

RADIO TEST REPORT FCC ID: 2ABU6MBM01

Product: Ultra-Long Range Beacon

Trade Mark: MINEW

Model No.: MBM01

Family Model: N/A

Report No.: S23051201705002

Issue Date: Aug 22. 2023

Prepared for

Shenzhen Minew Technologies Co., Ltd.

3rd Floor, I Building, Gangzhilong Science Park, Qinglong Road, Longhua District, Shenzhen City, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

ilac-ME

1 T	EST RESULT CERTIFICATION	3
2 SU	JMMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
31	FACILITIES	5
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
3.3	MEASUREMENT UNCERTAINTY	5
4 G	ENERAL DESCRIPTION OF EUT	6
5 D	ESCRIPTION OF TEST MODES	8
6 SI	TUP OF EQUIPMENT UNDER TEST	9
6.1	DI OCY DI ACD AM CONEICUD ATION OF TEST SYSTEM	0
	DLOCK DIAGRAM CONFIGURATION OF TEST STSTEM	9
6.2	SUPPORT EQUIPMENT	9
6.2 6.3	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 .10 .11
6.2 6.3 7 T	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 .10 .11 .11
6.2 6.3 7 T 7.1	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS EST REQUIREMENTS	9 .10 .11 .11 .13
6.2 6.3 7 T 7.1 7.2	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS EST REQUIREMENTS CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	9 .10 .11 .13 .13 .15
6.2 6.3 7 T 7.1 7.2 7.3	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS EST REQUIREMENTS	9 .10 .11 .13 .13 .15 .21
6.2 6.3 7 T 7.1 7.2 7.3 7.4	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS EST REQUIREMENTS CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	9 .10 .11 .13 .13 .15 .21 .24
6.2 6.3 7 T 7.1 7.2 7.3 7.4 7.5	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS EST REQUIREMENTS CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	9 .10 .11 .13 .13 .13 .15 .21 .24 .27

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Minew Technologies Co., Ltd.
Address:	3rd Floor, I Building, Gangzhilong Science Park, Qinglong Road, Longhua District, Shenzhen City, China
Manufacturer's Name:	Shenzhen Minew Technologies Co., Ltd.
Address:	Building 3, Instrument World Industrial Park, No. 306, Guanlan Guiyue Road, Longhua District, Shenzhen
Product description	
Product name:	Ultra-Long Range Beacon
Model and/or type reference:	MBM01
Family Model	N/A
Sample number	S230512017002

Measurement Procedure Used:

APPLICABLE STANDARDSAPPLICABLE STANDARD/ TEST PROCEDURETEST RESULTFCC 47 CFR Part 2, Subpart JCompliedFCC 47 CFR Part 15, Subpart FCompliedANSI C63.10-2013Complex

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Jun 16. 2023 ~ Aug 22. 2023	
Testing Engineer	krang. Hu	
	(Mary Hu)	
Authorized Signatory	Alles	
	(Alex Li)	

Certificate #4298.01						
2 SUMMARY OF TEST RESULTS						
FCC Part15, Subpart F						
Standard Section	Test Item	Verdict	Remark			
15.207	Conducted Emission	N/A				
15.209 (a) 15.517(c)	Radiated Spurious Emission	PASS				
15.503(a)(d) 15.517(b)	10dB Bandwidth	PASS				
15.521(g) 15.517(e)	EIRP	PASS				
15.517 (b)	Band Edge	PASS				
15.517(d)	Radiated Emission in GPS Band	PASS				
15.203	Antenna Requirement	PASS				

ilac-M

ACC

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±4.7%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Ultra-Long Range Beacon	T		
Trade Mark	MINEW	T		
FCC ID	2ABU6MBM01	T		
Model No.	MBM01	I		
Family Model	N/A	I		
Model Difference	N/A	Ī		
Operating Frequency	6.5GHz,8GHz	Ī		
Modulation	Pulse	I		
Number of Channels	2 Channels	I		
Frequency	6.5GHz,8GHz	I		
Antenna Type	PCB antenna	I		
Antenna Gain	6.5GHz:2.3dbi	I		
	8GHz:5.5dBi			
Power supply	DC 3V powered by Battery (Four AA alkaline batteries)			
Adapter	N/A			
HW Version	N/A			
SW Version	N/A	I		

ACCREDITED Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Note 3: UWB transmitters employed solely for indoor operation.

Revision History

ACCREDITED Certificate #4298.01

	-		
Report No.	Version	Description	Issued Date
S23051201705002	Rev.01	Initial issue of report	Aug 22, 2021

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard. Note:

1.

For radiated test cases, this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

	Certificate #4298.01	
6 SETUP OF EQUIPMENT UN	DER TEST	
6.1 BLOCK DIAGRAM CONF	IGURATION OF TEST SYSTEM	
For Radiated Test Cases		
EUT		
	•	
For Conducted Test Cases		
Measurement C-1		
Note: 1 The temporary antenna conn	ector is soldered on the PCB board in	n order to perform conducted tests
and this temporary antenna co	onnector is listed in the equipment list.	
2. For radiated test cases, the wo	prst mode data rate was reported only, ower at preliminary tests, and no othe	because this data rate or significantly frequencies found in
conducted spurious emission.		

6.2 SUPPORT EQUIPMENT

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item Equipment		Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4440A	MY41000130	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.06.16 2023.05.29	2023.06.15 2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.16	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year	
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year	
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year	
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year	
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year	
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year	
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency (MHz)	Conducted Emission Limit			
Fiequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

EUT:	Ultra-Long Range Beacon	Model Name :	MBM01
Temperature:	22.2 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: Not Applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.209 and ANSI C63.10-2013 and FCC Part 15.517(c)

7.2.2 Conformance Limit

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 10.3.2of ANSI C63.10-2013.

Use the following spectrum analyzer settings:

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~960MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Frequency Band (MHz) Function Resolution bandwidth Video Bandwidth 30 to 1000 OP 120 kHz 300 kHz Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measure value should add a RBW correction factor (RBWCF) where RBWCF (dB) =10°1g(100 [kHz]/narrower RBW [kHz]), narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 1 0 kHz and RBWCF is 20 dB for the frequency 9 kHz to 30 MHz. 7.2.6 Test Results Spurious Emission below 30MHz (9KHz to 30MHz) EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% Viature: the amplitude of spurious emission tax is attenuated by more than 20dB below the permissible limit has no need to be reported.	During the radiat	ted emission	test, the Spectru	um Analyzer	was set w	ith the follow	ing configurations:
30 to 1000 QP 120 kHz 300 kHz Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measure value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*19(100 [kHz/)narrower RBW [kHz]), the narrower RBW is 10 kHz and RBWCF is 20 dB for the frequency 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz. 7.2.6 Test Results Spurious Emission below 30MHz (9KHz to 30MHz) EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% View particular data not be one spontous emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.	Frequency Ba	and (MHz)	Function	Re	solution ba	andwidth	Video Bandwidth
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measure value should add a RBW correction factor (RBWCF) where RBWCF (dB) =10°1g(100 (RHz/)narrower RBW (s 1 6 kHz) and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and th narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz. 7.2.6 Test Results Spurious Emission below 30MHz (9KHz to 30MHz) EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% Very Hz to 30MHz (9KHz to 30MHz) EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% Very Hz to 30MHz (9KHz to 30MHz) EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% Very Hz to 30 PK Model No:: MEM01 Unitsion Level(dBuV/m) Limit 3m(dBuV/m) Over(dB) (MHz) Hz A PK AV PK Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported. <td>30 to 1</td> <td>000</td> <td>QP</td> <td></td> <td>120 k⊦</td> <td>łz</td> <td>300 kHz</td>	30 to 1	000	QP		120 k⊦	łz	300 kHz
J.2.6 Test Results Sprious Emission below 30MHz (9KHz to 30MHz) Image Beacon Model No: MBM01 Image Decision Level (ABUV/m) Image Beacon Relative Humidity: 48% Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Cover(AB) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Decision Level (ABUV/m) Decision Level (ABUV/m) Image Decision Level (ABUV/m) Image Decision Level (ABUV/m) Decision Level (ABUV/m)<	Note: for the free value should add [kHz]). , the nar narrower RBW is	quency range d a RBW cor rower RBW i s 10 kHz and	es below 30 MH; rrection factor (F is 1 kHz and RE RBWCF is 10 d	z, a narrowe RBWCF) whe 3WCF is 20 B for the free	r RBW is u ere RBWC dB for the quency 150	used for thes F [dB] =10*1 e frequency 9 0 kHz to 30 N	e ranges but the measured g(100 [kHz]/narrower RBW 9 kHz to 150 kHz, and the ⁄IHz.
Spurious Emission below 30MHz (9KHz to 30MHz) EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% Image: the state of the s	7.2.6 Tes	st Results					
EUT: Ultra-Long Range Beacon Model No.: MBM01 Temperature: 20 °C Relative Humidity: 48% Image: Second Secon	Spurious Emissi	on below 30N	MHz (9KHz to 30)MHz)			
Temperature: 20 °C Relative Humidity: 48% Image: Treq. Ant.Pol. Emission Level(dBuV/m) Limit 3m(dBuV/m) Over(dB) Image: MHz) H/V PK AV PK AV Image: MHz) H/V PK AV PK<	EUT:	Ultra-Long	Range Beacon	Model No.:		MBM01	
Freq. Ant.Pol. Emission Level(dBuV/m) Limit 3m(dBuV/m) Over(dB) (MHz) H/V PK AV PK AV PK AV == =	Temperature:	20 ℃		Relative H	umidity:	48%	
(MHz) HV PK AV Image: Average of the state of the s	Freq	Ant Pol	Emission Leve	el(dBu\//m)	Limit 3r	m(dBuV/m)	Over(dB)
Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.	(MHz)	H/V	PK	AV	PK	AV	PK AV
limit has no need to be reported.	 Noto: the emplity						olow the normicaible
Version.1.3 Page 18 of 3	Version.1.3						Page 18 of 38

ACCREDITED Certificate #4298.01

And March March 10

(MHz)

300

400

500

600 700

3 X

HN.MM44

60

70 80

ACCREDITED

-8

30.000

40

50

1000.000

ACCREDITED

7.3 10DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.503(a)(d)

7.3.2 Conformance Limit

Center frequency. The center frequency, fC, equals (fH + fL)/2.

Fractional bandwidth. The fractional bandwidth equals 2(fH-fL)/(fH + fL).

An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The EUT was tested according to ANSI C63.10: 2013 for compliance to FCC 47CFR 15.503(a) requirements.

Set RBW = 1 MHz, VBW = 3MHz, Span = 2.5 GHz, use 10dB bandwidth function to test the result.

7.3.6 Test Results

EUT:	Ultra-Long Range Beacon	Model Name :	MBM01
Temperature:	24.9 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Voltage :	DC 3V

ilac-MR

ACO

Mode	Measured Frequencies			10dB		
	FL (MHz)	FM (MHz)	FH (MHz)	(MHz)	LIMIT (MHZ)	Pass/Fai
1	6177.5	6473.75	6770	592.5	500	Pass
			SPE	ECTRUM PLOT		
	Agilent Spectrum Ana LXI RL RF	a <mark>lyzer - Swept SA</mark> 50 Ω AC	SE	NSE:INT ALIGN AUTO	02:29:26 PM Jul 18, 2023	Marker
	Marker 3 6.77	70000000000 GI PN IFG	Z 10: Fast 😱 Trig: Free Jain:Low Atten: 6 d	Avg Type: Log-Pwr ∍ Run Avg Hold:>100/100 dB	TRACE 11 2 3 4 5 6 TYPE MWWWW DET PNNNNN	arker Table
	10 dB/div Ref	f -10.00 dBm		Mk	r3 6.770 0 GHz -59.048 dBm	Off
	-20.0				Mai	ker Count
	-30.0					[Off]
	-50.0		2 montherman	Ly Month Ly 3	-59.69 dBm	Couple Markers
	-70.0	Herenand harmonic hard	ar furtured			<u>On</u>
	-90.0					
	Center 6.500 C	GHz			Span 2.500 GHz	
	#Res BW 1.0 M	VIHz ×	#VBW 3.0 MHz	Sweep 4.	200 ms (1001 pts) FUNCTION VALUE	
	1 N 1 f 2 N 1 f 3 N 1 f	6.332 6.177 6 6.177 6 6.770 6	5 GHz -49.676 dE 5 GHz -59.200 dE 0 GHz -59.048 dE	Bm Bm Bm		Aarkore Off
	4 5 6					
	8					More
	11 <				×	2 01 2
	MSG			STATUS		

	Meas	sured Frequ	encies	10dB		
Mode	FL (MHz)	FM (MHz)	FH (MHz)	Bandwidth (MHz)	Limit (MHZ)	Pass/Fai
1	7756.7	8011.35	8266	509.3	500	Pass
			SDI			
	Agilent Spectrum Ana	alyzer - Swept SA	351			
	Marker 3 8.26	50 Ω AC 57500000000 GI	HZ NO: Fast	ENSE:INT ALIGN AU Avg Type: Log-P ee Run Avg Hold:>100/10	TO 08:43:26 PM Jul 18, 2023 Wr TRACE 123456 0 TYPE MWWWWW	Marker
		IFC	Gain:Low Atten: 1	l0 dB	Mkr3 7.726 7 GHz	Marker Table
	10 dB/div Ref	0.00 dBm	1	7	-55.607 dBm	
	-10.0					Marker Count
	-30.0					[OII]
	-40.0		2.1000	marin 3		Couple Markers
	-60.0	Lang Providence State of Long-	aunau Market	and with the second second	-55.24 dBm	On <u>Off</u>
	-70.0					
	-90.0					
	Center 8.000 C Res BW 3.0 M	GHz Hz	#VBW 3.0 MH	z Sweet	Span 2.500 GHz 4.200 ms (1001 pts)	
	MKR MODE TRC SCL	×	Y	FUNCTION FUNCTION W	DTH FUNCTION VALUE	
	2 N 1 f 3 N 1 f	8.142 7.756 8.266	7 GHz -55.607 c 0 GHz -55.612 c	JBm JBm JBm		All Markers Off
	5 6					All Markers Off
	7					More
	10					2 of 2
	MSG			s	TATUS	

ACCREDITED Certificate #4298.01

7.4 EIRP

7.4.1 Applicable Standard

as tested in accordance with the procedures specified in §15.521(g) and 15.517(e) of this chapter.

7.4.2 Conformance Limit

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

When a peak measurement is required, it is acceptable to use a resolution bandwidth other than the 50 MHz specified in this subpart. This resolution bandwidth shall not be lower than 1 MHz or greater than 50 MHz, and the measurement shall be centered on the frequency at which the highest radiated emission occurs, f_M . If a resolution bandwidth other than 50 MHz is employed, the peak EIRP limit shall be 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed. This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2.Set The RBW = 3MHz, VBW = 3MHz, 20log(RBW/50)+Limit= 20log(3/50)+0=-24.437dBm.

7.4.6 Test Results

EUT:	Ultra-Long Range Beacon	Model Name :	MBM01
Temperature:	24.9 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Voltage :	DC 3V

Frequency(MHz)	Measure Level(dBm)	Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)
6500	-41.591	2.3	-39.291	-24.437

ACCREDITED Certificate #4298.01

ilac-MR/

Report No.: S23051201705002

Frequency(MHz)	Measure Level(dBm)	Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)
8000	-40.271	5.5	-34.771	-24.437

ACCREDITED Certificate #4298.01

7.5 RADIATED EMISSIONS

7.5.1 Applicable Standard

According to FCC Part 15.517(c)(d)

7.5.2 Conformance Limit

when an isotropic transmitting antenna is assumed, the following relationships in E ($dB\mu V/m$) = EIRP(dBm) + 95.3 may be employed to relate EIRP to field strength at a specified measurement distance of 3 m:

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz

Frequency in MHz	EIRP in dBm	dBuV/m
960-1610	-75.3	20
1610-1990	-53.3	42
1990-3100	-51.3	44
3100-10600	-41.3	54
About 10600	-51.3	44

In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm	dBuV/m
1164-1240	-85.3	10
1559-1610	-85.3	10

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

NTEK 北测

7.5.5 Test Procedure

The Spurious RF radiated emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 Section 10.3 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=1MHz and VBW= 3MHz to measure the average field strength. Set the sweep time so that there is no more than a 1 ms integration period over each measurement bin.

7.5.6 Test Results

Radiated Emissions above 960 MHz:

EUT:	Ultra-Long Range Beacon	Model Name :	MBM01
Temperature:	24.9 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode	6.5GHz

Pola	ar Frequency	Meter Reading	Factor	Emi Le	ssion evel	L	imits	5	Margin	Rema	ark
(H/V	(MHz)	(dBuV)	(dB)	(dB	uV/m)	(dE	BuV/I	n)	(dB)		
V	1242.068	14.88	0.67	15	5.55	2	20.00		-13.93	AVC	G
V	1599.491	14.07	2.96	17	7.03	2	20.00		-13.39	AVC	G
V	2633.397	19.19	6.88	26	5.07	4	4.00		-10.99	AVC	G
V	7970.000	15.80	16.51	32	2.31	5	54.00		-3.33	AVC	G
V	13622.500	17.33	21.99	39	Э.32	4	4.00		-2.57	AVC	G
V	16767.500	16.08	25.35	41	1.43	4	4.00		-13.93	AVC	G
Rem	ark:									_	
Emis	sion Level= Meter Re	ading+ Factor	, Margin=	Emissio	n Level -	Limit					
80.0	dBuV/m	1									
70											
ьо –											
									1		
50 -								_			
			μ Ι							-6	
40									5	J.X.	
							.		W		
30								سمب	m M		
		3				M	W	Yry -	- Y		
20		Jam W	mm	Marin	Mum						
20	1 2	V~	۳ 0° ۳	- Alexa	· •						
10	m jym .										
	- 1										
0.0											
100	00.000	•		MHz)	6000.0)				18000.0	000

Pola	Frequency	Meter Reading	Factor	Emissio Level	n	Lim	its	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m	ו)	(dBuV/m)		(dB)		
Н	1576.542	16.16	2.85	19.01		20.	00	-0.99	AVG	
Н	2657.500	19.95	6.97	26.92		44.	00	-17.08	AVG	
Н	5590.000	17.30	13.51	30.81		54.	00	-23.19	AVG	
Н	7970.000	16.31	16.51	32.82		54.	00	-21.18	AVG	
Н	13792.500	17.16	22.33	39.49		44.	00	-4.51	AVG	
Н	16852.500	16.73	25.41	42.14		44.	00	-1.86	AVG	
Emiss 80.0	ion Level= Meter Re dBuV/m	ading+ Factor	, Margin=	Emission Lev	/el -					
70 -									_	
60 -										
50 -										
40 -				3		4		- Martin	- Au	
20	1	,Å-	m	MuhuMy	M	W W		,		
10	Mannam		V I							
0.0).000			MHz) 6	000.0	D			18000.000	

Version.1.3

Version.1.3

EUT:	Ultra-Long Range Beacon	Model Name :	MBM01
Temperature:	24.9 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode	8GHz

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits Margir		Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	1599.491	15.07	2.96	18.03	20.00	-1.97	AVG
V	1682.476	21.75	3.34	25.09	42.00	-16.91	AVG
V	2955.000	17.97	8.56	26.53	44.00	-17.47	AVG
V	6525.000	19.92	13.99	33.91	54.00	-20.09	AVG
V	13622.500	14.33	21.99	36.32	44.00	-7.68	AVG
V	16767.500	14.58	25.35	39.93	44.00	-4.07	AVG

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emissi Leve	on I	L	imits	5	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/	m)	(dE	BuV/ı	n)	(dB)	
Н	1576.542	14.16	2.85	17.01		2	20.00		-2.99	AVG
Н	1694.678	17.54	3.40	20.94	ļ	2	42.00		-21.06	AVG
Н	2657.500	18.45	6.97	25.42	2	2	14.00		-18.58	AVG
Н	6525.000	18.73	13.99	32.72	2	4	54.00		-21.28	AVG
Н	8395.000	15.61	17.36	32.97	7	4	54.00		-21.03	AVG
Н	15747.500	16.62	24.20	40.82	2	2	14.00		-3.18	AVG
Remark	:									
Emission	h Level= Meter Re	ading+ Factor	, Margin= E	mission Le	evel -	Limit				
80.0	dBUY/M									_
70 -										_
60 -										_
								L.		
50 -							_			_
			-↓							_
40	F						_		Ă	~
					4				JN .	
30 -		2		n N	2	N AM	idy-	m-r	W	_
20 -	2	Å	h	MMM/	V 1	Munud				
10 🚽	WYWWWWWWWW	v v								
0.0	11									
100	00.000		(M	(Hz)	 6000.00				1:	B000.000
L				-						

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	1204.660	4.69	0.38	5.07	10.00	-4.93	AVG
Remark:							
Emission	Level= Meter Re	ading+ Factor	, Margin= E	mission Level -	Limit		
60.0	dBuV/m						_
50							
40							
30							
20							
20							
10							
				1	8. J. J. B. J.		
0	M.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	- handland	MARANA	᠗᠓᠕᠕᠕᠕	and you want	lshapphap	<u>Lac</u>
-10							
-20							
1	164.000		(MHz)		1	240.000
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remain
V	1171.980	5.85	0.12	5.97	10.00	-4.03	AVG
Remark:							
Emission	Level= Meter Re	ading+ Factor	, Margin= E	mission Level -	Limit		
60.0	dBu¥/m						_
50							_
40							
30							
20							
10	1						
	M AN	. 0		AND AND AND MAD	have been b	M	Δ.
0	MAN MANA	$\sim \sim $	AMACANNA		havinah hira	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11-1 -
-10							
-20							
1	64.000		(MHz)		1	240.000

TED

Version.1.3

Deler	Frequency	Meter	Factor	Emission	Limits	Margin						
(H/V)	(MHz)	(dBuV)	(dB)	Level (dBuV/m)	(dBuV/m)	(dB)	Remark					
V	1595.082	1.86	2.93	4.79	10.00	-5.21	AVG					
Remark:	1375.002	1.00	2.75	1.75	10.00	5.21	////0					
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit												
60.0	lBuV/m											
50 —												
40												
30												
20												
10					1							
0 , 1	Manager and the second se	http://white	www.hww.n	mamana	U.M.M.M.	www.mm	nfre					
-10												
-20 1559.0	100		<u>(</u>	MHz)			1610.000					
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Pomark					
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark					
Н	1592.277	3.74	2.93	6.67	10.00	-3.33	AVG					
Remark: Emission	Level= Meter Re	ading+ Factor	, Margin= Ei	mission Level -	Limit							
60.0	dBuV/m											
50							_					
40							_					
30	30											
20												
• Monorman making and a set of the Martin Ma Martin Martin Martin Martin Martin Mar												
-10												
-20 1559.000 (MHz) 1610.000												

7.6 ANTENNA APPLICATION

7.6.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.6.2 Result

The EUT antenna is permanent attached PCB Antenna (6.5GHz:2.3dbi; 8GHz:5.5dBi). It comply with the standard requirement.

END OF REPORT