		AV Level (dBuV/m)	AV Limit (dBµV/m)	Margin (dB)	Polarization	
1301.52	42.80	)	I	13.49		29.31	60.83	-31.52	Vertical	
1735.36	43.50	)	1	13.49	h.	30.01	60.83	-30.82	Vertical	
2169.50	51.76	6	-	13.49		38.27	60.83	-22.56	Vertical	
3037.50	57.48	}	-	-13.49		43.99	60.83	-16.84	Vertical	
1301.52	46.14	ļ		-13.49		32.65	60.83	-28.18	Horizontal	
1735.36	46.25	i l	<u> </u>	13.49		32.76	60.83	-28.07	Horizontal	
2169.50	52.09	5	-	13.49		38.60	60.83	-22.23	Horizontal	
3037.50	55.18	}	-	13.49		41.69	60.83	-19.14	Horizontal	

Note:Duty cycle factor = 20log (Duty cycle),Duty cycle = Ton / (Ton + Toff)

AV Level=Peak Level +Duty cycle factor

#### TRF EMC_R1

	Test Ch	annel		433.84MHz			
Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Final level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2603.5	59.25	-10.82	48.43	74	-25.57	Vertical	SAN .
3471.5	56.82	-9.73	47.09	74	-26.91	Vertical	
3905.5	61.24	-8.67	52.57	74	-21.43	Vertical	Peak
2603.5	67.05	-10.82	56.22	74	-17.78	Horizontal	
3471.5	64.10	-9.73	55.18	74	-18.82	Horizontal	
3905.5	64.01	-8.67	55.34	74	-18.66	Horizontal	
Correct Facto	r=Antenna F	actor + Ca	ble Loss -Pre	eamplifier Fac	tor	<u>)</u>	
Frequency	Peak Le	vel Du	ty cycle	AV Level	FCC Limit	Margin (dP)	Duluiation

Spurious Emission

Frequency (MHz)	Peak Level (dBuV/m)	Duty cycle factor	AV Level (dBuV/m)	FCC Limit (dBµV/m)	Margin (dB)	Polarization
2603.5	48.43	-13.49	34.94	54	-19.06	Vertical
3471.5	47.09	-13.49	33.6	54	-20.40	Vertical
3905.5	52.57	-13.49	39.08	54	-14.92	Vertical
2603.5	56.22	-13.49	42.73	54	-11.27 🤍	Horizontal
3471.5	55.18	-13.49	41.69	54	-12.31	Horizontal
3905.5	55.34	-13.49	41.85	54	-12.15	Horizontal

### Note:

Duty cycle factor = 20log (Duty cycle), Duty cycle =  $T_{on} / (T_{on} + T_{off})$ AV Level=Peak Level +Duty Cycle Factor

### TRF EMC_R1



Report No.: KS2211S4767E

# 5. EUT TEST PHOTOS



#### TRF EMC_R1



# 6. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Refer to Appendix - Photographs of EUT Constructional Details for KS2211S4767E.

--THE END--

#### TRF EMC_R1