

RADIO TEST REPORT FCC ID:2ABU6-NRT

Product:Digital Broadcasting DeviceTrade Mark:MINEWModel No.:NRT-AA-BFamily Model:N/AReport No.:S23110801907001Issue Date:Nov 14, 2023

Prepared for

Shenzhen Minew Technologies Co., Ltd.

3rd Floor, I Building, Gangzhilong Science Park, Qinglong Road, Longhua District, Shenzhen City, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1					
2	SU	MMARY OF TEST RESULTS	4		
3	FA	CILITIES AND ACCREDITATIONS	5		
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5		
4	GE	NERAL DESCRIPTION OF EUT	6		
5	DE	SCRIPTION OF TEST MODES	8		
6	SE	FUP OF EQUIPMENT UNDER TEST	9		
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10		
7	тг				
'	IL	ST REQUIREMENTS	13		
,	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	13 15 24 25 27 28 30 31 32		
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	13 15 24 25 27 28 30 31 32		

I

Applicant's name: Shenzhen Minew Technologies Co., Ltd.					
Address:	: 3rd Floor, I Building, Gangzhilong Science Park, Qinglong Road, Longhua District, Shenzhen City, China				
Manufacturer's Name:	Shenzhen Minew Technologie	s Co., Ltd.			
Address	Building 3, Instrument World Ir Guiyue Road, Longhua Distric	ndustrial Park, No. 306, Guanlan t, Shenzhen			
Product description					
Product name:	Digital Broadcasting Device				
Model and/or type reference :	NRT-AA-B				
Family Model:	N/A				
Test Sample Number:	S231108019008				
Date of Test:	Nov 08, 2023 ~ Nov 14, 2023				
Measurement Procedure Used:					
	APPLICABLE STANDARD	S			
APPLICABLE STANDAR	D/ TEST PROCEDURE	TEST RESULT			
FCC 47 CFR Pa	art 2, Subpart J				
FCC 47 CFR Pai	rt 15, Subpart C				
KDB 174176 D01 Line 0	Conducted FAQ v01r01	Complied			
ANSI C63					
KDB 558074 D01 15.247					
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.					
Prepared : Mary Hu By Mary Hu (Project Engineer) Reviewed By Aaron Cheng (Supervisor) Approved By Alex Li (Manage					

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C					
Standard Section Test Item Verdict Remai					
15.207	Conducted Emission	N/A			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b) Peak Output Power I					
15.209 (a)Radiated Spurious Emission		PASS			
15.247 (e) Power Spectral Density		PASS			
15.247 (d) Band Edge Emission PASS		PASS			
15.247 (d) Spurious RF Conducted Emission PASS					
15.203 Antenna Requirement PASS					

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

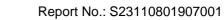
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.
	· · ·

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.


No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted,PSD	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±3.70dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment Digital Broadcasting Device				
Trade Mark MINEW				
FCC ID	2ABU6-NRT			
Model No.	NRT-AA-B			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PCB Antenna			
Antenna Gain	-8.42 dBi			
Adapter	N/A			
Power Supply	DC 3V from battery			
Hardware Version	N/A			
Software Version	N/A			

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Revision History				
Report No.	Version	Description	Issued Date	
S23110801907001	Rev.01	Initial issue of report	Nov 14, 2023	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases				
Test Item	Data Rate/ Modulation			
AC Conducted Emission	N/A			
	Mode 1: normal link mode			
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps/2Mbps			
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps/2Mbps			
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps/2Mbps			
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps/2Mbps			
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps/2Mbps			
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps/2Mbps			

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For Radiated Test Cases	
EUT	
For Conducted Test Cases	
C-1 Measurement Instrument	
Note:The temporary antenna connector is soldered on the PCB board in order tests and this temporary antenna connector is listed in the equipment list.	to perform conducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
EUT	Digital Broadcasting Device	NRT-AA-B	N/A	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.16	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2024.11.02	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACCREDITED Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test ed	quipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZB ECK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MHz)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MHz)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MHz)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

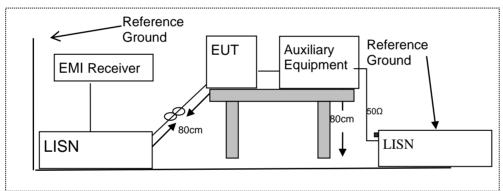
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 **Conformance Limit**

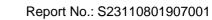
	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak Average		
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.


7.1.4 **Test Configuration**

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

EUT:	Digital Broadcasting Device	Model Name :	NRT-AA-B
Temperature:	1 22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: Not Applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

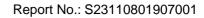
According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)


Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

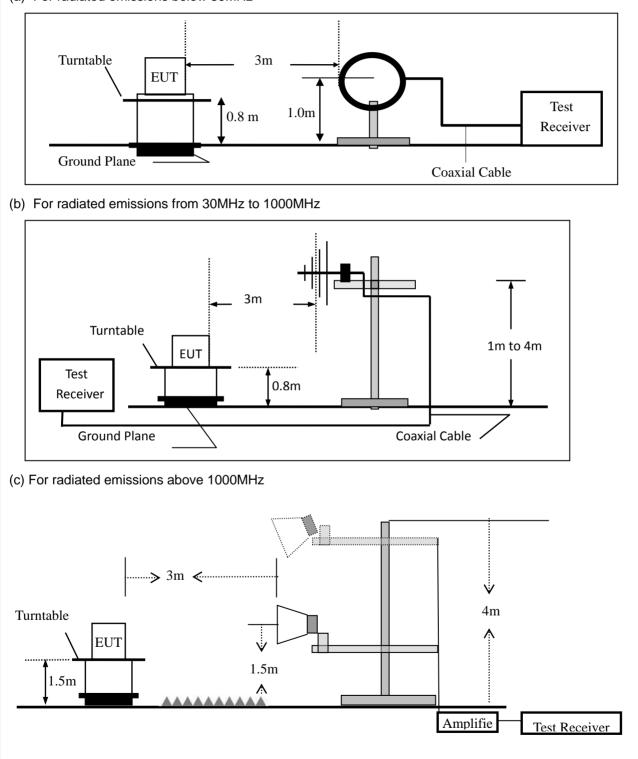
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

NTEK 北


The Measuring equipment is listed in the section 6.3 of this test report.

R

ACCREDITED Certificate #4298.01

7.2.4 **Test Configuration**

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission	test, the Spectrum Ar	alyzer was set with the foll	owing configurations:

	Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
	30 to 1000	QP	120 kHz	300 kHz
	Above 1000	Peak	1 MHz	1 MHz
		Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

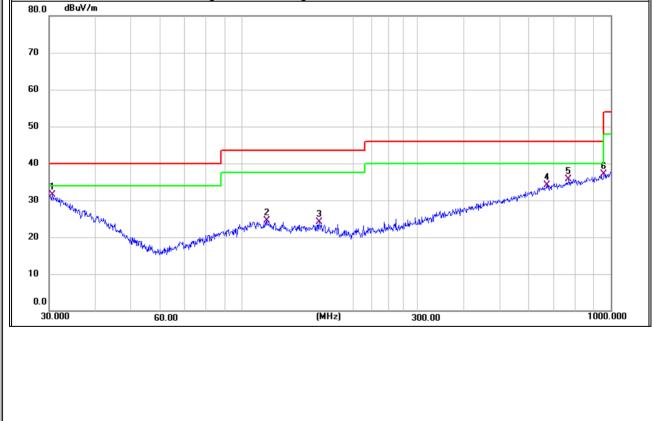
7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30)
--

EUT:	Digital Broadcasting Device	Model No.:	NRT-AA-B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Digital Broadcasting Device	Model Name :	NRT-AA-B
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	BLE 1M CH39
Test Voltage :	DC 3V from Battery		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtoniant
V	30.6377	5.35	26.06	31.41	40.00	-8.59	QP
V	116.9493	5.93	18.57	24.50	43.50	-19.00	QP
V	162.0413	6.22	17.80	24.02	43.50	-19.48	QP
V	670.4891	6.65	27.37	34.02	46.00	-11.98	QP
V	768.7481	6.79	28.97	35.76	46.00	-10.24	QP
V	958.7943	5.96	31.18	37.14	46.00	-8.86	QP

Remark:

Polar	Frequ	uency	-	eter ding	Factor	Emiss Lev		Limits	S	Margin	n Ren	nark
(H/V)	(M	Hz)	(dB	luV)	(dB)	(dBuV	//m)	(dBuV/	m)	(dB)		
Н	32.9	9791		33	24.76	30.0)9	40.00)	-9.91	Q	Р
Н	112.	5241	5.	62	18.37	23.9	99	43.50)	-19.51	Q	Ρ
Н	148.	9624	4.	94	18.41	23.3	35	43.50)	-20.15	-	
Н		5072	4.		24.16	28.9		46.00		-17.03		
Н		1506		78	27.63	33.4		46.00		-12.59		
H Remark		3170	6.	24	29.87	36.1	11	46.00)	-9.89	Q	Ρ
	n Levei= Bu∀/m		reading	g+ Fac	ctor, Margir			vei - Limit				1
70												
60												
50											F	
40										5	6 Xanaritha	
30	hand when a				2 MMundamenta			hard man har how he	utter and	and the state of the	Number	
20	· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ut war the well Alter	propriodition and the	all the providence of the	Willingundeserventus (Phyry	teiling Allough land a	WANNAN WANNE					
10												
0.0												

Spurious	Emission	Above	1GHz (1G	Hz to 250	<u>Hz)</u>				
EUT:	Digita	al Broad	casting De	evice	Model No.	:	NRT-AA-I	З	
Temperature:	20 °C				Relative H	lumidity:	48%		
Fest Mode:	Mode	e2/Mode	3/Mode4		Test By:		Mary Hu		
					,		,		
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			Low Cha	annel (240)	2 MHz)(GFS	K)Above ²	IG		
4802.37	64.18	5.21	35.59	44.30	60.68	74.00	-13.32	Pk	Vertical
4802.37	43.01	5.21	35.59	44.30	39.51	54.00	-14.49	AV	Vertical
7206.26	64.73	6.48	36.27	44.60	62.88	74.00	-11.12	Pk	Vertical
7206.26	43.57	6.48	36.27	44.60	41.72	54.00	-12.28	AV	Vertical
4804.68	63.47	5.21	35.55	44.30	59.93	74.00	-14.07	Pk	Horizontal
4804.68	43.62	5.21	35.55	44.30	40.08	54.00	-13.92	AV	Horizontal
7206.35	60.80	6.48	36.27	44.52	59.03	74.00	-14.97	Pk	Horizontal
7206.35	43.91	6.48	36.27	44.52	42.14	54.00	-11.86	AV	Horizontal
Mid Channel (2440 MHz)(GFSK)Above 1G									
4880.78	60.69	5.21	35.66	44.20	57.36	74.00	-16.64	Pk	Vertical
4880.78	43.22	5.21	35.66	44.20	39.89	54.00	-14.11	AV	Vertical
7320.82	62.58	7.10	36.50	44.43	61.75	74.00	-12.25	Pk	Vertical
7320.82	43.97	7.10	36.50	44.43	43.14	54.00	-10.86	AV	Vertical
4880.84	61.75	5.21	35.66	44.20	58.42	74.00	-15.58	Pk	Horizontal
4880.84	43.45	5.21	35.66	44.20	40.12	54.00	-13.88	AV	Horizontal
7320.78	60.18	7.10	36.50	44.43	59.35	74.00	-14.65	Pk	Horizontal
7320.78	43.97	7.10	36.50	44.43	43.14	54.00	-10.86	AV	Horizontal
			High Cha	annel (248) MHz)(GFS	K) Above	1G		
4960.52	64.03	5.21	35.52	44.21	60.55	74.00	-13.45	Pk	Vertical
4960.52	43.70	5.21	35.52	44.21	40.22	54.00	-13.78	AV	Vertical
7440.20	61.69	7.10	36.53	44.60	60.72	74.00	-13.28	Pk	Vertical
7440.20	43.56	7.10	36.53	44.60	42.59	54.00	-11.41	AV	Vertical
4960.01	60.71	5.21	35.52	44.21	57.23	74.00	-16.77	Pk	Horizontal
4960.01	43.63	5.21	35.52	44.21	40.15	54.00	-13.85	AV	Horizontal
7440.47	64.56	7.10	36.53	44.60	63.59	74.00	-10.41	Pk	Horizontal
7440.47	43.33	7.10	36.53	44.60	42.36	54.00	-11.64	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Pk

AV

-22.50

-23.21

Horizontal

Horizontal

74

54

UT:		Digital B	roadcastin	g Device	Model	Model No.:		NRT-AA-B		
emperature	:	20 ℃			Relativ	e Humidity:	48%			
est Mode:		Mode2/	Mode4		Test By	/:	Mary H	łu		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
1Mbps(GFSK)										
2310.00	60.70	2.97	27.80	43.80	47.67	74	-26.33	Pk	Horizontal	
2310.00	39.93	2.97	27.80	43.80	26.90	54	-27.10	AV	Horizontal	
2310.00	62.53	2.97	27.80	43.80	49.50	74	-24.50	Pk	Vertical	
2310.00	43.76	2.97	27.80	43.80	30.73	54	-23.27	AV	Vertical	
2390.00	63.74	3.14	27.21	43.80	50.29	74	-23.71	Pk	Vertical	
2390.00	43.92	3.14	27.21	43.80	30.47	54	-23.53	AV	Vertical	
2390.00	63.49	3.14	27.21	43.80	50.04	74	-23.96	Pk	Horizontal	
2390.00	43.99	3.14	27.21	43.80	30.54	54	-23.46	AV	Horizontal	
2483.50	62.04	3.58	27.70	44.00	49.32	74	-24.68	Pk	Vertical	
2483.50	43.45	3.58	27.70	44.00	30.73	54	-23.27	AV	Vertical	

51.50

30.79

Note: (1) All other emissions more than 20dB below the limit.

27.70

27.70

44.00

44.00

3.58

3.58

2483.50

2483.50

64.22

43.51

EUT:	Di	gital Broa	dcasting D	evice	Model No.:		NRT-A	A-B	
Temperature	e: 20	°C			Relative Humidity:		48%		
Fest Mode:	Mode2/ Mode4			Test By:		Mary H	u		
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	65.44	4.04	29.57	44.70	54.35	74	-19.65	Pk	Vertical
3260	44.00	4.04	29.57	44.70	32.91	54	-21.09	AV	Vertical
3260	60.75	4.04	29.57	44.70	49.66	74	-24.34	Pk	Horizontal
3260	43.57	4.04	29.57	44.70	32.48	54	-21.52	AV	Horizontal
3332	62.31	4.26	29.87	44.40	52.04	74	-21.96	Pk	Vertical
3332	43.56	4.26	29.87	44.40	33.29	54	-20.71	AV	Vertical
3332	61.08	4.26	29.87	44.40	50.81	74	-23.19	Pk	Horizontal
3332	43.93	4.26	29.87	44.40	33.66	54	-20.34	AV	Horizontal
17797	49.79	10.99	43.95	43.50	61.23	74	-12.77	Pk	Vertical
17797	34.52	10.99	43.95	43.50	45.96	54	-8.04	AV	Vertical
17788	46.01	11.81	43.69	44.60	56.91	74	-17.09	Pk	Horizontal
17788	34.43	11.81	43.69	44.60	45.33	54	-8.67	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 **Conformance Limit**

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 **Test Procedure**

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Digital Broadcasting Device	Model No.:	NRT-AA-B
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 **Conformance Limit**

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 **Test Procedure**

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Digital Broadcasting Device	Model No.:	NRT-AA-B
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 **Conformance Limit**

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Digital Broadcasting Device	Model No.:	NRT-AA-B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 **Conformance Limit**

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Digital Broadcasting Device	Model No.:	NRT-AA-B
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 **Test Procedure**

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Digital Broadcasting Device	Model No.:	NRT-AA-B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 **Test Procedure**

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

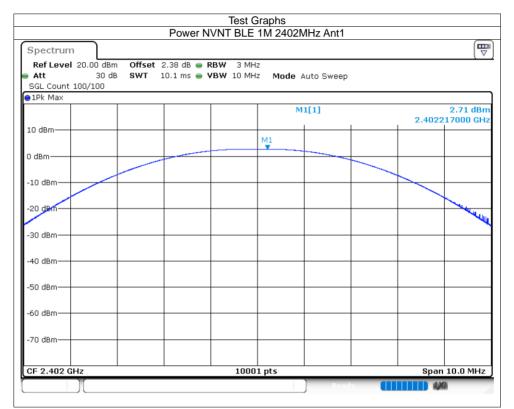
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

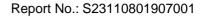
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

The EUT antenna is permanent attached PCB Antenna (Gain: -8.42dBi). It comply with the standard requirement.

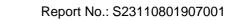


8 TEST RESULTS


8.1 **1M**

8.1.1 Maximum Conducted Output Power

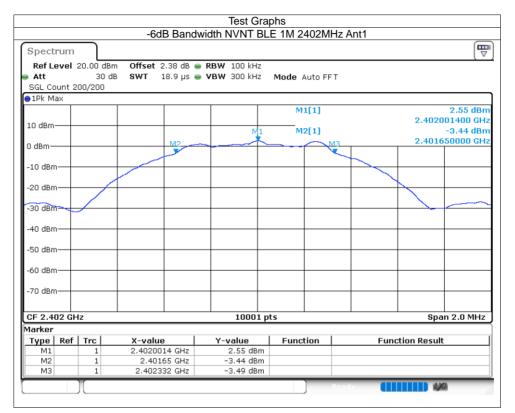
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	2.71	30	Pass
NVNT	BLE 1M	2440	Ant1	2.85	30	Pass
NVNT	BLE 1M	2480	Ant1	3.04	30	Pass



Power NVNT BLE 1M 2440MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm Offset 2.39 dB 🖷 RBW 3 MHz Att 30 dB SWT 10.1 ms 👄 VBW 10 MHz Mode Auto Sweep SGL Count 100/100 ●1Pk Max M1[1] 2.85 dBm 2.440219000 GHz 10 dBm-M1 0 dBm -10 dBm -20 dBn -30 dBm -40 dBm -50 dBm· -60 dBm -70 dBm Span 10.0 MHz CF 2.44 GHz 10001 pts Power NVNT BLE 1M 2480MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm Offset 2.42 dB 👄 RBW 3 MHz Att 30 dB SWT 10.1 ms 👄 VBW 10 MHz Mode Auto Sweep SGL Count 100/100 ●1Pk Max M1[1] 3.04 dBm 2.480251000 GHz 10 dBm-M1 0 dBm -10 dBm -20 dBn -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm· Span 10.0 MHz CF 2.48 GHz 10001 pts 14

ACCREDITED

8.1.2 -6dB Bandwidth


NTEK 北测

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.682	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.701	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.696	0.5	Pass

ACCREDITED Certificate #4298.01

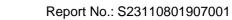
®

ilac-MR/

8.1.3 Maximum Power Spectral Density Level

NTEK 北测[®]

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-13.68	8	Pass
NVNT	BLE 1M	2440	Ant1	-13.45	8	Pass
NVNT	BLE 1M	2480	Ant1	-13.35	8	Pass


ACCREDITED Certificate #4298.01

ilac-MR

Spectrum								
Ref Level 20.00	dBm Offset	2.38 dB 👄	RBW 3 kHz	2				(*
Att 3	O dB SWT		VBW 10 kH:		Auto FFT			
SGL Count 300/30	0							
1Pk Max		1			1[1]			13.68 dBr
				IVI	1[1]			13.68 dBr 01530 GH
10 dBm								
0 dBm								
-10 dBm				M1				
-20 dBm		An. A.M	M have a way	March	M. O. T. AM.	A. A.A.		
-20 dBm	ᠿᢧᢔ᠋ᡎᡘ᠆ᡙᢦᡘᡰᢂ	a di due ra	1	* * Vq*V**	r MAY WE BY	Mr. Marganger	MMMM ~~	
MANNW TW	U						° ° ° М' (М' У	MMAMA
-30 dBm								- v V v
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
		1	1001					.023 MHz

PSD NVNT BLE 1M 2440MHz Ant1 ₩ Spectrum Ref Level 20.00 dBm Offset 2.39 dB 👄 RBW 3 kHz Att 30 dB SWT 632.1 µs 👄 VBW 10 kHz Mode Auto FFT SGL Count 200/200 ●1Pk Max M1[1] -13.45 dBn 2.44001475 GHz 10 dBm· 0 dBm -10 dBm Muchangunananagun MANN mether 1 march WWWWWW -20 dBm $\sim h_{e}$ many Mary 30 dBm -40 dBm -50 dBm· -60 dBm -70 dBm Span 1.0515 MHz CF 2.44 GHz 1001 pts PSD NVNT BLE 1M 2480MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm Offset 2.42 dB 🖷 RBW 3 kHz Att 30 dB SWT 632 μs 👄 VBW 10 kHz Mode Auto FFT SGL Count 300/300 ●1Pk Max -13.35 dBm M1[1] 2.47997600 GHz 10 dBm-0 dBm -10 dBm manal ۸Ň MANAM mannah -20 dBm· mann WWW MAN MAAM -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Span 1.044 MHz CF 2.48 GHz 1001 pts

8.1.4 Band Edge

ndition	Mode	Frequency		Antenna	Max Valu		Limit (dBc)	Verdi
NVNT	BLE 1M	2402		Ant1	-53.		-20	Pase
NVNT	BLE 1M	2480		Ant1	-45.	.79	-20	Pass
				Tako			1	
		Rar	d Edge NV/	Test Graphs NT BLE 1M 24	02MHz Ant1 R	ef		
	Spectrum					~		
	Ref Level 2		38 dB 👄 RBW				(~)	
	Att SGL Count 1		3.9 µs 👄 VBW	/ 300 kHz Mode	Auto FFT			
	IPk Max							
					M1[1]	-	1.96 dBm 2.40200000 GHz	
	10 dBm							
	0 dBm							
				$ / ' \rangle$				
	-10 dBm			$/ \rightarrow$				
	-20 dBm							
			/					
	-30 dBm		$\vdash \uparrow \downarrow$		$\neg \neg$			
	-40 dBm							
		~						
	-50 dBm	math				white-		
	-60 dBm					~	. Ar Anna M	
	-70 dBm							
	CF 2.402 GH			1001 pts	Ready		Span 8.0 MHz	
		Band	Edge NVNT	BLE 1M 2402	MHz Ant1 Emis	ssion		
	Spectrum							
	Ref Level 2 Att	0.00 dBm Offset 2 35 dB SWT 23	2.38 dB 👄 RBN 27.5 µs 👄 VBN	W 100 kHz W 300 kHz Moo	le Auto FFT			
	SGL Count 1 91Pk Max							
	TEK MIGA				M1[1]		1.77 dBm	
	10 dBm				M2[1]	:	2.40175000 GHz -46.22/dBm	
	0 dBm					1	2.4000000 GHz	
	-10 dBm							
		1 -18.036 dBm						
	-30 dam							
	-30 dBm							
	-40 dBm			M4				
	-40 dBm	worky have a company and	J.M. Marthan			M3	WWWWWWWW U	
	-40 dBm	worky Andrew Market Andrew	Laborator Martinetor	M4 Manufungtingel	-artheliterrenterreading	who we wanted and	-montune u	
	-40 dBm	ienty/winduction	L. Martine and Martin Martin		-y.J. Clarine Laboration	n formation M3	- MARINA U	
	-40 dBm -50 dBm -აოფისიაკ-აქცოვაძ -60 dBm -70 dBm		L. However and the	where the providence	-antreliano-taroapes			
	-40 dBm -50 dBm Հուտկրնուլ		i juliotti varrish kus				Stop 2.406 GHz	
	-40 dBm -50 dBm -60 dBm -70 dBm Start 2.306 Marker Type Ref	GHz Trc X-value	2 Y	۱۵۵۱ pts ۲-value Fi	Inction		Stop 2.406 GHz	
	-40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm Start 2.306 d Marker Type Ref M1 M1 M2	GHz Trc X-value 1 2.401 1 2	9 Y 75 GHz .4 GHz	1001 pts 1001 pts 1.77 dBm -46.22 dBm			Stop 2.406 GHz	
	-40 dBm -50 dBm -60 dBm -70 dBm Start 2.306 0 Marker Type Ref M1	GHz Trc X-value 1 2.401 1 2. 1 2.	2 Y 75 GHz .4 GHz 39 GHz	1001 pts 1-77 dBm			Stop 2.406 GHz	

Version.1.3

Report No.: S23110801907001

Spectrum Ref Level 30		Offset 3	42 dB 🖛 📭	3W 100 kHz					
Att				3W 300 kHz	Mode A	uto FFT			
SGL Count 10									
●1Pk Max					м	1[1]			2.08 dBm
						-[-]		2.480	24780 GHz
20 dBm									
10 dBm									
					M1				
0 dBm					~				
-10 dBm					$\langle \rangle$				
-10 000					$\langle \rangle$				
-20 dBm									
			~	/	<u>\</u>	~			
-30 dBm				ľ					
-40 dBm						<u> </u>			
m	m	mm	\sim			· v~	mm	\sim	m
-50 dBm									
-60 dBm									
CF 2.48 GHz				1001	nts			Spa	n 8.0 MHz
	(Read			1
Spectrum Ref Level 30	0.00 dBm			IT BLE 1M		z Ant1 Em	ission		
Att	45 dB	Offset 2	.42 dB 🔵 R				ission		
Ref Level 30 Att SGL Count 10	45 dB	Offset 2	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT	ission		
Ref Level 30 Att SGL Count 10 1Pk Max	45 dB	Offset 2	.42 dB 🔵 R	BW 100 kHz	Mode /		ission	2.480	2.40 dBm
Ref Level 30 Att SGL Count 10 1Pk Max 20 dBm	45 dB	Offset 2	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT	ission	-	2.40 dBm 25000 GHz 45.61 dBm
Ref Level 30 Att SGL Count 10 1Pk Max 20 dBm	45 dB	Offset 2	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT 1[1]	ission	-	2.40 dBm 25000 GHz
Ref Level 30 Att SGL Count 10 1Pk Max 20 dBm 10 dBm	45 dB	Offset 2	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT 1[1]	ission	-	2.40 dBm 25000 GHz 45.61 dBm
Ref Level 30 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 10 dBm 0 dBm 10 dBm	45 dB	Offset 2	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT 1[1]	ission	-	2.40 dBm 25000 GHz 45.61 dBm
Ref Level 3C Att SGL Count 1C 1Pk Max 20 dBm 10 dBm 0 dBm	45 dB	Offset 2 SWT 22	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT 1[1]	ission	-	2.40 dBm 25000 GHz 45.61 dBm
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 cBm -20 cBm	45 dB	Offset 2 SWT 22	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT 1[1]	ission	-	2.40 dBm 25000 GHz 45.61 dBm
Ref Level 30 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	45 dB	Offset 2 SWT 22	.42 dB 🔵 R	BW 100 kHz	Mode /	Auto FFT 1[1]	ission	-	2.40 dBm 25000 GHz 45.61 dBm
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	45 dB 00/100	Offset 2 SWT 22	.42 dB ● R 7.5 μs ● V	BW 100 kHz BW 300 kHz	Mode /	Auto FFT 1[1] 2[1]		2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	45 dB 00/100	Offset 2 SWT 22	.42 dB ● R 7.5 μs ● V	BW 100 kHz	Mode /	Auto FFT 1[1] 2[1]		2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 cBm -20 cBm -30 dBm -40 dBm	45 dB 00/100	Offset 2 SWT 22	.42 dB ● R 7.5 μs ● V	BW 100 kHz BW 300 kHz	Mode /	Auto FFT 1[1] 2[1]		2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	45 dB 00/100	Offset 2 SWT 22	.42 dB ● R 7.5 μs ● V	BW 100 kHz BW 300 kHz	Mode / 	Auto FFT 1[1] 2[1]		- 2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -60 dBm -60 dBm -50 dBm	45 dB 00/100	Offset 2 SWT 22	.42 dB ● R 7.5 μs ● V	BW 100 kHz BW 300 kHz	Mode / 	Auto FFT 1[1] 2[1]		- 2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 cBm -20 cBm -20 cBm -30 dBm -40 dBm;2 ^{M4} -50 dBm -60 dBm Start 2.476 C Yarker Type	45 dB 10/100 1 -17.922 4.40%, Aw 3.Hz Trc	Offset 2 SWT 22	.42 dB	BW 100 kHz BW 300 kHz	Mode / M M ,	Auto FF T 1[1] 2[1] ماريزاده ۲۰۰۱ الماليها	dy Wirmshi	- 2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 cBm -20 cBm -20 cBm -30 dBm -60 dBm -60 dBm Start 2.476 C	45 dB 00/100	Offset 2 SWT 22 	.42 dB • R 7.5 μs • V	BW 100 kHz 'BW 300 kHz 'BW 300 kHz 'BW 300 kHz 'BW 300 kHz 'BW 300 kHz 'BW 100 kHz 'BW 100 kHz 'BW 100 kHz 'BW 300 kHz 'BW 30	Mode / 	Auto FF T 1[1] 2[1] ماريزاده ۲۰۰۱ الماليها	dy Wirmshi	2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -60 dBm -60 dBm -70 dBm -70 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm Bart 2.476 C Math M2 M3	45 dB 00/100 1 -17.922 4.00% MW 3Hz Trc 1 1 1 1	Offset 2 SWT 22 dBm dBm dm_P dm_P x-value 2.4802 2.4	.42 dB	BW 100 kHz BW 300 kHz 300 kHz 100 1001 Y-value 2.40 dBn -45.61 dBn -45.60 dBn	Mode / 	Auto FF T 1[1] 2[1] ماريزاده ۲۰۰۱ الماليها	dy Wirmshi	2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm	45 dB 10/100 1 -17.922 4.40** 4.40** 4.40** 4.40** 4.40** 4.50	Offset 2 SWT 22 dBm dBm dm_P dm_P x-value 2.4802 2.4	.42 dB	BW 100 kHz BW 300 kHz BW 300 kHz I I I I I I I I I I I I I I I I I I I	Mode / 	Auto FF T 1[1] 2[1] ماريزاده ۲۰۰۱ الماليها	dy Wirmshi	2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz
Ref Level 30 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -60 dBm -60 dBm -70 dBm -70 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm Bart 2.476 C Math M2 M3	45 dB 00/100 1 -17.922 4.00% MW 3Hz Trc 1 1 1 1	Offset 2 SWT 22 dBm dBm dm_P dm_P x-value 2.4802 2.4	.42 dB	BW 100 kHz BW 300 kHz 300 kHz 100 1001 Y-value 2.40 dBn -45.61 dBn -45.60 dBn	Mode / 	Auto FF T 1[1] 2[1] ماريزاده ۲۰۰۱ الماليها	dy Wirmshi	2.483	2.40 dBm 25000 GHz 45.61 dBm 50000 GHz

NTEK 北测[®]

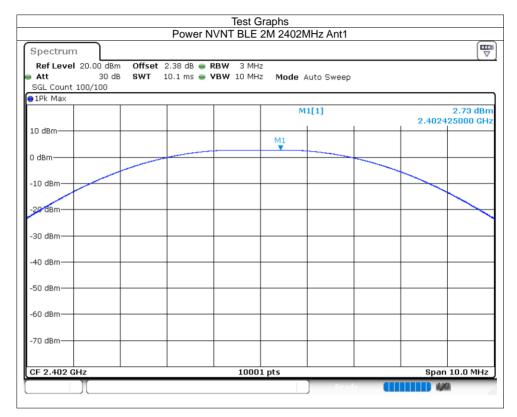
		-				
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.01	-20	Pass
NVNT	BLE 1M	2440	Ant1	-51.66	-20	Pass
NVNT	BLE 1M	2480	Ant1	-54.04	-20	Pass

	_	Tx. Sp	ourious	NVNT BLE	1M 2402N	1Hz Ant1	Ref		G
Spectrum									
Ref Level Att	l 20.00 dBm 30 dB			RBW 100 kHz VBW 300 kHz					
SGL Count		3WI 10.1	ə hə 🖷	YDYY 300 KH2	MOUE AU	10 1			
⊖1Pk Max									
					M1[[1]		2 40200	2.59 dBn 004000 GH:
10 dBm								2.40200	
				M1		_			
0 dBm									
-10 dBm									
-20 dBp									
-30 dBm									
-40 dBm									+
Fo do									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.402 G	Hz			30001	nts			Sn/	an 1.5 MHz
)(Deads			VA.
Spectrum	n					z Ant1 Em			
Ref Level	l 20.00 dBm			RBW 100 kHz					
Ref Level Att SGL Count	l 20.00 dBm 30 dB			RBW 100 kHz VBW 300 kHz					
Ref Level Att	l 20.00 dBm 30 dB				Mode Au	ito Sweep			
Ref Level Att SGL Count 1Pk Max	l 20.00 dBm 30 dB					ito Sweep		2.4	1.21 dBn 402070 GH;
Ref Level Att SGL Count 1Pk Max 10 dBm	l 20.00 dBm 30 dB				Mode Au	ito Sweep			1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm	l 20.00 dBm 30 dB				Mode Au M1[ito Sweep			1.21 dBn 402070 GH;
Ref Level Att SGL Count 1Pk Max 10 dBm	l 20.00 dBm 30 dB				Mode Au M1[ito Sweep			1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count PIPk Max 10 dBm -10 dBm -10 dBm	l 20.00 dBm 30 dB	3 SWT 265			Mode Au M1[ito Sweep			1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm	I 20.00 dBm 30 dE 10/10	3 SWT 265			Mode Au M1[ito Sweep			1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm	I 20.00 dBm 30 dE 10/10	3 SWT 265			Mode Au M1[ito Sweep			1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm	I 20.00 dBm 30 dE 10/10	3 SWT 265			Mode Au M1[ito Sweep			1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dE 10/10	3 SWT 265			Mode Au M1[110 Sweep		4.8	1.21 dBn 402070 GH: -46.43 dBn
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dE 10/10	3 SWT 265			Mode Au M1[110 Sweep		4.8	1.21 dBn 402070 GH: -46.43 dBn 804306 GH:
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dE 10/10	3 SWT 265			Mode Au M1[110 Sweep		4.(1.21 dBn 402070 GH: -46.43 dBn 804306 GH:
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm	D1 -17.407	3 SWT 265		VBW 300 kHz	Mode Au M1[110 Sweep		4.5	1.21 dBn 402070 GH: -46.43 dBn 804306 GH:
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 30.0	D1 -17.407	3 SWT 265			Mode Au M1[110 Sweep		4.5	1.21 dBn 402070 GH: -46.43 dBn 804306 GH:
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type	1 20.00 dBr 30 dE 10/10 D1 -17,407	3 SWT 263	5 ms •	VBW 300 kHz	Mode Au M1[M2] M2] M2] M2] M2] M2] M2] M2]	Ito Sweep		4.5	1.21 dBn 402070 GH; -46.43 dBn 804306 GH;
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Ref M1	D1 -17.407	3 SWT 265	5 ms	VBW 300 kHz	Mode Au M1[Ito Sweep		4.4	1.21 dBn 402070 GH; -46.43 dBn 804306 GH;
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type	E 20.00 dBr 30 dE 10/10 ED1 -17.407 MHZ MHZ F Trc 1 1 1 1	3 SWT 263	S ms	VBW 300 kHz	Mode Au M1[M2] M2] pts pts	Ito Sweep		4.4	1.21 dBn 402070 GH; -46.43 dBn 804306 GH;
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 30.0 Marker Type M1 M2 M3	1 20.00 dBr 30 dE 10/10 D1 -17.407	3 SWT 263	GHz GHz GHz GHz GHz	VBW 300 kHz	Mode Au M1[M2] M2] M2] M2] M2] M2] M2] M2]	Ito Sweep		4.4	1.21 dBn 402070 GH; -46.43 dBn 804306 GH;
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Ret M1 M2 M3	E 20.00 dBr 30 dE 10/10 ED1 -17.407 MHZ MHZ F Trc 1 1 1 1	3 SWT 263	GHz GHz GHz GHz GHz	VBW 300 kHz	Mode Au M1[M2] M2] M2] M2] M2] M2] M2] M2]	Ito Sweep	Func	4.4	1.21 dBn 402070 GH; -46.43 dBn 804306 GH;

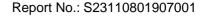
ACCREDITED

Spectrur Ref Leve Att SGL Count	ן 1 20.00 3	0 dB SWT 18		RBW 100 kHz VBW 300 kHz	Mode Auto F	FT		
●1Pk Max					M1[1]			2.21 dBm
							2.4402	2486420 GHz
10 dBm						M1		
0 dBm						<u> </u>		
-10 dBm—								
-20 dBm	-	_						\rightarrow
-30 dBm—								
-40 dBm—		_						
-50 dBm—								
-60 dBm—								
-70 dBm—								
CF 2.44 G								pan 1.5 MHz
UCF 2.44 G				30001 p				
Spectrur Ref Leve	נ 1 20.00	dBm Offset 2.3	39 dB 👄	VNT BLE 1M 2		t1 Emission		
Ref Leve Att SGL Count	ן 1 20.00 3	dBm Offset 2.3	39 dB 👄			t1 Emission		
Ref Leve Att	ן 1 20.00 3	dBm Offset 2.3	39 dB 👄	RBW 100 kHz		t1 Emission		1.98 dBm
Ref Leve Att SGL Count	t 10/10	dBm Offset 2.3	39 dB 👄	RBW 100 kHz	Mode Auto S	t1 Emission		,
Ref Leve Att SGL Count 10 dBm	t 10/10	dBm Offset 2.3	39 dB 👄	RBW 100 kHz	Mode Auto S M1[1]	t1 Emission	2	1.98 dBm .440010 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB 👄	RBW 100 kHz	Mode Auto S M1[1]	t1 Emission	2	1.98 dBm .440010 GHz -49.45 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm-M 0 dBm-M	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB 👄	RBW 100 kHz	Mode Auto S M1[1]	t1 Emission	2	1.98 dBm .440010 GHz -49.45 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB 👄	RBW 100 kHz	Mode Auto S M1[1]	t1 Emission	2	1.98 dBm .440010 GHz -49.45 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB 👄	RBW 100 kHz	Mode Auto S M1[1]	t1 Emission	2	1.98 dBm .440010 GHz -49.45 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto S	t1 Emission	2	1.98 dBm :.440010 GHz 49.45 dBm :.879304 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB 👄	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1]	t1 Emission	2	1.98 dBm :.440010 GHz 49.45 dBm :.879304 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]	t1 Emission	2	1.98 dBm :.440010 GHz 49.45 dBm :.879304 GHz
Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]	t1 Emission		1.98 dBm :440010 GHz -49.45 dBm :879304 GHz
Ref Leve Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 30.00	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26	39 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]	t1 Emission		1.98 dBm :.440010 GHz 49.45 dBm :.879304 GHz
Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Re	20.00 3 t 10/10 1 2 D1 -17 0 MHz 9 MHz	dBm Offset 2.3 0 dB SWT 26 .787 dBm M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	39 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]	t1 Emission		1.98 dBm 2.440010 GHz -49.45 dBm 2.879304 GHz
Ref Leve Att SGL Count IO dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.00	20.00 3 t 10/10	dBm Offset 2.3 0 dB SWT 26 	39 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S	t1 Emission	2 4	1.98 dBm 2.440010 GHz -49.45 dBm 2.879304 GHz
Ref Leve Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Re M1 M2 M3	20.00 3 t 10/10 1 2D1 -17 2D1 -17 2D1 -17 3 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3	dBm Offset 2.3 0 dB SWT 26 .787 dBm .787 dBm 	39 dB 55 ms	RBW 100 kHz VBW 300 kHz	Mode Auto S	t1 Emission	2 4	1.98 dBm 2.440010 GHz -49.45 dBm 2.879304 GHz
Ref Leve Att SGL Count IO dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm Start 30.0 Marker Type Marker Marker	el 20.00 3 t 10/10 D1 -17 D1 -17 MHz ef Trc 1 1 1 1 1 1 1 1 1 1 1 1 1	dBm Offset 2.3 0 dB SWT 26 .787 dBm .787 dBm .797 dBm .79	39 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S	t1 Emission	2 4	1.98 dBm 2.440010 GHz -49.45 dBm 2.879304 GHz
Ref Leve Att SGL Count ID dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 30.0 Marker Type M1 M2 M3	20.00 3 t 10/10 1 2 2 2 2 1 2 2 1 1 2 2 2 1 2 2 2 3 1 2 2 3 1 2 2 2 3 1 2 2 3 3 3 3	dBm Offset 2.3 0 dB SWT 26 .787 dBm .787 dBm .797 dBm .79	39 dB	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto S	t1 Emission	2 4	1.98 dBm 2.440010 GHz -49.45 dBm .879304 GHz

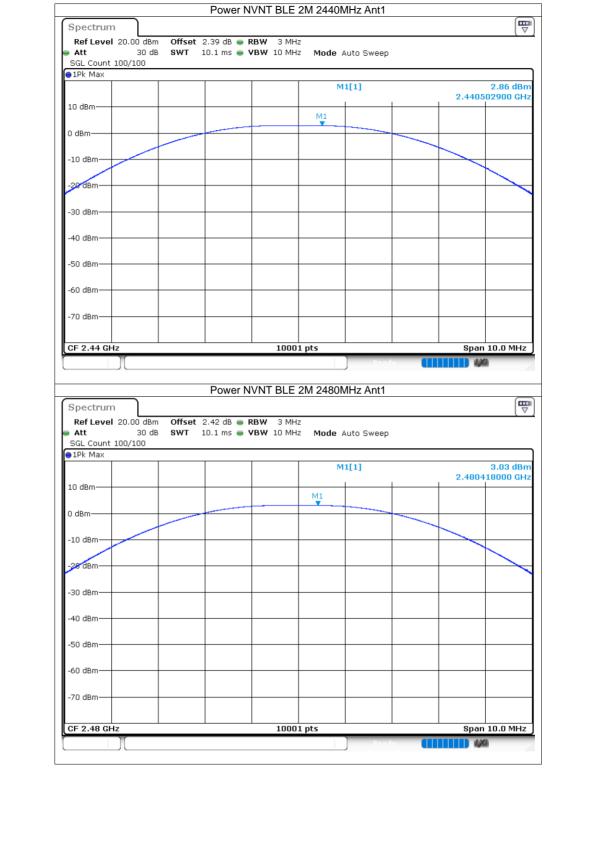
Ref I Att		20.00 dE 30 (RBW 100 kHz VBW 300 kHz	Mode Auto R	FFT			
⊖1Pk N	1ax			1						
						M1[1]			2.48024	2.71 dBm +81920 GHz
10 dBn	ו						M1			
0 dBm-							×			
-10 dB	m								~	
-20 dB	\checkmark									
\mathbb{Z}										
-30 dB	m									<u> </u>
-40 dB										
-50 dB	m-+-									
-60 dB										
]
-70 dB	n									<u> </u>
CF 2.4	8 GHz	2			30001	pts			Spa	n 1.5 MHz
		20.00 dE	m Offset 2	2.42 dB 🥃	IVNT BLE 1M			ion		
Ref I Att	evel	30	m Offset 2	2.42 dB 🥃				ion		
Ref I Att	evel	30	m Offset 2	2.42 dB 🥃	RBW 100 kHz	Mode Auto S		ion		
Ref I Att	ount 5	30	m Offset 2	2.42 dB 🥃	RBW 100 kHz	Mode Auto s		ion		1.39 dBm +79720 GHz
Refl Att SGL C 1Pk N	ount 5	30	m Offset 2	2.42 dB 🥃	RBW 100 kHz	Mode Auto S		ion	-	1.39 dBm
Ref I Matt SGL C PIPK N 10 dBn	evel	30	m Offset 2	2.42 dB 🥃	RBW 100 kHz	Mode Auto s		ion	-	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 1Pk N 10 dBm 0 dBm	evel	30	m Offset 2 dB SWT	2.42 dB 🥃	RBW 100 kHz	Mode Auto s			-	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 1Pk N 10 dBm 0 dBm- -10 dB	evel	30	m Offset 2 dB SWT	2.42 dB 🥃	RBW 100 kHz	Mode Auto s			-	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 10 dBm 0 dBm -10 dB -20 dB -30 dB	evel	30	m Offset 2 dB SWT	2.42 dB 🥃	RBW 100 kHz	Mode Auto s			-	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 10 dBm 0 dBm -10 dB -20 dB -30 dB -40 dB	evel	30 / /5 1 -17.29	m Offset 2 dB SWT	2.42 dB 265 ms	RBW 100 kHz	Mode Auto 9			-	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 10 dBm 0 dBm -10 dB -20 dB -30 dB	evel	30 / /5 1 -17.29	m Offset 2 JB SWT	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep		-	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 1Pk N 10 dBm -10 dB -20 dB -20 dB -30 dB -40 dB -50 dB	evel	30 / /5 1 -17.29	m Offset 2 dB SWT	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 9				1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 10 dBm 0 dBm -10 dB -20 dB -30 dB -40 dB	evel	30 / /5 1 -17.29	m Offset 2 dB SWT	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep			1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 1Pk N 10 dBm -10 dB -20 dB -20 dB -30 dB -40 dB -50 dB Vertical -70 dB Start	evel ount 5 5 lax n n n n n n n n n n n n n n 30.0 M	30 /5	m Offset 2 dB SWT	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep		مەلدىكى مەلبى م مەلبى مەلبى مەل	1.39 dBm +79720 GHz -51.34 dBm
Ref I Att SGL C 1PK N 10 dBm -10 dB -20 dB -20 dB -30 dB -40 dB -40 dB -50 dB Vote: 0 -70 dB Start: Markei Type	evel ount 5 lax m m m m m m m m m m m m m m m m m m m	30 /5	m Offset 2 JB SWT 5 dBm 3 X-value	2.42 dB 265 ms 	RBW 100 kHz VBW 300 kHz	Mode Auto 9 M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M	Sweep		مەلدىكى مەلبى م مەلبى مەلبى مەل	1.39 dBm 179720 GHz -51.34 dBm 302874 GHz
Ref I Att SGL C 1Pk N 10 dBm -10 dB -20 dB -20 dB -30 dB -40 dB -50 dB Vertical -70 dB Start 3 Market	evel ount 5 lax n m p n n n n n n n n n n n n n n n n n	30 /5	m Offset 2 JB SWT 5 dBm 3 X-value	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 3	Sweep		16.3	1.39 dBm 179720 GHz -51.34 dBm 302874 GHz
Ref I Att SGL C 1Pk N 10 dBm -10 dB -20 dB -20 dB -30 dB -40 dB -50 dB -50 dB Vertical Narket Ma	evel ount 5 lax m m m m m m m m m m m solo M Ref	30 /5	m Offset 2 JB SWT 5 dBm 3 44 X-value 2.479 16.3028 4.9604	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 9 M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M	Sweep		16.3	1.39 dBm 179720 GHz -51.34 dBm 302874 GHz
Ref I Att SGL C 1Pk N 10 dBm -10 dB -20 dB -20 dB -20 dB -30 dB -40 dB -50 dB Vector -70 dB Start Market Type Market Market	evel ount 5 lax m m m m m m m m m m m m m m m m m m m	30 //5	m Offset 2 JB SWT 5 dBm 3 X-value 2.479 16.3028 4.9604 7.3101	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 3	Sweep		16.3	1.39 dBm 179720 GHz -51.34 dBm 302874 GHz
Ref I Att SGL C 1PK N 10 dBm 0 dBm -10 dB -20 dB -20 dB -30 dB -40 dB -40 dB -40 dB -50 dB Vol 0 Start: Markei Ma Ma Ma Ma	evel ount 5 lax m m m m m m m m m m m m m m m m m m m	30 /5	m Offset 2 JB SWT 5 dBm 3 X-value 2.479 16.3028 4.9604 7.3101	2.42 dB 265 ms 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto 3	Sweep	Functic	16.3	1.39 dBm +79720 GHz -51.34 dBm 802874 GHz


8.2.1 Maximum Conducted Output Power

NTEK 北测[®]

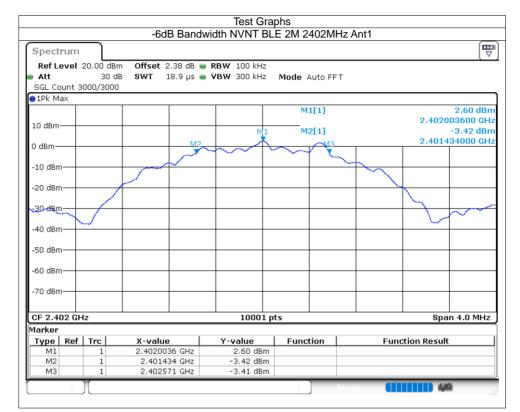

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	2.73	30	Pass
NVNT	BLE 2M	2440	Ant1	2.86	30	Pass
NVNT	BLE 2M	2480	Ant1	3.03	30	Pass

ACCREDITED Certificate #4298.01

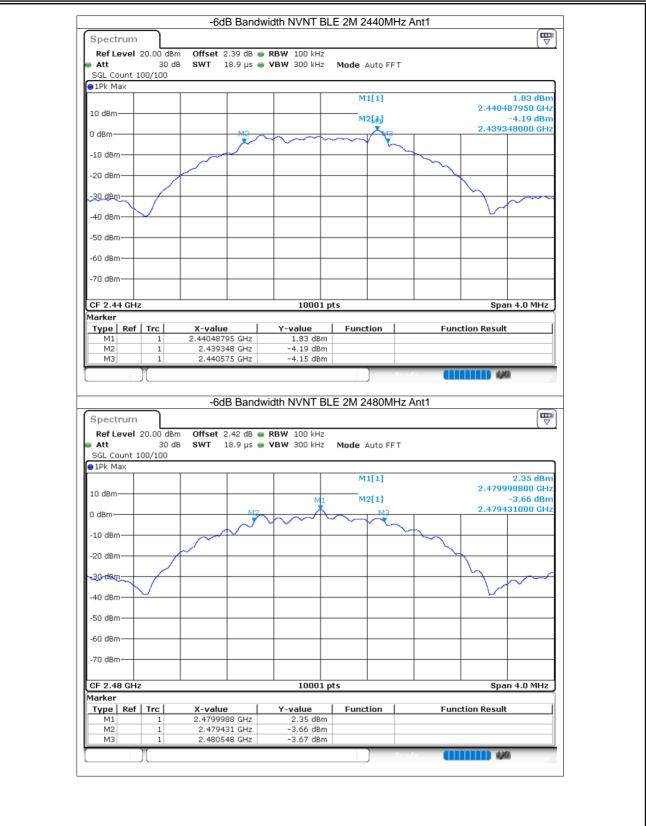

ilac-MR/

Certificate #4298.01
Power NVNT BLE 2M 2440MHz Ant1

Version.1.3


8.2.2 -6dB Bandwidth

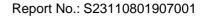
NTEK 北测[®]

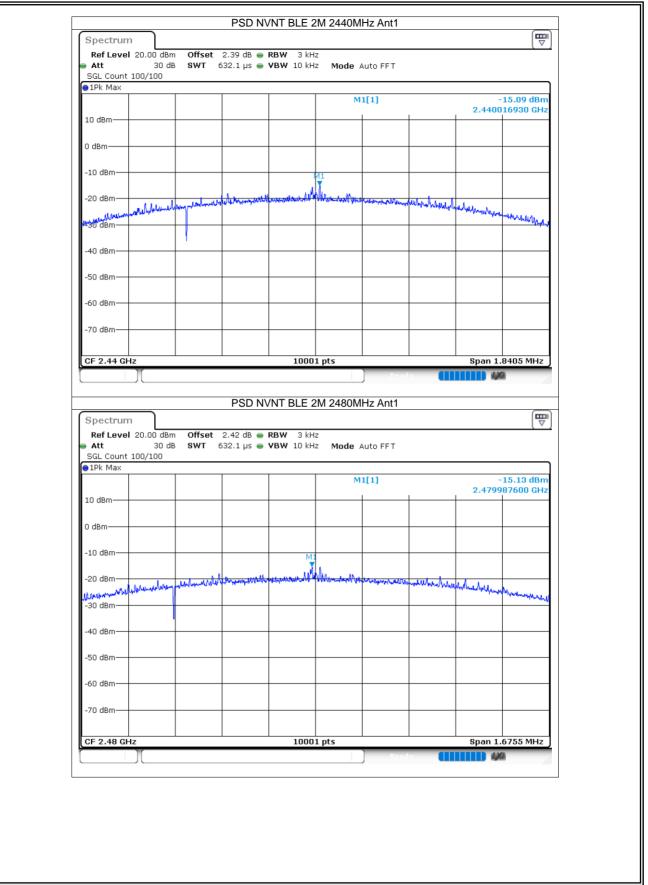

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.137	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.227	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.117	0.5	Pass

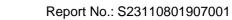
ACCREDITED Certificate #4298.01

ilac-MR/

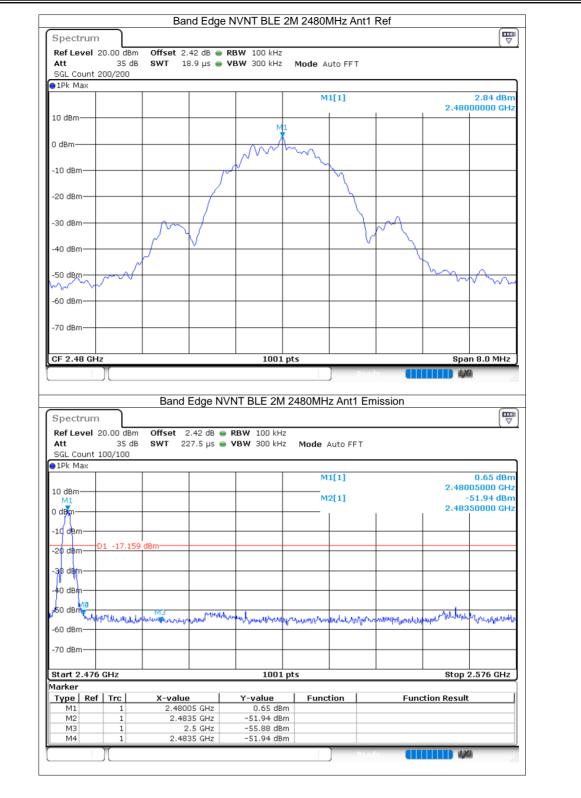
8.2.3 Maximum Power Spectral Density Level


ilac-MR


NTEK 北测[®]


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-15.07	8	Pass
NVNT	BLE 2M	2440	Ant1	-15.09	8	Pass
NVNT	BLE 2M	2480	Ant1	-15.13	8	Pass

	、	PSD N\	/NT BLE 2	21VI 2402IV	HZ ANTI			G
Spectrum								
Ref Level 20.0		2.38 dB 👄						
Att SGL Count 6000/	30 dB SWT	632.1 µs 👄	VBW 10 kH	z Mode	Auto FFT			
1Pk Max	0000							
_				M	1[1]		-	15.07 dBi
							2.4020	17050 GH
10 dBm								
0 dBm								
10 40-								
-10 dBm				M1				
00 d0m				Mar				
-20 dBm	and an all and an all a	Par the standard and a	officias and a star	and the second	and Character and an	- All and will all all all all all all all all all	4 and aller	
-30 dBm								al and a share a s
-30 ubiii								
-40 dBm								
io ubiii								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.402 GHz			1000	1 nts			Snap 1	7055 MHz
			1000	1 10			opun 1.	7000 1112

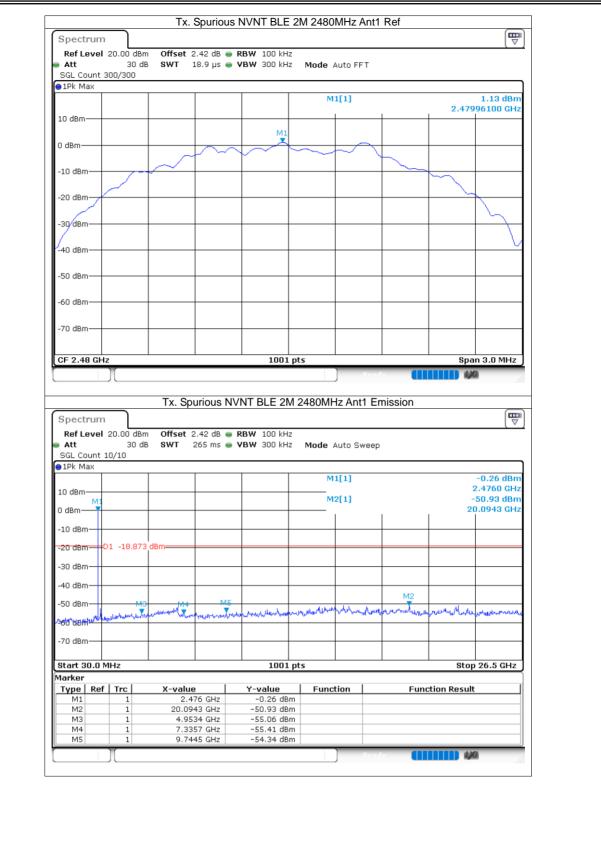


8.2.4 Band Edge

ndition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdi				
NVNT	BLE 2M	2402	Ant1	-53.05	-20	Pass				
NVNT	BLE 2M	2480	Ant1	-54.78	-20	Pass				
			Toot Oren't							
		Band Edge	Test Graphs NVNT BLE 2M 24	02MHz Ant1 Ref						
	Spectrum									
	Ref Level 20				<u>(*)</u>					
	Att SGL Count 15		BW 300 kHz Mod	e Auto FFT						
	1Pk Max		1							
				M1[1]	2.51 dBm 2.40200000 GHz					
	10 dBm		M1							
	0 dBm									
	-10 dBm	/~								
	-20 dBm	/								
	-30 dBm									
	-40 dBm	/ V								
	-50 dBm				······					
	-60 dBm									
	-70 dBm									
	05.0.400.5		1001		Papa C. O. Mill					
	CF 2.402 GH		1001 pts	Ready	Span 8.0 MHz					
		Band Edge NV	NT BLE 2M 2402	MHz Ant1 Emission						
	Spectrum		DDW 100 505							
	Ref Level 20 Att	35 dB SWT 227.5 µs 👄	VBW 300 kHz Mo	de Auto FFT						
		0/100								
	SGL Count 10				I					
	SGL Count 10 91Pk Max			M1[1]	1.60 dBm					
					2.40245000 GHz -31.62MBm					
	● 1Pk Max				2.40245000 GHz					
	● 1Pk Max 10 dBm				2.40245000 GHz -31.62MBm					
	1Pk Max 10 dBm 0 dBm -10 dBm	1 -17.487 dBm			2.40245000 GHz -31.62MBm					
	1Pk Max 10 dBm 0 dBm -10 dBm				2.40245000 GHz -31.62MBm					
	1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm				2.40245000 GHz -31.62/dBm 2.4000000 SHz					
	1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		M4		2.40245000 GHz -31.62/dBm 2.40000000 GHz					
			M4 M4		2.40245000 GHz -31.62/dBm 2.4000000 SHz					
		1 -17.487 dBm			2.40245000 GHz -31.62/dBm 2.40000000 GHz					
		1 -17.487 dBm	M4		2.40245000 GHz -31.62/dBm 2.40000000 GHz					
		1 -17.487 dBm	Un Martin Martin		2.40245000 GHz -31.62/dBm 2.4000000 SHz M2 M2 Jun M2					
		1 -17.487 dBm	1001 pts	M2[1]	2.40245000 GHz -31.62/dBm 2.40000000 GHz M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2					
		1 -17.487 dBm ۱ -17.487 dBm ۱	۱۰۰۰ pts ۲-value F		2.40245000 GHz -31.62/dBm 2.40000000 GHz M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2					
		1 -17.487 dBm 1 -17.487 dBm 3 -17.487 dBm 1 -17.49245 GHz 1 -17.49245 GHz 1 -17.49245 GHz 1 -17.49245 GHz	1001 pts 1001 pts Y-value F 1.60 dBm -31.62 dBm	M2[1]	2.40245000 GHz -31.62/dBm 2.40000000 GHz M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2					
		1 -17.487 dBm 1 -17.487 dBm MM_M_M_M_M_M_M_M_M_M_M_M_M_M_M_M_M_M_M	۱۰۰۱ pts ۲-value F 1.60 dBm	M2[1]	2.40245000 GHz -31.62/dBm 2.40000000 GHz M2 M2 M2 Stop 2.406 GHz Result					


8.2.5 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-53.21	-20	Pass
NVNT	BLE 2M	2440	Ant1	-52.42	-20	Pass
NVNT	BLE 2M	2480	Ant1	-52.05	-20	Pass



Spectrur	n								l □ □
	1 20.00 dBm			RBW 100 kHz					('
Att SGL Count	30 dB 3000/3000	SWT 18	a.a ha 🦲	VBW 300 kHz	Mode A	uto FFT			
 1Pk Max 									
					M1	[1]			2.61 dBn
10 dBm							1	2.402	200300 GH:
20 0.0111				M	1				
0 dBm			~		\sim				
				\downarrow \downarrow	$- \gamma$	\sim $^{\circ}$			
-10 dBm—							$+ \sim$	\leftarrow	
-20 dBm								<u> </u>	
20 d0m									\sim
-30 dBm—									
-40 dBm—							1		
-50 dBm—									
-60 dBm—									
-70 dBm—							1		
CF 2.402	- 2Hz			1001	nte		-	Spa	n 3.0 MHz
<u> </u>	3112			1001	pts				
Spectrur		Tx. Spu	rious N	IVNT BLE 2M		Pea z Ant1 E		4	
-		Offset 2.	38 dB 🥃	IVNT BLE 2M	<u>1 2402MH</u>		mission		0
Ref Leve Att SGL Count	n 1 20.00 dBm 30 dB	Offset 2.	38 dB 🥃	IVNT BLE 2M	<u>1 2402MH</u>		mission		0
Ref Leve Att	n 1 20.00 dBm 30 dB	Offset 2.	38 dB 🥃	IVNT BLE 2M	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto Sweep	mission		(
Ref Leve Att SGL Count 1Pk Max	n 1 20.00 dBm 30 dB	Offset 2.	38 dB 🥃	IVNT BLE 2M	<u>1 2402MH</u>	uto Sweep	mission		0
Ref Leve Att SGL Count P1Pk Max 10 dBm-	n 1 20.00 dBm 30 dB	Offset 2.	38 dB 🥃	IVNT BLE 2M	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn
Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBm 30 dB : 10/10	Offset 2.	38 dB 🥃	IVNT BLE 2M	// 2402MH; 2 2 2 3 3 3 3 3 4 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 4 3 3 4 3 3 4 3 4	uto Sweep [1]	mission		2
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	n 1 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	38 dB 🥃	IVNT BLE 2M	// 2402MH; 2 2 2 3 3 3 3 3 4 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 4 3 3 4 3 3 4 3 4	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	n I 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2	38 dB 🥃	IVNT BLE 2M	// 2402MH; 2 2 2 3 3 3 3 3 4 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 4 3 3 4 3 3 4 3 4	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	n 1 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2	38 dB 🥃	IVNT BLE 2M	// 2402MH; 2 2 2 3 3 3 3 3 4 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 4 3 3 4 3 3 4 3 4	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	n I 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2	38 dB 🥃	IVNT BLE 2M	// 2402MH; 2 2 2 3 3 3 3 3 4 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 4 3 3 4 3 3 4 3 4	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	n l 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2	38 dB 🥃	IVNT BLE 2M	M 2402MH: Mode Al M1 M2	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n I 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2 dBm	38 dB	IVNT BLE 2M	M 2402MH; Mode Ai M1 M2	(1)	p		-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	n l 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2	38 dB 🥃	IVNT BLE 2M	M 2402MH; Mode Ai M1 M2	uto Sweep [1]	mission		-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm	n 1 20.00 dBm 30 dB 10/10	Offset 2. SWT 2 dBm	38 dB	IVNT BLE 2M	M 2402MH; Mode Ai M1 M2	(1)	p		-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	n l 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2 dBm	38 dB	NNT BLE 2M	Mode Al Mode Al M1 M2	(1)	p	1	-10.79 dBn 2.3970 GH: -50.60 dBn 50.6738 GH:
Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 30.0	n l 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2 dBm	38 dB	IVNT BLE 2M	Mode Al Mode Al M1 M2	(1)	p	1	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30.0 Marker	n l 20.00 dBm 30 dB : 10/10	Offset 2. SWT 2	38 dB	IVNT BLE 2M	M2402MH: Mode Au M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto Sweep [1] [1]		1 	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Re M1	n	Offset 2. SWT 2 dBm dBm x x-value 2.39	38 dB 65 ms	IVNT BLE 2M	M2402MH: 2 Mode Ai M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto Sweep [1] [1]		1	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm Start 30.0 Marker Type M2	n	Offset 2. SWT 2 dBm dBm x-value x-value 2.39 15.673	38 dB 65 ms	IVNT BLE 2M	M2402MH: 2 Mode Ai M1 M2 M2 M2 M2 M3 M2 M3 M2 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	uto Sweep [1] [1]		1 	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Ref M1 M2 M3	n l 20.00 dBm 30 dB 10/10 	Offset 2. SWT 2 dBm dBm X-value 2.39 15.673 4.794	38 dB 65 ms	IVNT BLE 2M	M2402MH: Mode Au M1 M2 M2 M2 M2 M3 M2 M4 M2 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	uto Sweep [1] [1]		1 	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm Start 30.0 Marker Type M2	n	Offset 2. SWT 2 dBm dBm k k k k k k k k k k k k k k k k k k k	38 dB 65 ms	IVNT BLE 2M	M2402MH: Mode Ai M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto Sweep [1] [1]		1 	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:
Ref Leve Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Re M1 M2 M3 M4	n l 20.00 dBm 30 dB 10/10 	Offset 2. SWT 2 dBm dBm k k k k k k k k k k k k k k k k k k k	38 dB 65 ms 65 ms 65 ms 7 ms 7 GHz 8 GHz 1 G	IVNT BLE 2M	M2402MH: Mode Ai M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto Sweep [1] [1]		1 	-10.79 dBn 2.3970 GH: -50.60 dBn 5.6738 GH:

END OF REPORT