FCC ID: 2ABU6-BRR0

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum	Permissible	Exposure	(MPE)
			···· —/

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)			
(A) Limits for Occupational/Controlled Exposure							
0.3-3.0	614	1.63	*100	6			
3.0-30	1842/1	4.89/1	f *900/f ²	6			
30-300	61.4	0.163	1.0	6			
300-1,500			f/300	6			
1,500-100,000			5	6			
(B) Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	*100	30			
1.34-30	824/1	2.19/1	*180/f ²	30			
30-300	27.5	0.073	0.2	30			
300-1,500			f/1500	30			
1,500-100,000			1.0	30			

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

$$\mathsf{E}(\mathsf{V/m}) = \frac{\sqrt{30*P*G}}{d}$$
 Power Density: $Pd(\mathsf{W/m^2}) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30*P*G}{377*D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Measurement Result

Operation Frequency: BT: 2402-2480MHz Power density limited: 1mW/ cm² Antenna Type: PCB Antenna Antenna gain: -0.23 dBi, R=20cm

Channel Freq. (MHz) modulation	conducted power	Tune-up	Мах		Antenna		Evaluation result	Power density	
			tune-up	tune-up power G		Gain (mW/cm2)		(mW/cm2)	
			(dBm)	(mW)	(dBi)	Numeric	(IIIVV/CIIIZ)	(IIIVV/CIIIZ)	
2402	BLE(1M)	4.19	5±1	6	3.981	-0.23	0.95	0.0008	1
2440		5.06	5±1	6	3.981	-0.23	0.95	0.0008	1
2480		3.74	3±1	4	2.512	-0.23	0.95	0.0005	1
2402	BLE(2M)	4.22	5±1	6	3.981	-0.23	0.95	0.0008	1
2440		5.08	5±1	6	3.981	-0.23	0.95	0.0008	1
2480		3.75	3±1	4	2.512	-0.23	0.95	0.0005	1

Note: This product does not support multi-source transmission.

Conclusion:

For the max result : 0.0008≤ 1.0 for Max Power Density, compliance RF exposure..

Alex

Signature:

Date: 2022-11-21

NAME AND TITLE (Please print or type): Alex Li/Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.