

TEST REPORT

FCC MPE Test for SC300i Certification

APPLICANT VC Inc.

REPORT NO. HCT-RF-2010-FC002

DATE OF ISSUE October 14, 2020

> **Tested by** Jeong Ho Kim

Co

Technical Manager Kwon Jeong

HCT CO., LTD. Soo Chan Lee SooChan Lee

HCT CO., LTD.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC MPE Test for SC300i	REPORT NO. HCT-RF-2010-FC002 DATE OF ISSUE October 14, 2020 Additional Model -
Applicant	VC Inc. 3F-4F, Hwawon Building, 417, Nonhyeon-ro, Gangnam-gu, Seoul, Republic of Korea
Eut Type Model Name	Swing Caddie SC300i
FCC ID	2ABTKSC300I
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	October 14, 2020	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

RF Exposure Statement

1. Limit

According to §1.1310, §2.1091 RF exposure is calculated.

(B) Limits for General Population/Uncontrolled Exposu	res
---	-----

Frequency range	Electric field	Magneticfield	Powerdensity	Averagingtime
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm²)	(minutes)
0.3 -				
1.34	614	1.63	*(100)	30
1.34 - 30	824/f	2.19/f	*(180/ f ²)	30
30 - 300	27.5	0.073	0.2	30
300 - 1500			f/1500	30
1500 -			1.0	30
100.000				

F = frequency in MHz

* = Plane-wave equivalent power density

2. Maximum Permissible Exposure Prediction

Prediction of MPE limit at a given distance

$$S = PG/4\pi R^2$$

S = Power density

P = Power input to antenna

G = Power gain to the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

3. RESULTS

BT LE

Max. average output power at antenna input terminal	-4.000	dBm
Max. average output power at antenna input terminal	0.398	mW
Prediction distance	20.000	cm
Prediction frequency	2402.00	MHz
Antenna Gain(typical)	1.800	dBi
Antenna Gain(numeric)	1.514	-
Power density at prediction frequency(S)	0.0001	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	1.0000	mW/cm ²

24GHz Radar

Max. average output power at antenna input terminal	-8.850	dBm
Max. average output power at antenna input terminal	0.130	mW
Prediction distance	20.000	cm
Prediction frequency	24075 - 24175	MHz
Antenna Gain(typical)	8.600	dBi
Antenna Gain(numeric)	7.244	-
Power density at prediction frequency(S)	0.0002	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	1.0000	mW/cm ²

Simultaneous transmission operations

- 1. The power density level at 20 cm is **0.0001 mW/cm²**, which is below the uncontrolled exposure limit of **1.0 mW/cm²** at **Bluetooth**.
- 2. The power density level at 20 cm is **0.0002 mW/cm²**, which is below the uncontrolled exposure limit of **1.0 mW/cm²** at **Radar**.

->Simultaneous MPE 20 cm is Radar (0.0002/1.0) + Bluetooth (0.0001/1.0) = 0.0003 < 1

*Note:

1. Providing actual use conditions, even though this device is battery powered and can be handheld.