

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

SWING CADDIE

MODEL NUMBER: SC200

FCC ID: 2ABTKSC200

REPORT NUMBER: 15U20138-E1A

ISSUE DATE: APRIL 6,2015

Prepared for

UCOMM TECHNOLOGY CO., LTD. #401 GWANYANG DOOSAN VENTURE DIGM 1307-37 GWANYANG2-DONG, DONGAN-GU, ANYANG-SI, GYEONGGI-DO, 431-810 SOUTH KOREA

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	3/20/2015	Initial Issue	M.Heckrotte
А	4/06/2015	Update Section 6.3	S. Aguilar

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 21

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS 4
2.	TES	T METHODOLOGY
3.	FAC	CILITIES AND ACCREDITATION
4.	CAL	IBRATION AND UNCERTAINTY
2	1 .1.	MEASURING INSTRUMENT CALIBRATION 5
4	4.2.	SAMPLE CALCULATION
2	4.3.	MEASUREMENT UNCERTAINTY 6
5.	EQU	JIPMENT UNDER TEST
ł	5.1.	DESCRIPTION OF EUT
Ę	5.2.	MAXIMUM OUTPUT POWER
Ę	5.3.	MAXIMUM FUNDAMENTAL FIELD STRENGTH7
Ę	5. <i>4.</i>	DESCRIPTION OF AVAILABLE ANTENNAS
Ę	5.5.	SOFTWARE AND FIRMWARE
Ę	5.6.	WORST-CASE CONFIGURATION
Ę	5.7.	DESCRIPTION OF TEST SETUP
Ę	5.8.	TEST AND MEASUREMENT EQUIPMENT
Ę	5.9.	99% BANDWIDTH10
6.	RAD	DIATED EMISSION TEST RESULTS11
e	6.1.	LIMITS AND PROCEDURES
e	6.2.	FUNDAMENTAL RESULTS
ť	5.3. 6.3. 6.3. 6.3. 6.3.	SPURIOUS RESULTS
7.	SET	UP PHOTOS

Page 3 of 21

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	UCOMM TECHNOLOGY CO., LT #401 GWANYANG DOOSAN VEN GWANYANG2-DONG, DONGAN- DO, 431-810, SOUTH KOREA	D. NTURE DIGM 1307-37 -GU, ANYANG-SI, GYEONGGI [.]			
EUT DESCRIPTION:	SWING CADDIE (BATTERY OPERATED)				
MODEL:	SC200				
SERIAL NUMBER:	TX- 2061251				
DATE TESTED:	FEBRUARY 27 – MARCH 10, 201	5			
	APPLICABLE STANDARDS				
ST	ANDARD	TEST RESULTS			
FCC PART	15 SUBPART C	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

MH

MICHAEL HECKROTTE PRINCIPAL ENGINEER UL Verification Services Inc.

Stone aquilan

STEVE AGUILAR LAB ENGINEER UL Verification Services Inc.

Page 4 of 21

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	Chamber G
	🛛 Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 21

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB
Radiated Disturbance, 1 to 6 GHz	±3.86 dB
Radiated Disturbance, 6 to 18 GHz	±4.23 dB
Radiated Disturbance, 18 to 26 GHz	±5.30 dB
Radiated Disturbance, 26 to 40 GHz	±3.23 dB
Radiated Disturbance, 40 GHz above	±3.50dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 21

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a portable battery operated 24 GHz field disturbance sensor for analyzing a golf swings.

Manufactured by RFbeam Microwave GmbH Model K-LC1a.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak EIRP output power @ 3m distance as follows:

Frequency Range	Mode	Output Power
(GHz)		(dBuV/m)
24.075 -24.175	Modulator	105.80

5.3. MAXIMUM FUNDAMENTAL FIELD STRENGTH

The maximum field strength of the fundamental is 195 millivolts/meter at 3 meters.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral patch antenna, with a maximum gain of 8.6 dBi.

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Ver. 0.90

5.6. WORST-CASE CONFIGURATION

The worst case boresight orientation configuration was with the EUT mounted vertically (upright) on the turntable top.

Page 7 of 21

5.7. DESCRIPTION OF TEST SETUP

TEST SETUP

The EUT transmits and receives once turned on.

SETUP DIAGRAM FOR TESTS

Page 8 of 21

5.8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List									
Description	Manufacturer	Model	S/N or T#	Cal Due					
N9030A PXA Signal Analyzer	Agilent	N9030A	MY52350427	9/13/2015					
Analog Signal Generator, 40 GHz	Agilent	E8257D	MY48050681	9/26/2015					
Down Converter, 67 GHz	Agilent	MT-463	12020	CNR					
mmWave Source 50 - 75 GHz	OML	S15MS-AG	80708-4	CNR					
Mixer Diplexer for HP	OML	DPL.313B	N02429	CNR					
Harmonic Mixer, 50 GHz	Agilent	M1970U-002	MY5139	11/1/2015					
Harmonic Mixer , 50 to 80 GHz	Agilent	M1970V	MY51390830	6/18/2015					
Harmonic Mixer , 75 to 110 GHz	Agilent	M1970W	MY51430784	6/12/2015					
Harmonic Mixer, 90 to 140 GHz	OML	M08HWA	F90519-2	6/17/2015					
Harmonic Mixer, 140 to 220 GHz	OML	M05HWA	G90519-1	6/17/2015					
Harmonic Mixer, 220 to 325 GHz	OML	M03HW/A	H70814-1	3/1/2016					
Single Average Power Meter	Agilent	N1913A	MY53100006	5/1/2015					
Waveguide Power Sensor	Agilent	V8486A	MY52300008	5/6/2015					
Spectrum Analyzer	Agilent	8564E	3943A01643	8/6/2015					
Horn Antenna, 18 to 26.5GHz	ARA	MWH-1826/B	1049	12/17/2015					
PreAmplifier, 1-26.5GHz	Agilent	8449B	3008A04710	3/23/2015					
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	924343	9/3/2015					
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	1029	7/15/2015					
Oscilloscope 1GHz 4 Ch DSO	Agilent	DSO9104A	MY51420139	6/11/2015					
Low Pass Filter, 10MHz	Solar Electronics	6623-10	136101	3/26/2015					
Low Noise Amplifier	VIVAtech	VTLN-018-FB	51	CNR					
Waveguide switch	mi-Wave	530V/387	1332	CNR					
MM-Wave Isolator	Millitech	FBI-15-RSES0	1734	CNR					
50-75GHZ RF Detector	Millitech	DET-15-RPFWI	41	CNR					
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	T906	5/7/2015					
Antenna, Horn, 18 GHz	ETS Lindgren	3117	T863	4/14/2015					
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB3	T900	3/28/2015					
RF PreAmplifier, 1-18GHz	Miteq	AFS42-00101800-25-S-42	T495	6/5/2015					
Preamp, 1000MHz	Sonoma	310N	T835	6/5/2015					
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	100935	9/16/2015					
LISN, 30 MHz	FCC	50/250-25-2	114	1/15/2016					
Radiated Software	UL	UL EMC	Ver 9.5, July 2	2, 2014					
Conducted Software	UL	UL EMC	Ver 9.5, May 1	7, 2012					

Page 9 of 21

5.9. 99% **BANDWIDTH**

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Frequency	99% Bandwidth
(GHz)	(kHz)
24.11	4074

99% BANDWIDTH

Page 10 of 21

6. RADIATED EMISSION TEST RESULTS

6.1. LIMITS AND PROCEDURES

LIMITS

§15.245

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Limits for radiated disturbance of an intentional radiator								
Fundamental Field Strength of Field Strength of								
Frequency (MHz)	fundamental (millivolts / harmonic (millivo							
	meter)	meter)						
902-928	500	1.6						
2435-2465	500	1.6						
5785-5815	500	1.6						
10500-10550	2500	25						
24075-24175	2500	25						

§15.245 (3) Emissions radiated outside of the specified frequency bands, except for harmonics, shall...general limits in §15.209.

The applicable rules yield the following equivalent limits for field strength at 3 meters, expressed in logarithmic form:

FUNDAMENTAL:	128 dBuV/m average 148 dBuV/m peak
HARMONICS:	88 dBuV/m average 108 dBuV/m peak
NON-HARMONIC SPURIOUS:	54 dBuV/m average 74 dBuV/m peak

Page 11 of 21

TEST PROCEDURES

ANSI C63.10

PROCEDURE FOR 30 MHz TO 40 GHz

Radiated measurements are made with the measurement antenna feeding a spectrum analyzer via a preamplifier and cables.

PROCEDURE FOR 40 TO 100 GHz

External harmonic mixers and Standard Gain horn antennas are utilized.

The measurement antenna is scanned around the entire perimeter surface of the EUT, and rotated 360 degrees to include all polarizations. The frequency of any emissions observed is recorded.

A final test is made at frequencies at which emissions are found. During this final scan, the antenna is kept no further from the EUT than the maximum distance calculated for each mixer band that yields a minimum system noise floor at least 6 dB below the spurious emissions limit.

Page 12 of 21

6.2. FUNDAMENTAL RESULTS

Company:		Ucomm Tech	hnologies Co	o. Ltd.							
Project #: 14U17188											
Date:		3/2/2015									
Test Engine	er:	Steve Aguila	ar								
Configurati	on:	EUT Alone. l	Jpright								
Mode:		TX and RX M	lode								
Freq.	Distance	Read Pk	Ant		CL/Amp	Peak	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Pol
GHz	(m)	dBuV	factor		dB	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
24.11	3.0	88.5	34.2	0.0	-22.7	100.0	148.0	128.0	-48.0	-28.0	Н
24.11	3.0	94.3	34.2	0.0	-22.7	105.8	148.0	128.0	-42.2	-22.2	V

The maximum field strength of 105.8 dBuV/m is equivalent to 195 millivolts/meter.

Page 13 of 21

6.3. SPURIOUS RESULTS

6.3.1. SPURIOUS RADIATED EMISSIONS BELOW 1 GHz

EMISSIONS FROM 30 MHz TO 1 GHz

Page 14 of 21

HORIZONTAL AND VERTICAL DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	SS JB3 SN A051314-1	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	33.1025	29.63	PK	21.9	-31.3	20.23	40	-19.77	0-360	301	н
3	34.59	29.41	PK	21	-31.2	19.21	40	-20.79	0-360	100	V
4	66.5925	32.99	PK	11.3	-30.8	13.49	40	-26.51	0-360	100	V
5	74.2	31.2	PK	11	-30.7	11.5	40	-28.5	0-360	100	V
2	74.795	30.83	PK	11	-30.7	11.13	40	-28.87	0-360	201	н
6	79.98	35.24	PK	10.4	-30.7	14.94	40	-25.06	0-360	100	V
7	148.5325	30.27	PK	15.8	-30	16.07	43.52	-27.45	0-360	100	V
8	167.9975	32.89	PK	14.9	-29.9	17.89	43.52	-25.63	0-360	100	V

PK - Peak detector

Page 15 of 21

6.3.2. SPURIOUS RADIATED EMISSIONS 1 TO 40 GHz

EMISSIONS FROM 1-18 GHz

Page 16 of 21

HORIZONTAL AND VERTICAL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl (dB)	Corrected Reading dBuV/m	Avg Limit (dBuV /m)	Av (Margin) (dB)	Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.728	34.13	PK	29.5	-34.8	28.83	54	-25.17	74	-45.17	0-360	100	н
3	2.075	33.84	PK	31.4	-34.7	30.54	54	-23.46	74	-43.46	0-360	201	V
4	4.18	32.3	PK	33.5	-32.8	33	54	-21.00	74	-41.00	0-360	100	V
5	4.751	32.53	PK	34.3	-32.8	34.03	54	-19.97	74	-39.97	0-360	201	V
2	7.257	30.26	PK	36.2	-30.5	35.96	54	-18.04	74	-38.04	0-360	100	н
6	8.425	29.53	PK	36.1	-28.9	36.73	54	-17.27	74	-37.27	0-360	100	V

Page 17 of 21

EMISSIONS FROM 18-26 GHz

HORIZONTAL AND VERTICAL DATA

(Unmarked peak is the fundamental emission)

Marker	Frequency	Meter	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	PK Margin
	(GHz)	Reading					Reading		(dB)		(dB)
		(dBuV)					(dBuVolts)				
1	18.793	41.57	РК	32.8	-24.2	-9.5	40.66	54	-13.33	74	-33.33
2	21.164	42.27	РК	33.3	-23.9	-9.5	42.16	54	-11.83	74	-31.83
3	25.454	43.4	РК	34.6	-22.5	-9.5	46	54	-8	74	-28
4	18.893	41.7	РК	32.8	-24.5	-9.5	40.5	54	-13.5	74	-33.5
5	21.391	42.23	РК	33.3	-23.7	-9.5	42.33	54	-11.66	74	-31.66
6	25.454	44.9	РК	34.6	-22.5	-9.5	47.5	54	-6.5	74	-26.5

Page 18 of 21

EMISSIONS FROM 26-40 GHz

HORIZONTAL AND VERTICAL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T90 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	26.536	45.37	PK	35.5	-33.7	-9.5	37.66	54	-16.33	74	-36.33
2	33.66	48.87	PK	36.9	-37.1	-9.5	39.16	54	-14.83	74	-34.83
3	39.285	48.7	PK	38.4	-36.1	-9.5	41.5	54	-12.5	74	-32.5
4	26.513	44.57	PK	35.5	-33.4	-9.5	37.16	54	-16.83	74	-36.83
5	34.072	48.1	PK	36.9	-37.5	-9.5	38	54	-16	74	-36
6	39.277	49.13	PK	38.5	-36.8	-9.5	41.33	54	-12.66	74	-32.66

Page 19 of 21

6.3.3. HARMONIC EMISSIONS 40 TO 100 GHz

Frequency	Measurement	Peak Measured	Rx Antenna		
	Distance	Power	Gain		
(GHz)	(m)	(dBm)	(dBi)		
48.218	1.50	-35.0	43.1		
EIRP	Peak Field	Peak Field	Margin to		
	Strength	Strength Limit	Peak Limit		
(dBm)	(dBuV/m @ 3 m)	(dBuV/m @ 3 m)	(dB)		
-8.4	86.8	108.00	-21.2		

Frequency	Measurement	Average Measured	Rx Antenna	
	Distance	Power	Gain	
(GHz)	(m)	(dBm)	(dBi)	
48.218	1.50	-37.3	43.1	
EIRP	Average Field	Average Field	Margin to	
	Strength	Strength Limit	Average Limit	
(dBm)	(dBuV/m @ 3 m)	(dBuV/m @ 3 m)	(dB)	
-10.7	84.5	87.80	-3.3	

6.3.4. NON-HARMONIC SPURIOUS EMISSIONS 40 TO 100 GHz

No emissions up to 100 GHz detected.

Page 20 of 21