

FCC 47 CFR PART 15 SUBPART E

CERTIFICATION TEST REPORT

FOR

Bluetooth & 802.11 a/b/g/n/ac 3x3 VIDEO SET TOP BOX

MODEL NUMBER: IPSTB1000, IPC3100

FCC ID: 2ABTE-8G2XL5

REPORT NUMBER: 15U22443-E3V2

ISSUE DATE: 3/16/2016

Prepared for Verizon Online, LLC 1300 I STREET, NW WASHINGTON, DC 20005, USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	2/12/2016	Initial Issue	C. VERGONIO
V2	3/16/2016	Added Below 30 MHz data in Section 10.28, Updated Section 1, Section 3 and setup photo in Section 12.	C. VERGONIO

Page 2 of 600

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	7
2.	TES	ST METHODOLOGY	8
3.	FAC	CILITIES AND ACCREDITATION	8
4.	CAL	LIBRATION AND UNCERTAINTY	8
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	SAMPLE CALCULATION	8
4	!.3.	MEASUREMENT UNCERTAINTY	9
5.	EQU	JIPMENT UNDER TEST	10
5	5.1.	DESCRIPTION OF EUT	10
5	5.2.	MAXIMUM OUTPUT POWER	10
5	i.3.	DESCRIPTION OF AVAILABLE ANTENNAS	13
5	5.4.	SOFTWARE AND FIRMWARE	13
5	5.5.	WORST-CASE CONFIGURATION AND MODE	14
5	5.6.	DESCRIPTION OF TEST SETUP	15
6.	TES	ST AND MEASUREMENT EQUIPMENT	17
7.	SUN	MMARY TABLE	18
••	•••		
~			••
8.		ASUREMENT METHODS	-
9.	ANT	TENNA PORT TEST RESULTS	20
9. g	ANT 0.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	20 20
9. g	ANT 0.1. 0.2.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2	20 20 23
9. g	ANT 0.1. 0.2. 9.2. 9.2.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2	20 20 23 23 26
9. g	ANT 0.1. 0.2. 9.2.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2	20 20 23 23 26 29
9. 9	AN1 9.2. 9.2. 9.2. 9.2.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2	20 23 23 26 29 33
9. 9	AN1 9.1. 9.2. 9.2. 9.2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a LEGACY MODE IN THE 5.2 GHz BAND 1 26 dB BANDWIDTH 2 99% BANDWIDTH 3 OUTPUT POWER AND PSD 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 1 26 dB BANDWIDTH 2 99% BANDWIDTH	20 220 223 223 226 229 333 333 336
9. 9	ANT 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 2 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 3. OUTPUT POWER AND PSD 3	20 20 23 23 26 29 33 33 36 39
9 . g	AN1 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3. 9.3.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 2 99% BANDWIDTH 2 3 OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 3 OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 3 OUTPUT POWER AND PSD 3 3 OUTPUT POWER AND PSD 3 402.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 4	20 220 223 223 226 29 333 336 339 43
9 . g	AN1 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a LEGACY MODE IN THE 5.2 GHz BAND 1 26 dB BANDWIDTH 2 99% BANDWIDTH 3 OUTPUT POWER AND PSD 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 1 26 dB BANDWIDTH 2 99% BANDWIDTH 3 OUTPUT POWER AND PSD 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 3 OUTPUT POWER AND PSD 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 1 26 dB BANDWIDTH	20 20 23 23 26 29 33 36 39 43 43
9 . g	AN1 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3. 9.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a LEGACY MODE IN THE 5.2 GHz BAND. 1 26 dB BANDWIDTH. 2 99% BANDWIDTH. 3 OUTPUT POWER AND PSD. 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND. 1 26 dB BANDWIDTH. 2 99% BANDWIDTH. 3 OUTPUT POWER AND PSD. 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND. 1 26 dB BANDWIDTH. 2 99% BANDWIDTH. 3 OUTPUT POWER AND PSD. 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND. 1 26 dB BANDWIDTH. 2 99% BANDWIDTH.	20 220 223 223 226 229 333 336 339 43 43 43
9. 9 9 9	ANT 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 2 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 3	20 223 223 226 229 333 336 339 43 43 43 43 43 55 63
9. 9 9 9	ANT 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 1 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 2 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 2 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2	20 223 223 226 229 333 336 339 43 43 43 49 55 63 63 63
9. 9 9 9	ANT 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND. 2 1 26 dB BANDWIDTH. 2 2. 99% BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 2. 99% BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 2. 99% BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 <td>20 223 226 233 226 233 226 23 23 23 23 26 29 3 26 29 3 26 29 26 29 26 26 26 26 26 26 26 26 26 26 26 26 26</td>	20 223 226 233 226 233 226 23 23 23 23 26 29 3 26 29 3 26 29 26 29 26 26 26 26 26 26 26 26 26 26 26 26 26
9. 9 9 9 9 9 9 9	ANT 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND. 2 1 26 dB BANDWIDTH. 2 2. 99% BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 2. 99% BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND. 2 1. 26 dB BANDWIDTH. 2 2. 99% BANDWIDTH. 2 3. OUTPUT POWER AND PSD. 2 <td>20 223 226 233 226 233 236 29 33 336 39 43 43 45 63 63 65 67</td>	20 223 226 233 226 233 236 29 33 336 39 43 43 45 63 63 65 67
9. 9 9 9 9 9 9 9 9 9 9 9 9 9	ANT 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3.	TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 802.11a LEGACY MODE IN THE 5.2 GHz BAND 2 1. 26 dB BANDWIDTH 2 2. 99% BANDWIDTH 2 3. OUTPUT POWER AND PSD 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND 2 99% BANDWIDTH 3 0 UTPUT POWER AND PSD 3 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 4 1. 26 dB BANDWIDTH 4 3. OUTPUT POWER AND PSD 6 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND 4 1. 26 dB BANDWIDTH 4 2. 99% BANDWIDTH 4 3. OUTPUT POWER AND PSD 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 6 <	20 23 23 26 29 33 36 39 43 49 55 63 65 67 70

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

9.6.1. 26 dB BANDWIDTH 9.6.2. 99% BANDWIDTH 9.6.3. OUTPUT POWER AND PSD	74
9.7. 802.11ac VHT80 CDD 3TX MODE IN THE 5.2 GHz BAND 9.7.1. 26 dB BANDWIDTH 9.7.2. 99% BANDWIDTH 9.7.3. OUTPUT POWER AND PSD	84 84 87
9.8. 802.11a LEGACY MODE IN THE 5.3 GHz BAND 9.8.1. 26 dB BANDWIDTH 9.8.2. 99% BANDWIDTH 9.8.3. OUTPUT POWER AND PSD	95 98
 9.9. 802.11n HT20 SISO MODE IN THE 5.3 GHz BAND 9.9.1. 26 dB BANDWIDTH 9.9.2. 99% BANDWIDTH 9.9.3. OUTPUT POWER AND PSD 	105 108
9.10. 802.11n HT20 CDD 3TX MODE IN THE 5.3 GHz BAND 9.10.1. 26 dB BANDWIDTH 9.10.2. 99% BANDWIDTH 9.10.3. OUTPUT POWER AND PSD	115 121
9.11. 802.11n HT40 SISO MODE IN THE 5.3 GHz BAND 9.11.1. 26 dB BANDWIDTH 9.11.2. 99% BANDWIDTH 9.11.3. OUTPUT POWER AND PSD	134 136
9.12. 802.11n HT40 CDD 3TX MODE IN THE 5.3 GHz BAND 9.12.1. 26 dB BANDWIDTH 9.12.2. 99% BANDWIDTH 9.12.3. OUTPUT POWER AND PSD	141 145
9.13. 802.11ac VHT80 CDD 3TX MODE IN THE 5.3 GHz BAND 9.13.1. 26 dB BANDWIDTH 9.13.2. 99% BANDWIDTH 9.13.3. OUTPUT POWER AND PSD	154 157
9.14.802.11a LEGACY MODE IN THE 5.6 GHz BAND9.14.1.26 dB BANDWIDTH9.14.2.99% BANDWIDTH9.14.3.OUTPUT POWER AND PSD9.14.4.AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)	
9.15. 802.11n HT20 SISO MODE IN THE 5.6 GHz BAND 9.15.1. 26 dB BANDWIDTH 9.15.2. 99% BANDWIDTH 9.15.3. OUTPUT POWER AND PSD 9.15.4. AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)	179
9.16. 802.11n HT20 CDD 3TX MODE IN THE 5.6 GHz BAND 9.16.1. 26 dB BANDWIDTH 9.16.2. 99% BANDWIDTH 9.16.3. OUTPUT POWER AND PSD 9.16.4. AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)	
9.17. 802.11n HT40 SISO MODE IN THE 5.6 GHz BAND 9.17.1. 26 dB BANDWIDTH Page 4 of 600	224

10010.2.012	002,120	
9.17.2. 9.17.3.	99% BANDWIDTH OUTPUT POWER AND PSD	
9.17.3. 9.17.4.	AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)	
9.18. 802	2.11n HT40 CDD 3TX MODE IN THE 5.6 GHz BAND	240
9.18.1.	26 dB BANDWIDTH	
9.18.2.	99% BANDWIDTH	
9.18.3. 9.18.4.	OUTPUT POWER AND PSD AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)	
	2.11ac VHT80 CDD 3TX MODE IN THE 5.6 GHz BAND	
9.19.1.	26 dB BANDWIDTH	
9.19.2.	99% BANDWIDTH	275
9.19.3.	OUTPUT POWER AND PSD	
9.19.4.	AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)	
	2.11a LEGACY MODE IN THE 5.8 GHz BAND	
9.20.1. 9.20.2.	6 dB BANDWIDTH 99% BANDWIDTH	
9.20.3.	OUTPUT POWER	
9.20.4.	Maximum Power Spectral Density (PSD)	302
9.21. 802	2.11n HT20 SISO MODE IN THE 5.8 GHz BAND	
9.21.1.	6 dB BANDWIDTH	
9.21.2.	99% BANDWIDTH	
9.21.3. 9.21.4.	OUTPUT POWER Maximum Power Spectral Density (PSD)	
-	2.11n HT20 CDD 3TX MODE IN THE 5.8 GHz BAND	
9.22. 802	6 dB BANDWIDTH	
9.22.2.	99% BANDWIDTH	
9.22.3.	OUTPUT POWER	
9.22.4.	Maximum Power Spectral Density (PSD)	
	2.11n HT40 SISO MODE IN THE 5.8 GHz BAND	
9.23.1. 9.23.2.	6 dB BANDWIDTH 99% BANDWIDTH	
9.23.3.	OUTPUT POWER	
9.23.4.	Maximum Power Spectral Density (PSD)	345
9.24. 802	2.11n HT40 CDD 3TX MODE IN THE 5.8 GHz BAND	
9.24.1.	6 dB BANDWIDTH	
9.24.2. 9.24.3.	99% BANDWIDTH	
9.24.3. 9.24.4.	OUTPUT POWER Maximum Power Spectral Density (PSD)	
-		
	ac VHT80 CDD 3TX MODE IN THE 5.8 GHz BAND	
	9% BANDWIDTH OUTPUT POWER	
	Aaximum Power Spectral Density (PSD)	
10. RADIAT	TED TEST RESULTS	275
	ITS AND PROCEDURE	
	ABOVE 1 GHz 802.11a LEGACY MODE IN THE 5.2 GHz BAND	
10.2. TX	ADOVE I GEZ OUZ. I TA LEGACY MODE IN THE 5.2 GHZ BAND	376

REPORT NO: 15U22443-E3V2 FCC ID: 2ABTE-8G2XL5

12. SE	TUP PHOTOS
11. AC	POWER LINE CONDUCTED EMISSIONS
10.28.	WORST-CASE BELOW 30 MHz592
10.27.	WORST-CASE BELOW 1 GHz590
10.26.	WORST-CASE ABOVE 18GHz586
10.25.	TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.8 GHz BAND580
10.24.	TX ABOVE 1 GHz 802.11n HT40 CDD 3TX MODE IN THE 5.8 GHz BAND572
10.23.	TX ABOVE 1 GHz 802.11n HT40 CDD 1TX MODE IN THE 5.8 GHz BAND564
10.22.	TX ABOVE 1 GHz 802.11n HT20 CDD 3TX MODE IN THE 5.8 GHz BAND554
10.21.	TX ABOVE 1 GHz 802.11n HT20 CDD 1TX MODE IN THE 5.8 GHz BAND540
10.20.	TX ABOVE 1 GHz 802.11a LEGACY MODE IN THE 5.8 GHz BAND528
10.19.	TX ABOVE 1 GHz 802.11ac VHT80 CDD 3TX MODE IN THE 5.6 GHz BAND520
10.18.	TX ABOVE 1 GHz 802.11n HT40 CDD 3TX MODE IN THE 5.6 GHz BAND508
10.17.	TX ABOVE 1 GHz 802.11n HT40 CDD 1TX MODE IN THE 5.6 GHz BAND
10.16.	TX ABOVE 1 GHz 802.11n HT20 CDD 3TX MODE IN THE 5.6 GHz BAND
10.15.	TX ABOVE 1 GHz 802.11n HT20 CDD 1TX MODE IN THE 5.6 GHz BAND
10.14.	TX ABOVE 1 GHz 802.11a LEGACY MODE IN THE 5.6 GHz BAND
10.13.	TX ABOVE 1 GHz 802.11ac VHT80 CDD 3TX MODE IN THE 5.3 GHz BAND462
10.12.	TX ABOVE 1 GHz 802.11n HT40 CDD 3 TX MODE IN THE 5.3 GHz BAND454
10.11.	TX ABOVE 1 GHz 802.11n HT40 CDD 1TX MODE IN THE 5.3 GHz BAND
10.10.	TX ABOVE 1 GHz 802.11n HT20 CDD 3TX MODE IN THE 5.3 GHz BAND
10.9.	TX ABOVE 1 GHz 802.11n HT20 CDD 1 TX MODE IN THE 5.3 GHz BAND430
10.7.	TX ABOVE 1 GHz 802.11a LEGACY MODE IN THE 5.3 GHz BAND
10.0. 10.7.	TX ABOVE 1 GHz 802.11ac VHT80 CDD 3TX MODE IN THE 5.2 GHz BAND418
10.5. 10.6.	TX ABOVE 1 GHz 802.11n HT40 CDD 3TX MODE IN THE 5.2 GHz BAND402
10.4. 10.5.	TX ABOVE 1 GHz 802.11n HT40 CDD 1TX MODE IN THE 5.2 GHz BAND
10.3. 10.4.	TX ABOVE 1 GHz 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND
10.3.	ABTE-8G2XL5 TX ABOVE 1 GHz 802.11n HT20 CDD 1TX MODE IN THE 5.2 GHz BAND

Page 6 of 600

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	VERIZON ONLINE, LLC 1300 I STREET, NW WASHINGTON, DC 20005, USA
EUT DESCRIPTION:	Bluetooth & 802.11 a/b/g/n/ac 3x3 Video Set Top Box
MODEL:	IPSTB1000, IPC3100
SERIAL NUMBER:	MCNZ5Dg60018, MCNZ5Dd20040, MCNZ5Dd20056
DATE TESTED:	December 25, 2015 – March 16, 2016
	APPLICABLE STANDARDS

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart E	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

CHARLES VERGONIO CONSUMER TECHNOLOGY DICISION WISE ENGINEER UL VERIFICATION SERVICES INC.

JONATHAN HSU CONSUMER TECHNOLOGY DICISION WISE LAB ENGINEER UL VERIFICATION SERVICES INC.

Page 7 of 600

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street		
🛛 Chamber A	Chamber D		
Chamber B	Chamber E		
🖂 Chamber C	Chamber F		
	Chamber G		
	Chamber H		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) +

Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 8 of 600

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 9KHz to 30 MHz	2.14 dB
Radiated Disturbance, 30 to 1000 MHz	4.98 dB
Radiated Disturbance,1000 to 6000 MHz	3.86 dB
Radiated Disturbance,6000 to 18000 MHz	4.23 dB
Radiated Disturbance, 18000 to 26000 MHz	5.30 dB
Radiated Disturbance,26000 to 40000 MHz	5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 9 of 600

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth and 802.11 a/b/g/n/ac 3x3 Video Set Top Box.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

5.2 GHz BAND

Frequency Range (MHz)	Mode	Power, Chain 0 (dBm)	Power, Chain 1 (dBm)	Power, Chain 2 (dBm)	Output Power (dBm)	Output Power (mW)	
5.2 GHz band, 1TX							
5180 - 5240	802.11a	N/A	17.08	N/A	17.08	51.05	
5180 - 5240	802.11n HT20	N/A	16.97	N/A	16.97	49.77	
5190 - 5230	802.11n HT40	17.97	N/A	N/A	17.97	62.66	
5.2 GHz band, 3TX	5.2 GHz band, 3TX						
5180 - 5240	802.11n HT20 CDD	15.17	14.70	14.80	19.67	92.597	
5190 - 5230	802.11n HT40 CDD	13.21	12.67	12.60	17.61	57.631	
5210	802.11ac VHT80 CDD	9.96	9.20	9.00	14.18	26.169	

5.3 GHz BAND

Frequency Range (MHz)	Mode	Power, Chain 0 (dBm)	Power, Chain 1 (dBm)	Power, Chain 2 (dBm)	Output Power (dBm)	Output Power (mW)	
5.3 GHz band, 1TX							
5260 - 5320	802.11a	N/A	17.30	N/A	17.30	53.70	
5260 - 5320	802.11n HT20	N/A	17.37	N/A	17.37	54.58	
5270 - 5310	802.11n HT40	18.00	N/A	N/A	18.00	63.10	
5.3 GHz band, 3TX	5.3 GHz band, 3TX						
5260 - 5320	802.11n HT20 CDD	14.53	14.21	14.00	19.02	79.86	
5270 - 5310	802.11n HT40 CDD	13.45	13.02	12.81	17.87	61.27	
5290	802.11ac VHT80 CDD	11.74	11.07	11.01	16.06	40.34	

5.6 GHz BAND

Frequency Range (MHz)	Mode	Power, Chain 0 (dBm)	Power, Chain 1 (dBm)	Power, Chain 2 (dBm)	Output Power (dBm)	Output Power (mW)	
5.6 GHz band, 1TX							
5500-5700	802.11a	N/A	17.87	N/A	17.87	61.24	
5500-5700	802.11n HT20	N/A	17.97	N/A	17.97	62.66	
5510-5670	802.11n HT40	N/A	17.97	N/A	17.97	62.66	
5.6 GHz band, 3TX	5.6 GHz band, 3TX						
5500-5700	802.11n HT20 CDD	16.12	16.08	15.63	20.72	118.04	
5510-5670	802.11n HT40 CDD	18.89	18.44	17.92	23.21	209.21	
5530	802.11ac VHT80 CDD	18.65	18.05	17.70	22.92	195.99	

5.8 GHz BAND

Frequency Range (MHz)	Mode	Power, Chain 0 (dBm)	Power, Chain 1 (dBm)	Power, Chain 2 (dBm)	Output Power (dBm)	Output Power (mW)
5.8 GHz band, 1TX						
5745-5825	802.11a	N/A	18.97	N/A	18.97	78.89
5755-5795	802.11n HT20	N/A	18.01	N/A	18.01	63.24
5775	802.11n HT40	N/A	18.23	N/A	18.23	66.53
5.8 GHz band, 3TX						
5745-5825	802.11n HT20 CDD	17.46	16.81	17.54	22.05	160.45
5755-5795	802.11n HT40 CDD	17.90	17.31	18.00	22.52	178.58
5775	802.11ac VHT80 CDD	11.81	11.00	11.86	16.35	43.11

STRADDLE CHANNELS

Frequency Range (MHz)	Mode	Power, Chain 0 (dBm)	Power, Chain 1 (dBm)	Power, Chain 2 (dBm)	Output Power (dBm)	Output Power (mW)			
5.6 GHz band, 1TX (Channels overlapping UNII-2C and UNII-3)									
5720 (Whole signal)	802.11a	N/A	17.91	N/A	17.91	61.80			
5720 (Whole signal)	802.11n HT20	N/A	17.89	N/A	17.89	61.52			
5710 (Whole signal)	802.11n HT40	N/A	18.42	N/A	18.42	69.50			
5.6 GHz band, 3TX (Cha	5.6 GHz band, 3TX (Channels overlapping UNII-2C and UNII-3)								
5720 (Whole signal)	802.11n HT20 CDD	15.81	15.89	15.21	20.42	110.11			
5710 (Whole signal)	802.11n HT40 CDD	18.71	18.78	18.91	23.57	227.61			
5690 (Whole signal)	802.11ac VHT80 CDD	18.33	18.12	18.04	22.94	196.62			

List of test reduction and modes covering other modes:

Antenna Port Testing						
Band	Mode	Covered by				
5 GHz bands	802.11n HT20 1TX	802.11n HT20 CDD 3TX				
5 GHz bands	802.11n HT20 CDD/SDWSTBC 2TX	802.11n HT20 CDD 3TX				
5 GHz bands	802.11n HT20 STBC 3TX	802.11n HT20 CDD 3TX				
5 GHz bands	802.11n HT40 1TX	802.11n HT40 CDD 3TX				
5 GHz bands	802.11n HT40 CDD/SDWSTBC 2TX	802.11n HT40 CDD 3TX				
5 GHz bands	802.11n HT40 STBC 3TX	802.11n HT40 CDD 3TX				
5 GHz bands	802.11ac VHT80 STBC 3TX	802.11ac VHT80 CDD 3TX				

	Radiated Testing						
Band	Mode	Covered by					
5 GHz bands	802.11n HT20 CDD/SDWSTBC 2TX	802.11n HT20 CDD 3TX					
5 GHz bands	802.11n HT20 STBC 3TX	802.11n HT20 CDD 3TX					
5 GHz bands	802.11n HT40 CDD/SDWSTBC 2TX	802.11n HT40 CDD 3TX					
5 GHz bands	802.11n HT40 STBC 3TX	802.11n HT40 CDD 3TX					
5 GHz bands	802.11ac VHT80 CDD/SDWSTBC 2TX	802.11ac VHT80 CDD 3TX					
5 GHz bands	802.11ac VHT80 STBC 3TX	802.11ac VHT80 CDD 3TX					

Page 12 of 600

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes the following antenna:

No.	Antenna Type	Peak gain@ 5150-5250MHz	Peak gain@ 5250-5350MHz	Peak gain@ 5470-5725MHz	Peak gain@ 5725 - 5850MHz
1	Chip Antenna	4.45	4.77	3.77	4.56
2	Chip Antenna	3.96	3.92	3.46	3.27
3	Chip Antenna	2.9	3.23	1.88	2.89

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Broadcom, rev. 7.14.124.54 (R585938 BCMINT).

The EUT driver software installed during testing was Broadcom, rev. 7.14RC124.54.

The test utility software used during testing was Broadcom MTool, rev. 2.0.2.6.

Page 13 of 600

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The EUT can only be setup in desktop orientation; therefore, all radiated testing was performed with the EUT in desktop orientation.

Radiated emission below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

For 5GHz, band edge preliminary investigation showed that antenna port J0, horizontal polarization was worst case.

Worst-case chains as provided by the client were:

For SISO modes:

- 5.2 GHz, 5.3 GHz band: chain 1 (connector J1) was tested for 11a, and 11n H20 modes; chain 0 (connector J0) was tested for 11n HT40 mode
- 5.6 GHz, 5.8 GHz: chain 1 (connector J1) was tested for 11a, 11n HT20, and 11n HT40 modes.

Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11AC VHT80 mode: MCS0

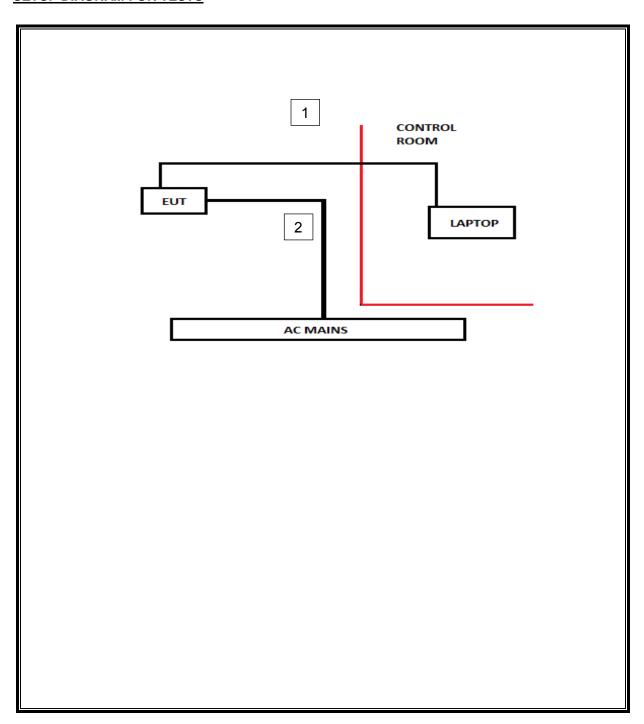
Radiated emissions for EUT with antenna was performed and passed; therefore, antenna port spurious was not performed.

Page 14 of 600

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description	Manufacturer	Model	Serial Number	FCC ID			
AC Adapter	Delta	IPSTB1000-PS	HSPD5A6001R	N/A			
Laptop	HP	Elite Book 8440P	CND0451B4G	N/A			
Laptop AC Adapter	HP	РРР016Н	F1-09090462500A	N/A			
Laptop	НР	Elite Book 2560P	CNU2092200	N/A			
Laptop AC Adapter	HP	PPP0017H	F3-07100545060C	N/A			


I/O CABLES

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	RJ45	1	RJ45	Unshielded	1.2	N/A		
2	AC	1	2-Prong	Unshielded	1.5	N/A		

TEST SETUP

The EUT was tested stand alone and the communication was established via RJ45 cable between EUT and support laptop. Test software exercised the radio.

Page 15 of 600

Page 16 of 600

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	T Number	Cal Due			
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	477	06/10/16			
Antenna, Horn, 18GHz	ETS Lindgren	3117	136	03/03/16			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	447	05/12/16			
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	88	04/07/16			
RF Preamplifier, 1GHz - 26.5GHz	НР	8449B	404	06/29/16			
Spectrum Analyzer, PXA, 3 Hz to 44 GHz	Keysight	N9030A	PRE0126762	12/08/16			
Spectrum Analyzer, PXA, 3 Hz to 44 GHz	Keysight	E4446A	99	06/10/16			
EMI Test Receiver, 9 KHz to 7 GHz	Rohde & Schwarz	ECSI7	284	09/10/16			
Peak Power Meter	Agilent / HP	N1911A	229	07/30/16			
Peak / Average Power Sensor	Keysight	N1921A	1225	07/06/16			
LISN for Conducted Emission	Ficher	FCC-LISN-50/250-	1310	9/16/2016			
Reject Filter, 2.4GHz	Micro-Tronics	BRM50702	160	CNR			
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	417	05/04/16			
High Pass Filter 6GHz	Micro-Tronics	HPS17542	893	04/25/16			
High Pass Filter 3GHz	Micro-Tronics	HPS17543	898	04/25/16			

Test Software List						
Description	Manufacturer	Model	Version			
Radiated Software	UL	UL EMC	Ver 9.5, June 24, 2015			
Conducted Software	UL	UL EMC	Ver 9.5, May 26, 2015			
Antenna Port Software	UL	UL RF	Ver 3.9.1, Dec 28, 2015			

Page 17 of 600

7. SUMMARY TABLE

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
15.407 (a)	Occupied Band width (26dB)	N/A		Pass
15.407	6dB Band width (5.8Ghz)	500KHz		Pass
15.407 (a)(1)	TX Cond. Power, 5.15-5.25	<24dBm		Pass
15.407 (a)(2)	TX Cond. Power, 5.25-5.35 & 5.47-5.725	<24dBm	Conducted	Pass
15.407 (a)(3)	TX Cond. Power 5.725-5.825	< 30dBm		Pass
15.407 (a)(1)	PSD (5.1GHz)	<11dBm		Pass
15.407 (a)(5)	PSD (5.3,5.5GHz)	<11dBm		Pass
15.407 (a)(5)	PSD (5.8GHz)	30dBm per 500kHz		Pass
15.207 (a)	AC Power Line conducted emissions	Section 10	Radiated	Pass
15.407 (b) & 15.209	Radiated Spurious Emission	< 54dBuV/m	raulated	Pass

Page 18 of 600

8. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 789033 D02 v01, Section B.

6 dB Emission BW: KDB 789033 D02 v01r01, Section C.

26 dB Emission BW: KDB 789033 D02 v01r01, Section C.

<u>99% Occupied BW</u>: KDB 789033 D02 v01r01, Section D.

Conducted Output Power: KDB 789033 D02 v01r01, Section E.3.b (Method PM-G), and KDB 662911 D01 v02r01.

Power Spectral Density: KDB 789033 D02 v01r01, Section F, and KDB 662911 D01 v02r01.

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v01r01, Sections G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v01r01, Sections G.3, G.4, and G.5.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

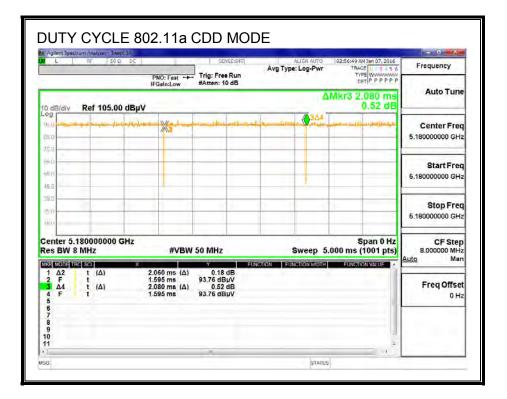
Page 19 of 600

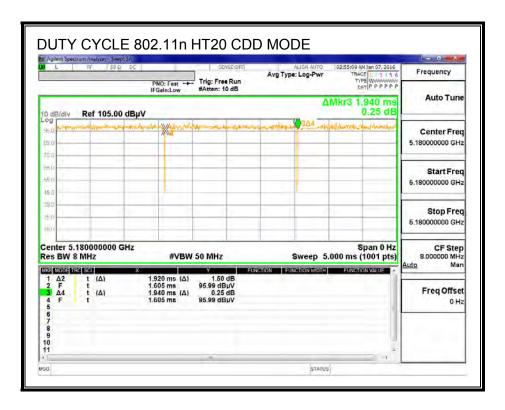
9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

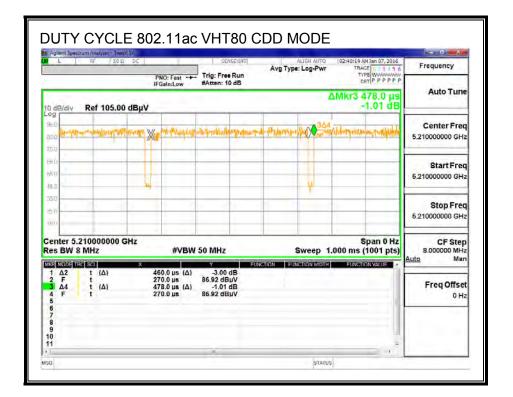
None; for reporting purposes only.


PROCEDURE


KDB 789033 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a CDD	2.060	2.080	0.990	99.04%	0.00	0.010
802.11n HT20 CDD	1.920	1.940	0.990	98.97%	0.00	0.010
802.11n HT40 CDD	0.944	0.962	0.981	98.13%	0.00	0.010
802.11ac VHT80 CDD	0.460	0.478	0.962	96.23%	0.17	2.174


Page 20 of 600

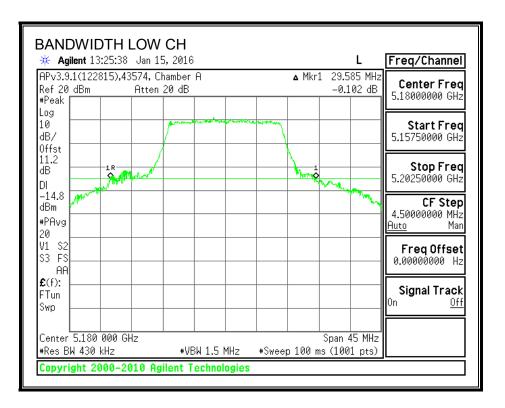
Page 21 of 600

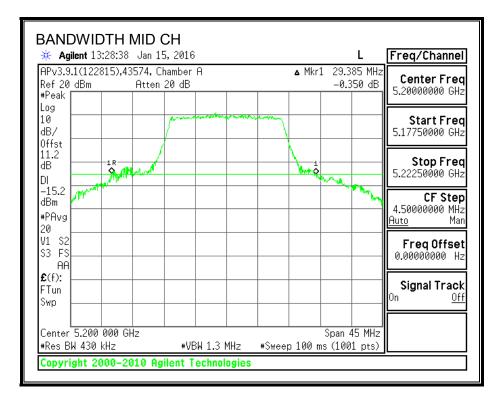
1	RF 50	PM	IO: Fast 🔸	SENSE:UNT	ALICH AUTO Avg Type: Log-Pwr	02:52:29 AM Jan 07, 2016 TRACE 1 1 5 6 TYPE WWWWWWWW DET P P P P P P	Frequency
			iain:Low	#Atten: 10 dB	۵	Mkr3 962.0 µs -0.43 dB	Auto Tune
o dB/div og	Ref 105.0			La Sectiones	304	-0.45 UB	1973 - 1974
95.0 85:0	****	X	acominister of	ilen die	and all the set of the set of the second	and a second	Center Free 5.19000000 GHz
75.0 Hali	-						StartFree
45.0 (5.0		0			N.C.		5.190000000 GH;
360 2011							Stop Fred 5.19000000 GHz
		GHz	#VBW	50 MHz	Sweep 2.0	Span 0 Hz 00 ms (1001 pts)	CF Step 8.000000 MHz Auto Man
1 Δ2 1 2 F 3 Δ4 4 F 5 6	t (Δ) t t (Δ) t	94 50 96	4.0 μs (Δ) 0.0 μs 2.0 μs (Δ) 0.0 μs	0.00 dB 91.18 dBµV -0.43 dB 91.18 dBµV	NK, DON FUNCTION WITH	FUNCTION VIEW	Freq Offset 0 Ha
7 8 9 10							

Page 22 of 600

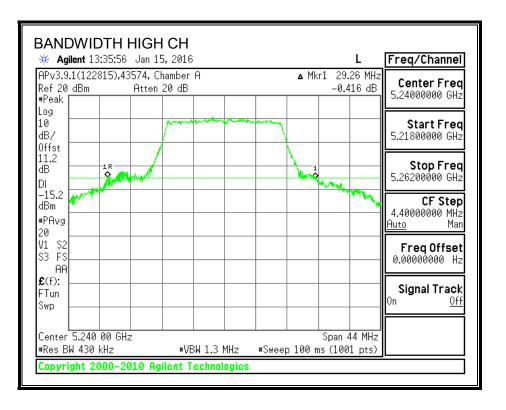
9.2. 802.11a LEGACY MODE IN THE 5.2 GHz BAND

9.2.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

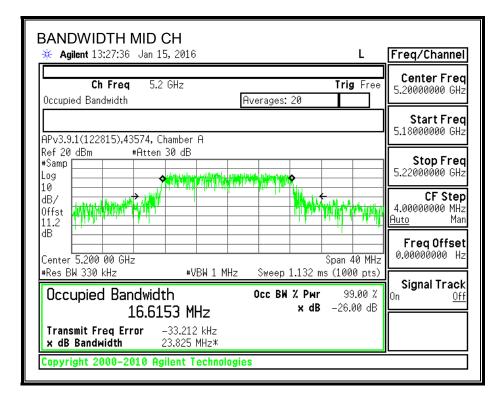

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	29.585
Mid	5200	29.385
High	5240	29.260

Page 23 of 600

Page 24 of 600

Page 25 of 600

9.2.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	16.5913
Mid	5200	16.6153
High	5240	16.5954

Ch Freq 5.18 GHz Trig Free Occupied Bandwidth Averages: 20 Start Freq APv3.9.1(122815),43574, Chamber A Start Freq Ref 20 dBm *Atten 30 dB Stop Freq *Samp Stop Freq 5.16000000 GHz Log CF Step 4.0000000 GHz 11.2 Center 5.180 00 GHz Span 40 MHz *Res BW 330 kHz *VBW 1 MHz Sweep 1.132 ms (1000 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 16.5913 MHz x dB -26.00 dB	BANDWIDTH LOW CH	Freq/Channel
APv3.9.1(122815),43574, Chamber A 5.1600000 GHz Ref 20 dBm *Atten 30 dB *Samp Stop Freq Log 5.2000000 GHz 10 CF Step 4B/ 0 0ffst 0 11.2 0 dB 0 0 center 5.180 00 GHz Span 40 MHz *Res BW 330 kHz *VBW 1 MHz Sweep 1.132 ms (1000 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 16.5913 MHz x dB -26.00 dB		
*Samp Stop Freq Log Stop Freq 10 Image: Stop Freq 0dB/ Image: Stop Freq 0ffst Image: Stop Freq 11.2 Image: Stop Freq dB Image: Stop Freq Center 5.180 00 GHz Span 40 MHz *Res BW 330 kHz *VBW 1 MHz Sweep 1.132 ms (1000 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 16.5913 MHz × dB -26.00 dB		
Offst Operation Operation Operation 4.00000000 MHz 11.2 dB dB <td>*Samp Log 10</td> <td>5.20000000 GHz</td>	*Samp Log 10	5.20000000 GHz
Center 5.180 00 GHz Span 40 MHz 0.00000000 Hz *Res BW 330 kHz *VBW 1 MHz Sweep 1.132 ms (1000 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % Signal Track 16.5913 MHz × dB -26.00 dB Image: Complex of the second	Offst WWWWWWWWWWWWWW	4.00000000 MHz <u>Auto</u> Man
Uccupied Bandwidth Occ BW % Pwr 99.00 % On Off 16.5913 MHz × dB -26.00 dB		0.00000000 Hz
x dB Bandwidth 22.885 MHz*		

Page 27 of 600

BANDWIDTH HIGH CH				
₩ Agilent 13:34:00 Jan 15, 2016 L	Freq/Channel			
Ch Freq 5.24 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.24000000 GHz			
APv3.9.1(122815),43574, Chamber A	Start Freq 5.22000000 GHz			
Ref 20 dBm #Atten 30 dB #Samp	Stop Freq 5.26000000 GHz			
dB/ Offst 11.2	CF Step 4.00000000 MHz <u>Auto</u> Man			
dB Image: Center 5.240 00 GHz Span 40 MHz #Res BW 330 kHz #VBW 1 MHz Sweep 1.132 ms (1000 pts)	FreqOffset 0.00000000 Hz			
#Res BW 330 kHz #VBW 1 MHz Sweep 1.132 ms (1000 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % On Off 16.5954 MHz × dB -26.00 dB Image: Comparison of the second				
Transmit Freq Error-50.285 kHzx dB Bandwidth21.347 MHz*				
Copyright 2000–2010 Agilent Technologies				

Page 28 of 600

9.2.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

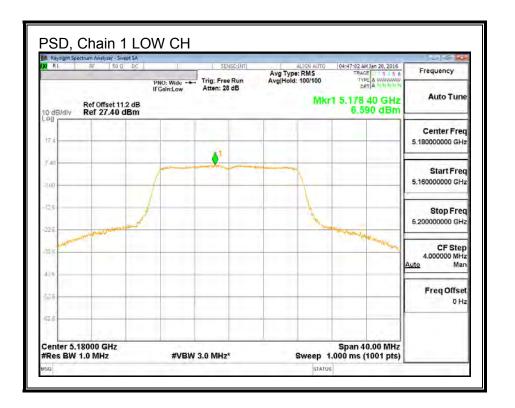
Page 29 of 600

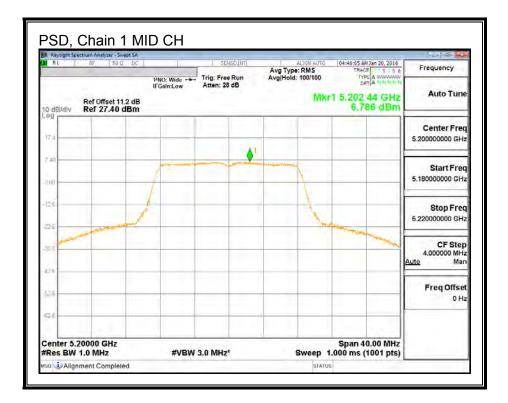
Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	3.96	3.96	24.00	11.00
Mid	5200	3.96	3.96	24.00	11.00
High	5240	3.96	3.96	24.00	11.00

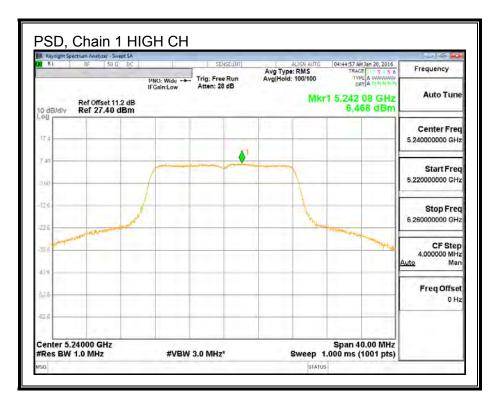
Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

Output Power Results


Channel	Frequency	Chain 1	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	17.00	17.00	24.00	-7.00
Mid	5200	16.90	16.90	24.00	-7.10
High	5240	17.08	17.08	24.00	-6.92


PSD Results

Channel	Frequency	Chain 1	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	6.590	6.590	11.00	-4.41
Mid	5200	6.786	6.786	11.00	-4.21
High	5240	6.468	6.468	11.00	-4.53


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

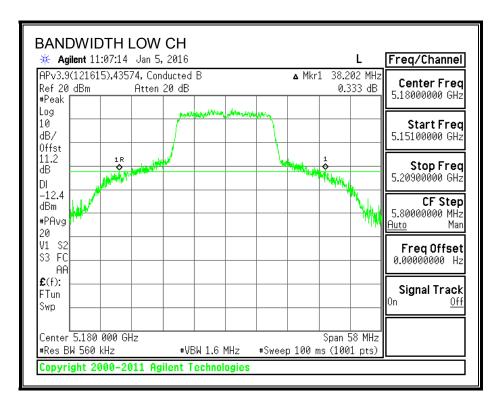
Page 30 of 600

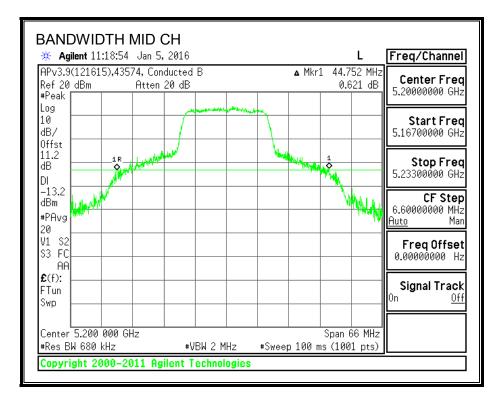
Page 31 of 600

Page 32 of 600

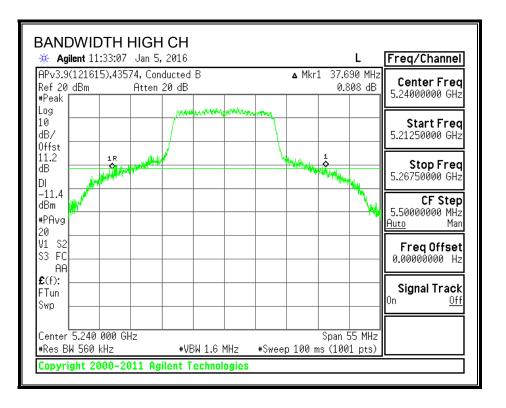
9.3. 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND

9.3.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS


Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	38.202
Mid	5200	44.752
High	5240	37.690

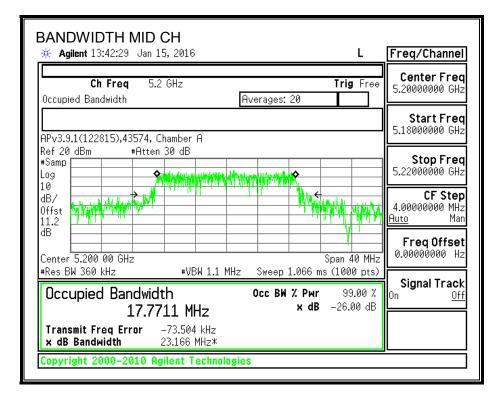
Page 33 of 600

Page 34 of 600

Page 35 of 600

9.3.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.7780
Mid	5200	17.7711
High	5240	17.7659

Page 36 of 600

BANDWIDTH LOW C Agilent 13:38:47 Jan 15, 2			L	Freq/Channel
Ch Freq 5.18 GF Occupied Bandwidth	_	lverages: 20	Trig Free	Center Freq 5.18000000 GHz
APv3.9.1(122815),43574, Cham				Start Freq 5.16000000 GHz
Ref 20 dBm #Atten 30 #Samp Log 10	dB			Stop Freq 5.20000000 GHz
dB/ Offst			WY HULPHA	CF Step 4.00000000 MHz <u>Auto</u> Man
dB			ipan 40 MHz	Freq Offset 0.00000000 Hz
*Res BW 360 kHz Occupied Bandwidth		Sweep 1.066 ms Occ BW % Pwr × dB		Signal Track ^{On <u>Off</u>}
	0 MHZ 7.067 kHz 915 MHz≭		20100 48	
Copyright 2000-2010 Agile	nt Technologie	S		

Page 37 of 600

BANDWIDTH HIGH CH	Freq/Channel
Ch Freq 5.24 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.24000000 GHz
APv3.9.1(122815),43574, Chamber A	Start Freq 5.22000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10	Stop Freq 5.26000000 GHz
dB/ Offst 11.2	CF Step 4.00000000 MHz <u>Auto</u> Man
dB Image: Center 5.240 00 GHz Span 40 MHz #Res BW 360 kHz #VBW 1.1 MHz Sweep 1.066 ms (1000 pts)	FreqOffset 0.00000000 Hz
	Signal Track ^{On <u>Off</u>}
Transmit Freq Error-48.756 kHzx dB Bandwidth22.573 MHz*	
Copyright 2000–2010 Agilent Technologies	

9.3.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

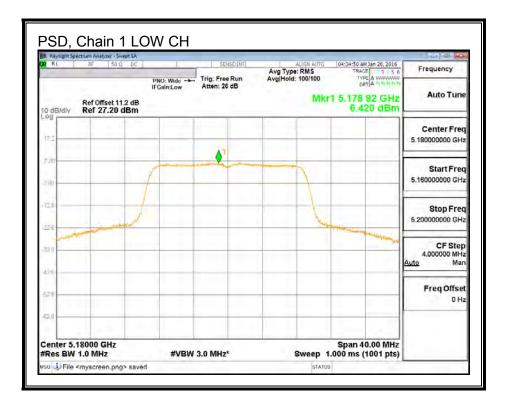
Page 39 of 600

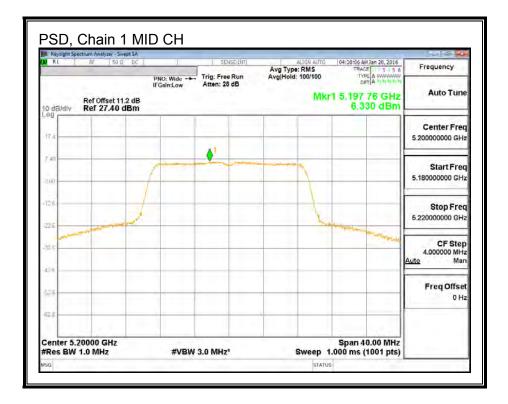
Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	3.96	3.96	24.00	11.00
Mid	5200	3.96	3.96	24.00	11.00
High	5240	3.96	3.96	24.00	11.00

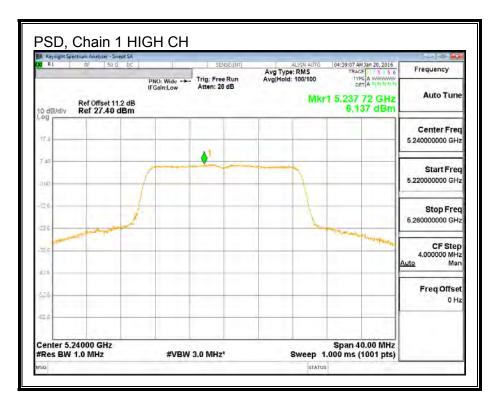
Duty Cycle CF (dB)0.00Included in Calculations of Corr'd PSD

Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	16.97	16.97	24.00	-7.03
Mid	5200	16.93	16.93	24.00	-7.07
High	5240	16.89	16.89	24.00	-7.11


PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	6.420	6.420	11.00	-4.58
Mid	5200	6.330	6.330	11.00	-4.67
High	5240	6.137	6.137	11.00	-4.86


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 40 of 600

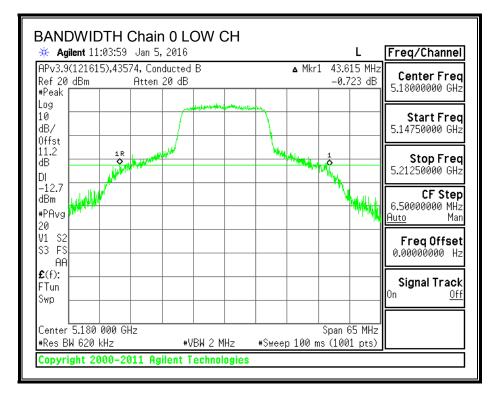
Page 41 of 600

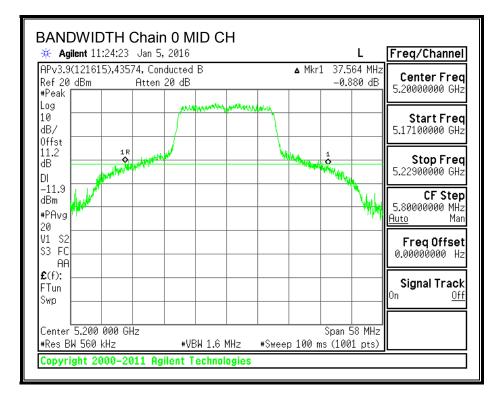
Page 42 of 600

9.4. 802.11n HT20 CDD 3TX MODE IN THE 5.2 GHz BAND

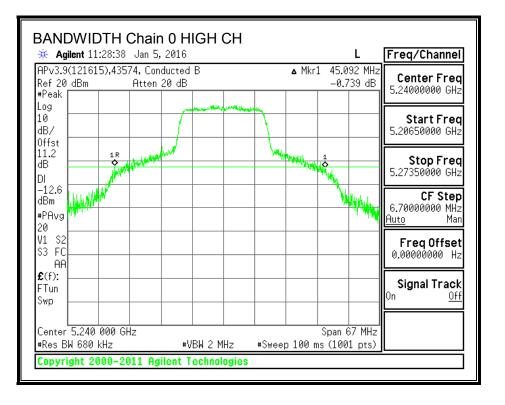
9.4.1. 26 dB BANDWIDTH

LIMITS

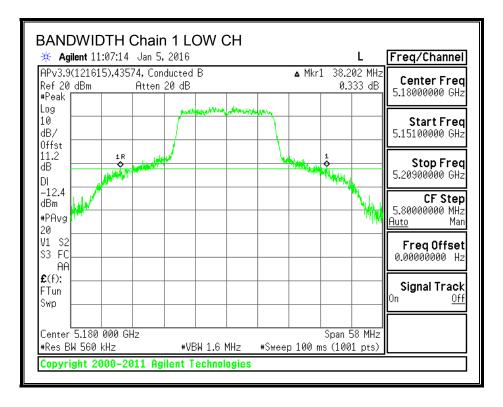

None; for reporting purposes only.

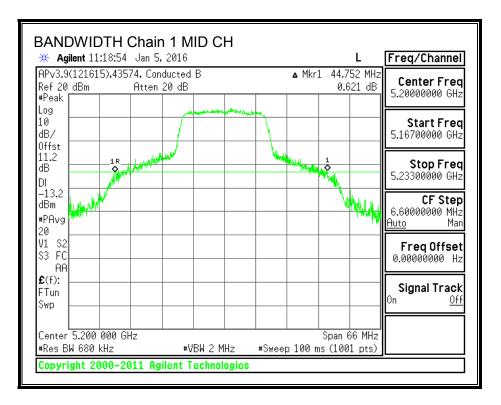

RESULTS

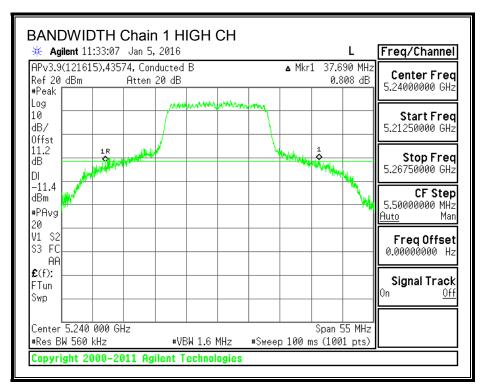
Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5180	43.615	38.202	33.050
Mid	5200	37.564	44.752	36.750
High	5240	45.092	37.690	35.460


Page 43 of 600

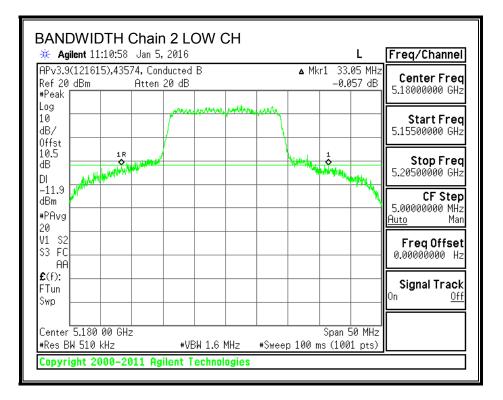
26 dB BANDWIDTH, Chain 0

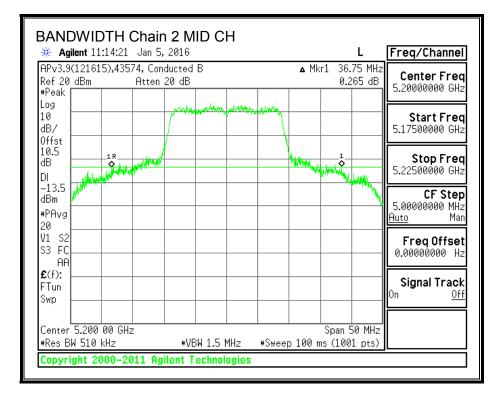


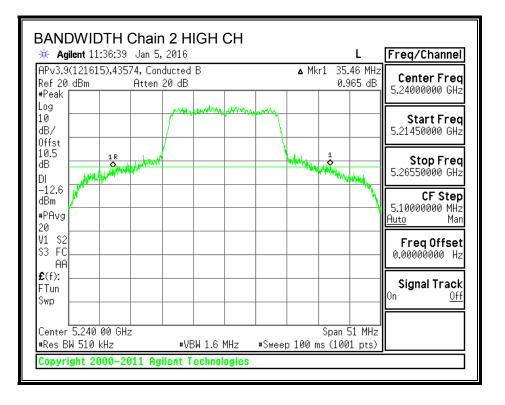

Page 44 of 600



26 dB BANDWIDTH, Chain 1




Page 45 of 600

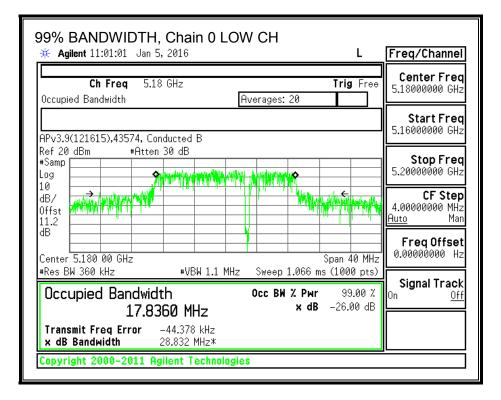


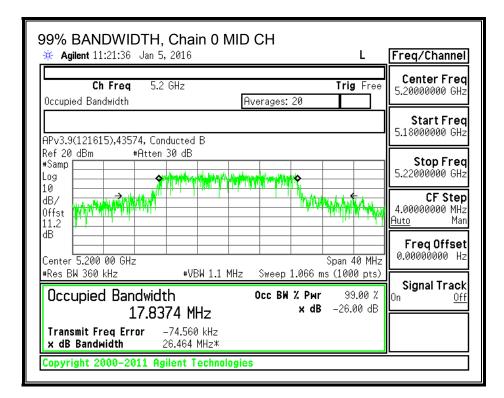
Page 46 of 600

Page 47 of 600

Page 48 of 600

9.4.2. 99% BANDWIDTH

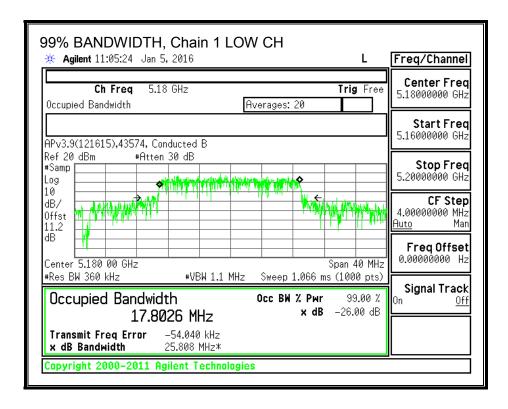

<u>LIMITS</u>

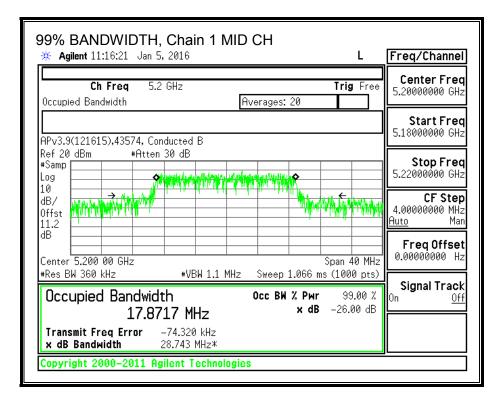

None; for reporting purposes only.

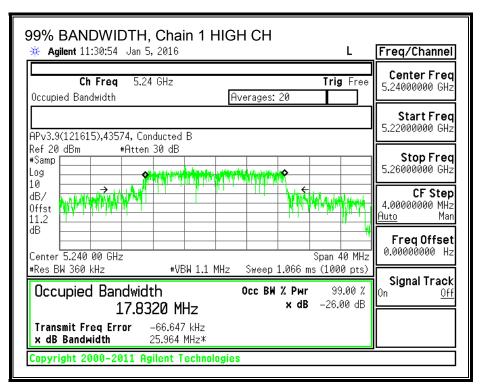
<u>RESULTS</u>

Channel	Frequency	99% BW	99% BW	99% BW	
		Chain 0	Chain 1	Chain 2	
	(MHz)	(MHz)	(MHz)	(MHz)	
Low	5180	17.8360	17.8026	17.7214	
Mid	5200	17.8374	17.8717	17.7634	
High	5240	17.8720	17.8320	17.7147	

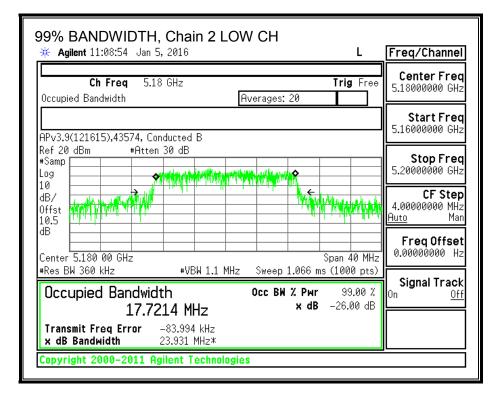
Page 49 of 600

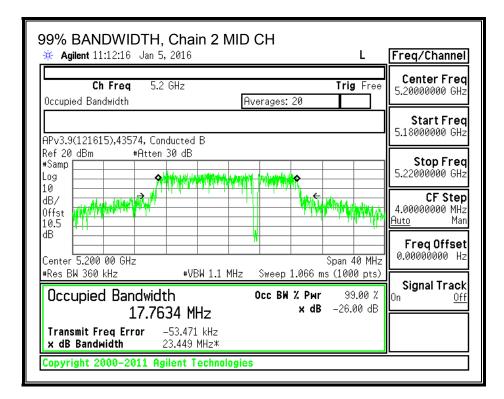



Page 50 of 600


99% BANDWIDTH, Chain 0 HIGH CH	
Agilent 11:26:55 Jan 5, 2016 L	Freq/Channel
Ch Freq 5.24 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.24000000 GHz
	Start Freq 5.22000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10	Stop Freq 5.26000000 GHz
dB/ Offst	CF Step 4.00000000 MHz <u>Auto</u> Man
dB	FreqOffset 0.00000000 Hz
#Res BW 360 kHz #VBW 1.1 MHz Sweep 1.066 ms (1000 pts) Occupied Bandwidth Occ BW % Рыг 99.00 % 17.8720 MHz × dB -26.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error -107.803 kHz x dB Bandwidth 30.559 MHz*	
Copyright 2000–2011 Agilent Technologies	

99% BANDWIDTH, Chain 1




Page 51 of 600

Page 52 of 600

Page 53 of 600

99% BANDWIDTH, Chain 2 HIGH CH	Freq/Channel
Ch Freq 5.24 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.24000000 GHz
APv3.9(121615),43574, Conducted B	Start Freq 5.22000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10	Stop Freq 5.26000000 GHz
dB/ Offst 10.5	CF Step 4.00000000 MHz <u>Auto</u> Man
dB Span 40 MHz Center 5.240 00 GHz Span 40 MHz #Res BW 360 kHz #VBW 1.1 MHz Sweep 1.066 ms (1000 pts)	FreqOffset 0.00000000 Hz
	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -106.082 kHz x dB Bandwidth 22.775 MHz*	
Copyright 2000–2011 Agilent Technologies	

Page 54 of 600

9.4.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For power, the TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.45	3.96	2.90	3.82

For PSD, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.45	3.96	2.90	8.57

Page 56 of 600

Antenna Gain and Limits

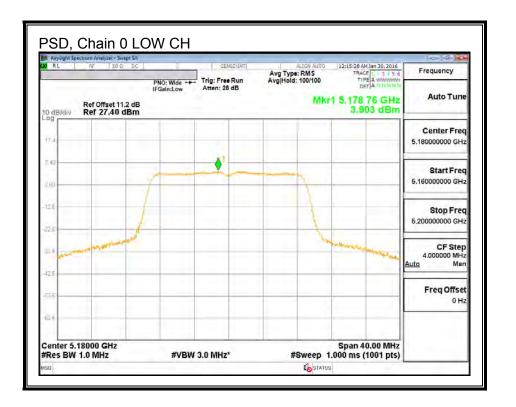
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	3.82	8.57	24.00	8.43
Mid	5200	3.82	8.57	24.00	8.43
High	5240	3.82	8.57	24.00	8.43

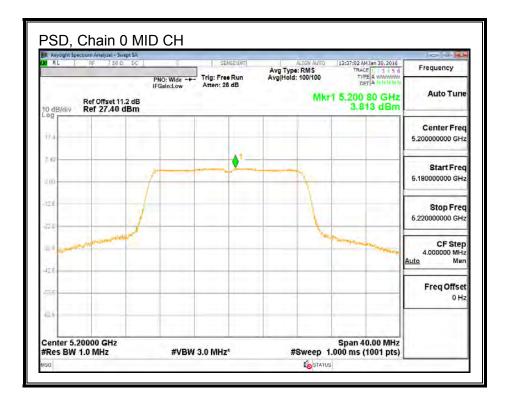
0.00

Duty Cycle CF (dB)

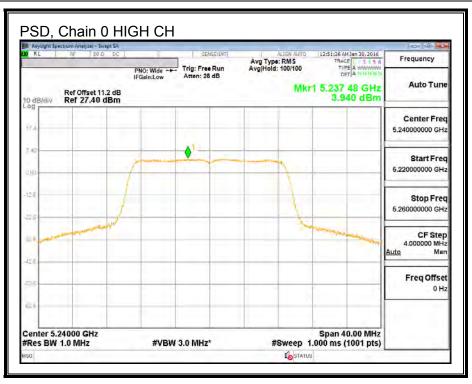
Included in Calculations of Corr'd PSD

Output Power Results

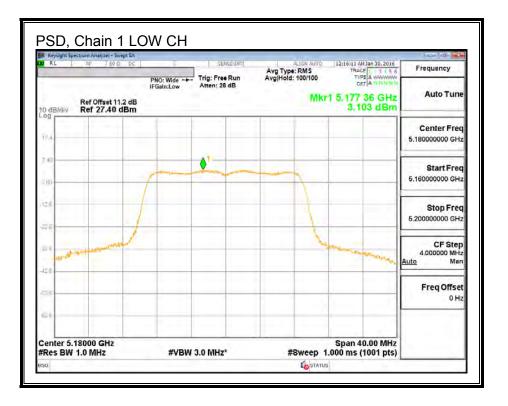

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	15.20	14.54	14.74	19.61	24.00	-4.39
Mid	5200	15.20	14.58	14.50	19.54	24.00	-4.46
High	5240	15.17	14.70	14.80	19.67	24.00	-4.33

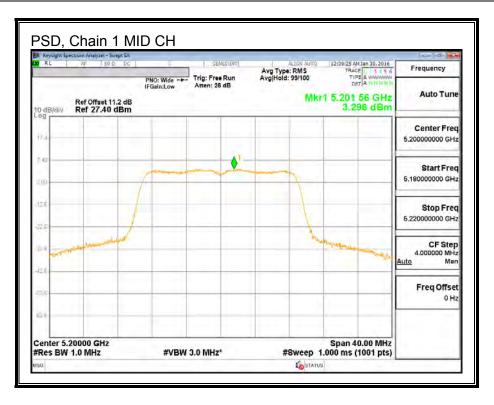

PSD Results

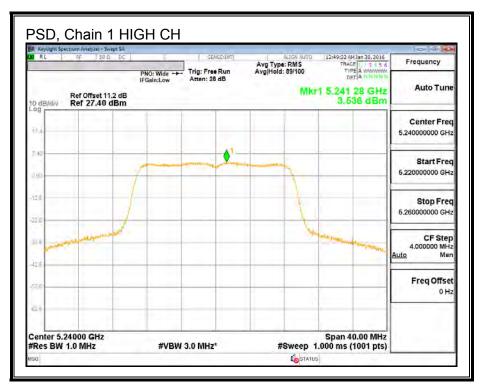
Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	3.903	3.103	3.009	8.128	8.43	-0.30
Mid	5200	3.813	3.296	3.322	8.255	8.43	-0.18
High	5240	3.940	3.536	3.396	8.401	8.43	-0.03


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

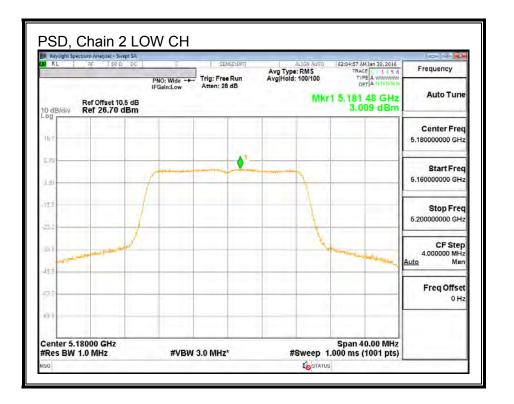
Page 57 of 600

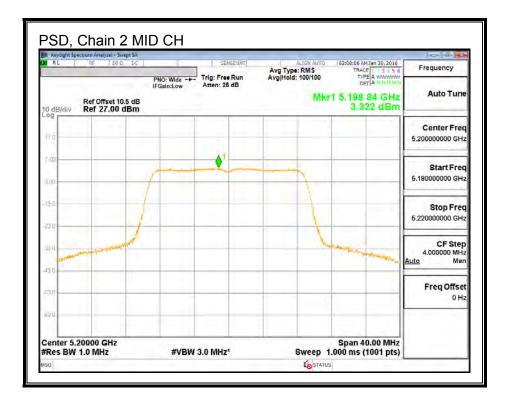


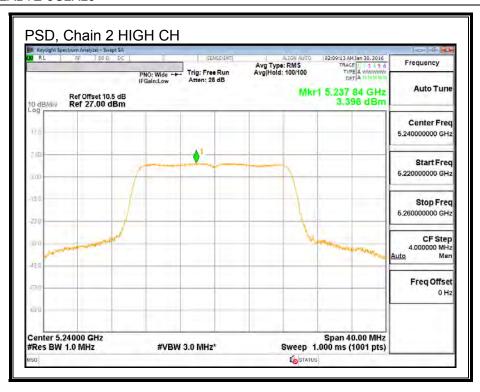

Page 58 of 600



PSD, Chain 1




Page 59 of 600



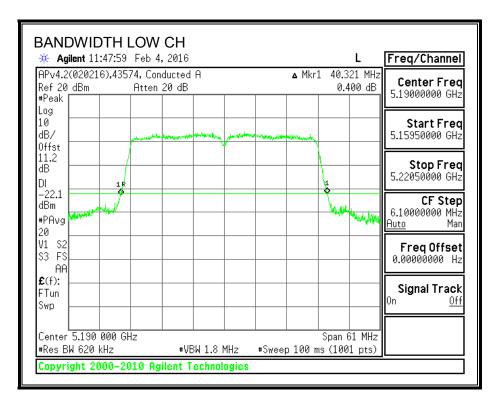
Page 60 of 600

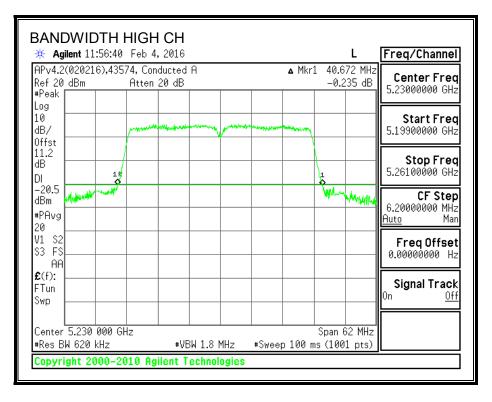
Page 61 of 600

Page 62 of 600

9.5. 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND

9.5.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

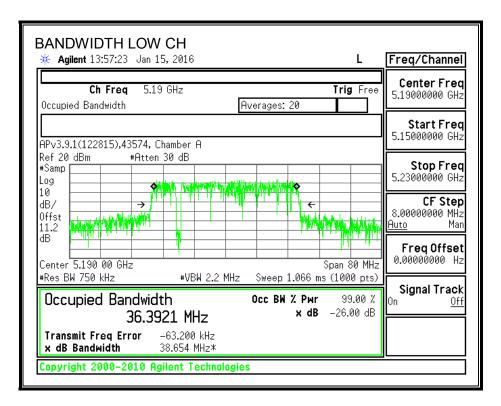
RESULTS

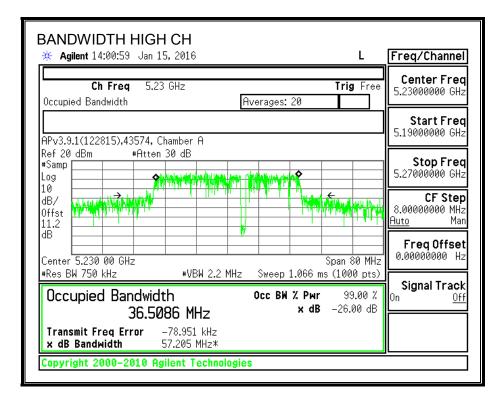
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	40.321
High	5230	40.672

Page 63 of 600

Page 64 of 600

9.5.2. 99% BANDWIDTH


<u>LIMITS</u>


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5190	36.3921
High	5230	36.5086

Page 65 of 600

Page 66 of 600

9.5.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Page 67 of 600

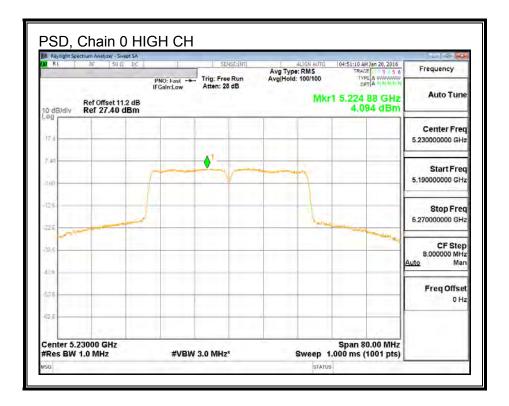
Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	4.45	4.45	24.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	13.48	13.48	24.00	-10.52
-					


PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
	· · ·	• •	· · ·		
Low	5190	-0.150	-0.150	11.00	-11.15

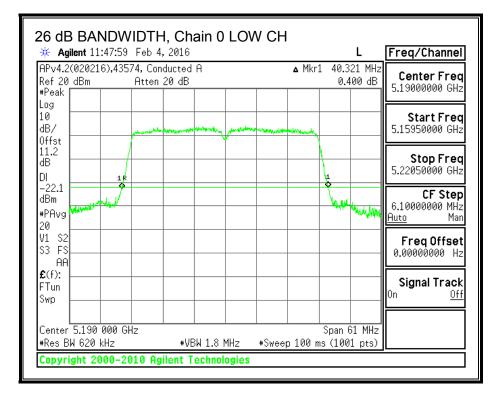
<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

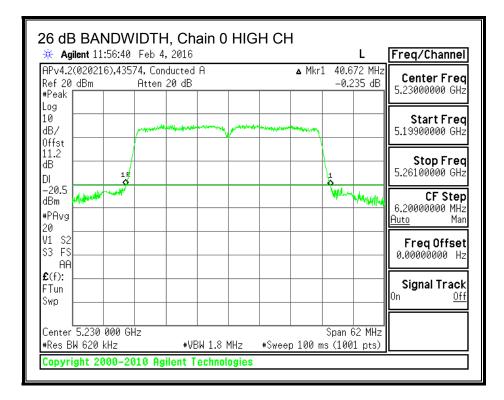
Page 68 of 600

Page 69 of 600

9.6. 802.11n HT40 CDD 3TX MODE IN THE 5.2 GHz BAND

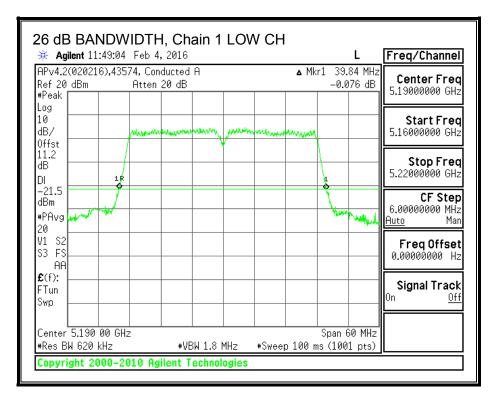
9.6.1. 26 dB BANDWIDTH

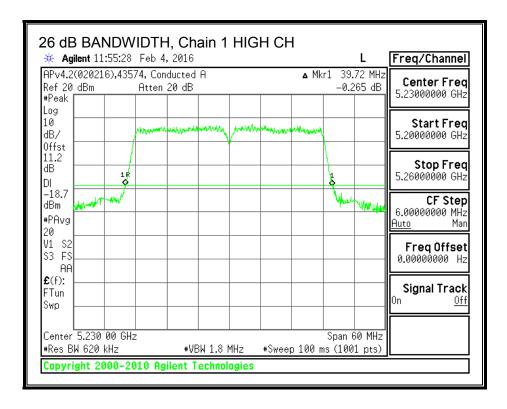

LIMITS


None; for reporting purposes only.

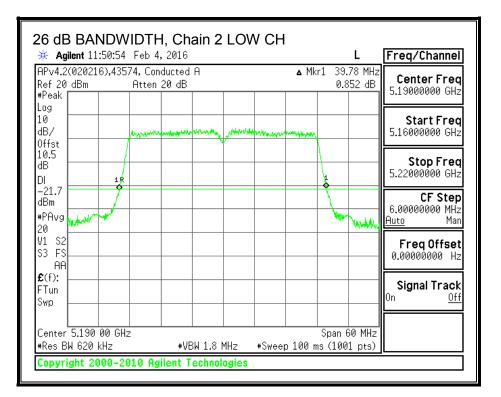
RESULTS

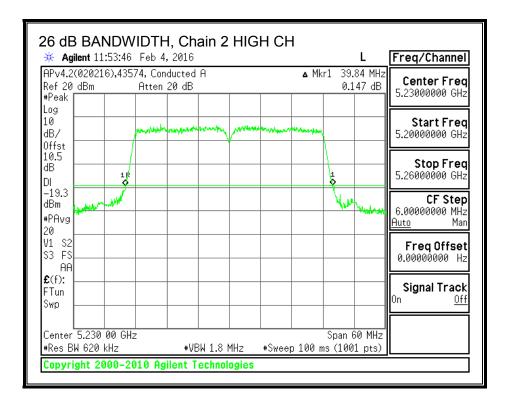
Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5190	40.321	39.840	39.780
High	5230	40.672	39.720	39.840


Page 70 of 600



Page 71 of 600

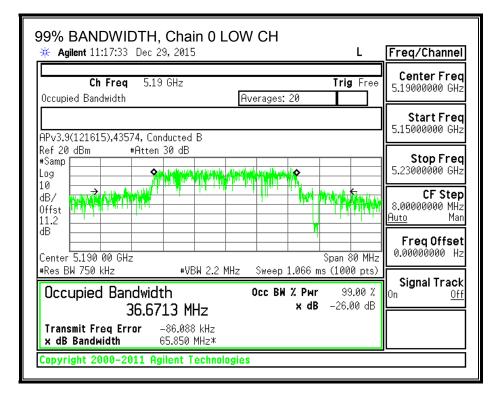

26 dB BANDWIDTH, Chain 1

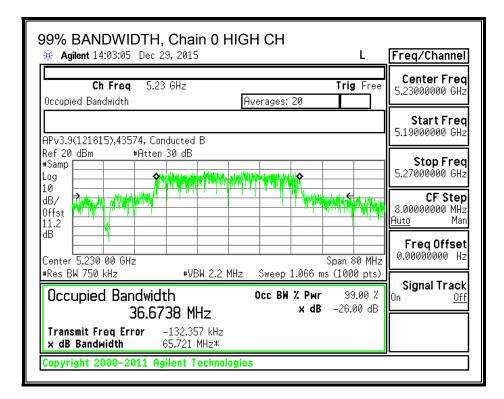


Page 72 of 600

26 dB BANDWIDTH, Chain 2

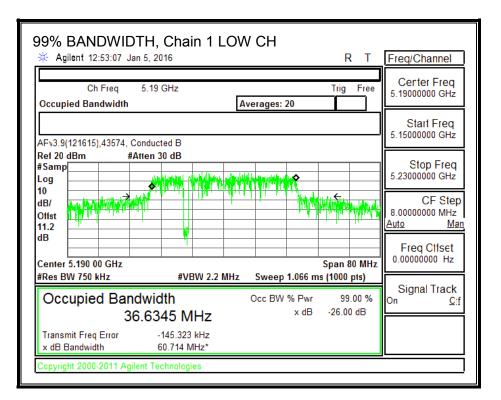
Page 73 of 600

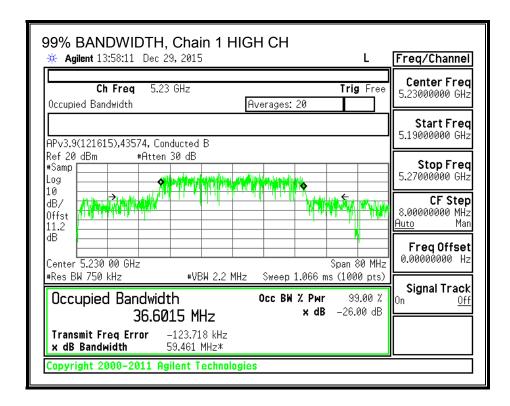

9.6.2. 99% BANDWIDTH


<u>LIMITS</u>

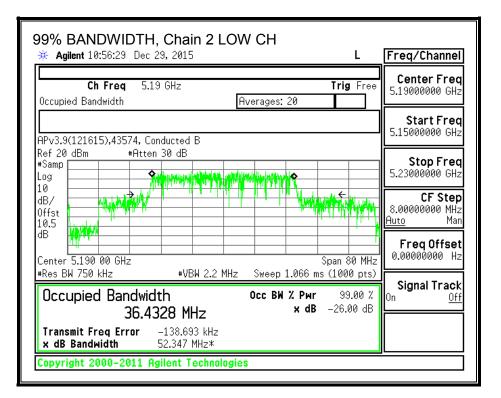
None; for reporting purposes only.

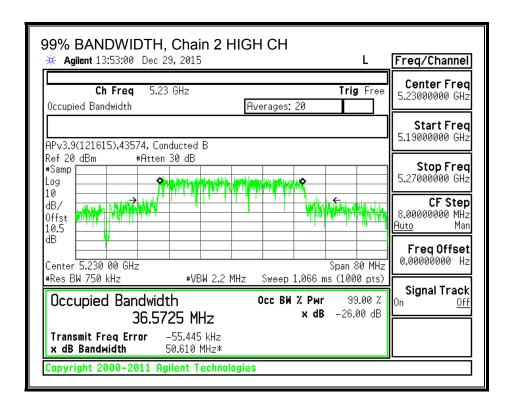
RESULTS


Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5190	36.6713	36.6345	36.4328
High	5230	36.6738	36.6015	36.5725



Page 75 of 600


99% BANDWIDTH, Chain 1



Page 76 of 600

99% BANDWIDTH, Chain 2

Page 77 of 600

9.6.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For power, the TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.45	3.96	2.90	3.82

For PSD, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.45	3.96	2.90	8.57

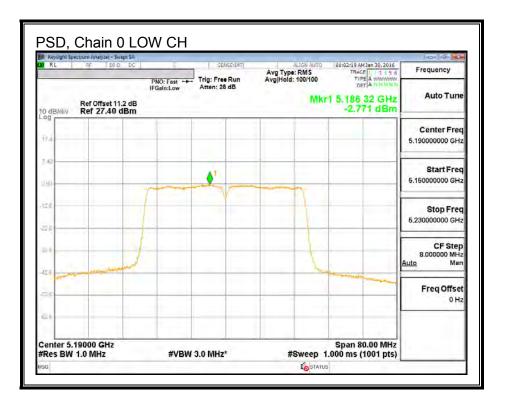
Page 79 of 600

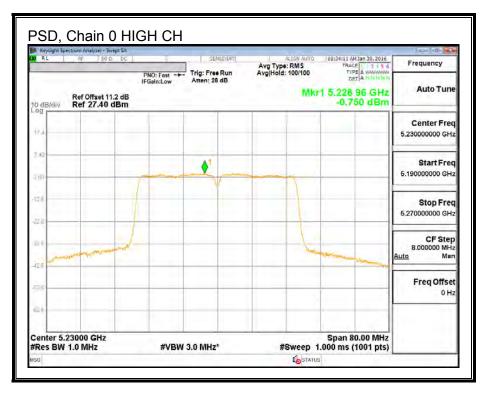
Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	3.82	8.57	24.00	8.43
High	5230	3.82	8.57	24.00	8.43

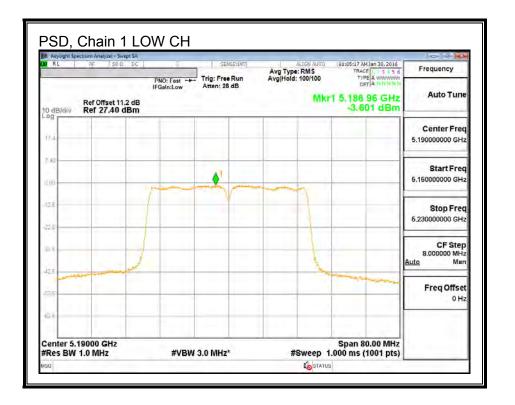
Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd PSD
--------------------	------	--

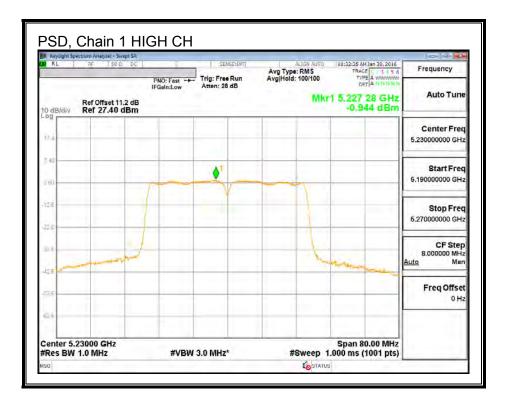
Output Power Results

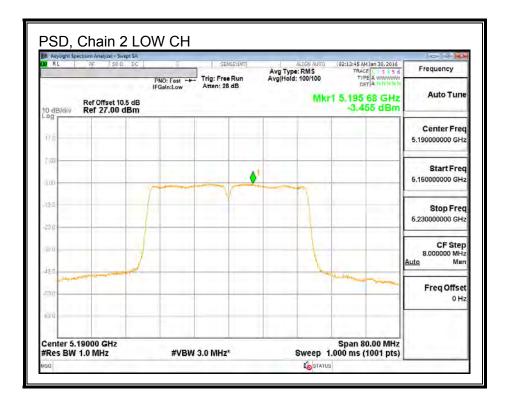

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
	((abiii)	(abiii)	(abiii)	(abiii)	(412)	(4-)
Low	5190	11.26	10.52	10.70	15.61	24.00	-8.39

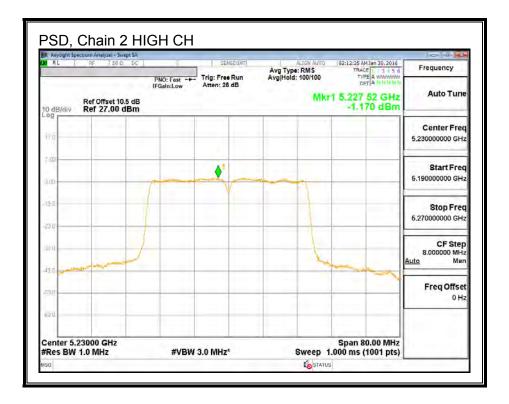

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
	(11112)	(abiii)	(abiii)	(abiii)	(abiii)	((4.2)
Low	5190	-2.771	-3.601	-3.455	1.51	8.43	-6.92


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.


Page 80 of 600



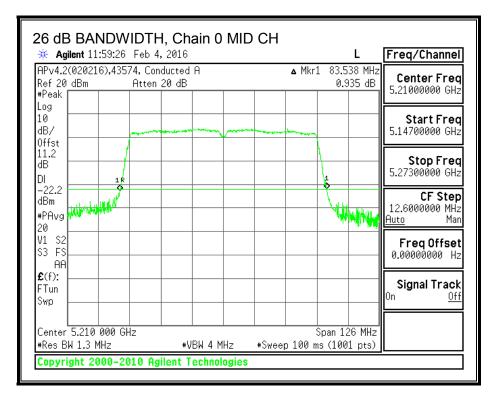

Page 81 of 600

Page 82 of 600

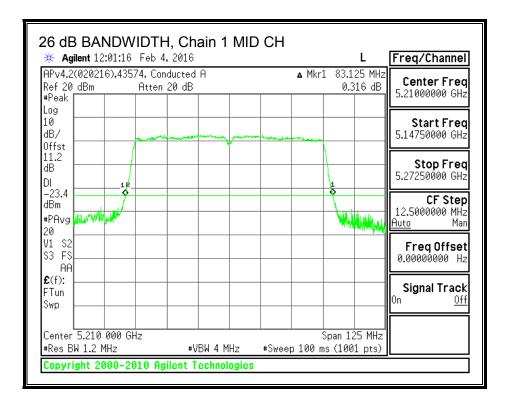
Page 83 of 600

9.7. 802.11ac VHT80 CDD 3TX MODE IN THE 5.2 GHz BAND

9.7.1. 26 dB BANDWIDTH

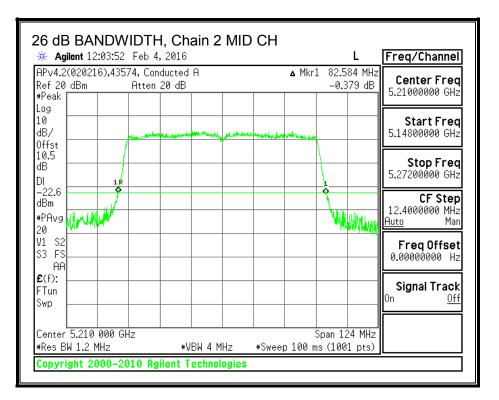

LIMITS

None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5210	83.538	83.125	82.584

Page 84 of 600



26 dB BANDWIDTH, Chain 1

Page 85 of 600

26 dB BANDWIDTH, Chain 2

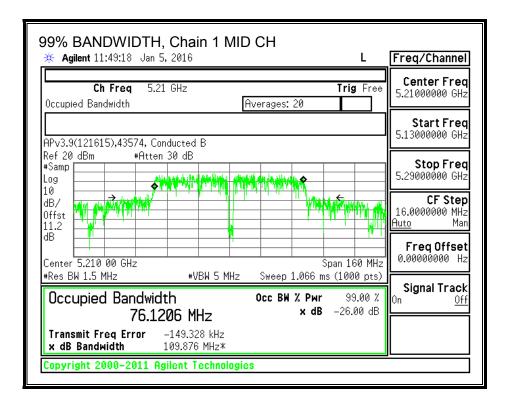
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 86 of 600

9.7.2. 99% BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.


RESULTS

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
	· · · · ·	· · ·	· · ·	· · /

Page 87 of 600

99% BANDWIDTH		11D CH	RТ	Freq/Channel
Ch Freq 5.21 Occupied Bandwidth	l GHz	Averages: 20	Trig Free	Certer Freq 5.21000000 GHz Start Freq
L AFv3.9(121615),43574, Condu Ref 20 dBm #Atten #Samp Log 10 dB/ → 10 dB/ → 10 dB/ ↓ 10 center 5.210 00 GHz			Span 160 MHz	5.13000000 GHz Stop Freq 5.29000000 GHz CF Step 16.0000000 MHz <u>Auto Man</u> Freq Ctfset 0.0000000 Hz
#Res BW 1.5 MHz	#VBW 5 MI		•	Signal Track
Occupied Bandwi 76.20	dth)44 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	On <u>Cif</u>
Transmit Freq Error x dB Bandwidth	-168.976 kHz 123.864 MHz*			
Copyright 2000-2011 Agilent Te	echnologies			

99% BANDWIDTH, Chain 1

Page 88 of 600

99% BANDWIDTH, Chain 2 MID CH <u>★ Agilent</u> 11:45:40 Jan 5, 2016 L	Freq/Channel
Ch Freq 5.21 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.21000000 GHz
APv3.9(121615),43574, Conducted B	Start Freq 5.13000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10 \$	Stop Freq 5.29000000 GHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CF Step 16.0000000 MHz <u>Auto</u> Man
dB #	Freq Offset 0.00000000 Hz
Image: Work is minipage Image: Work is	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -67.782 kHz x dB Bandwidth 98.020 MHz*	
Copyright 2000-2011 Agilent Technologies	

Page 89 of 600

9.7.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For power, the TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.45	3.96	2.90	3.82

For PSD, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.45	3.96	2.90	8.57

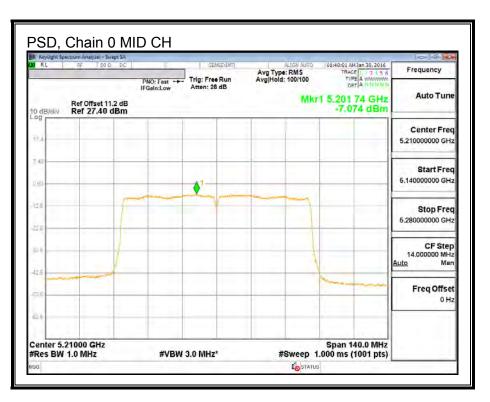
Page 91 of 600

Antenna Gain and Limits

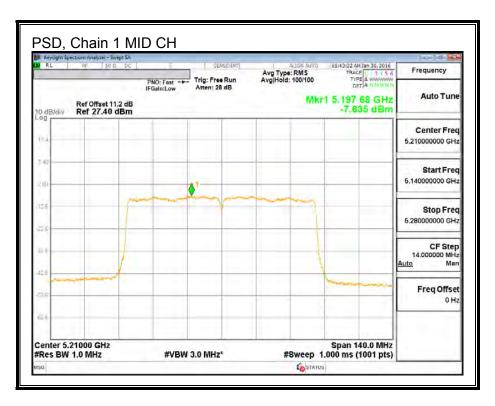
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBi)	(dBi)
Mid	5210	3.82	8.57	24.00	8.43

 Duty Cycle CF (dB)
 0.17
 Included in Calculations of Corr'd PSD

Output Power Results


Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	9.96	9.20	9.00	14.18	24.00	-9.82

PSD Results


Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	-7.074	-7.635	-7.842	-2.56	8.43	-10.99

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 92 of 600

PSD, Chain 1

Page 93 of 600

RL RL	ectrum Analyze: - Swept SA RF 50 D DC		SENSE-UNT	ALIGN AUTO	02:14:59 AM Jan 30, 2016	Frequency
-		PNO: Fast	Trig: Free Run	Avg Type: RMS Avg Hold: 100/100	TRACE 1 3 5 6 TYPE A WARMAN	riequency
0 dB/div	Ref Offset 10.5 dB Ref 27.00 dBm	IFGain:Low	Atten: 28 dB Mkr1 5.2 -7		1 5.218 12 GHz -7.842 dBm	Auto Tune
η <u>ά</u>						Center Free 5.210000000 GH
						Start Free 5.140000000 GH
20	T					Stop Free 5.28000000 GH
13 (1)						CF Step 14.000000 MH Auto Mat
12 D.						Freq Offse 0 H
ard	21000 GHz				Span 140.0 MHz	

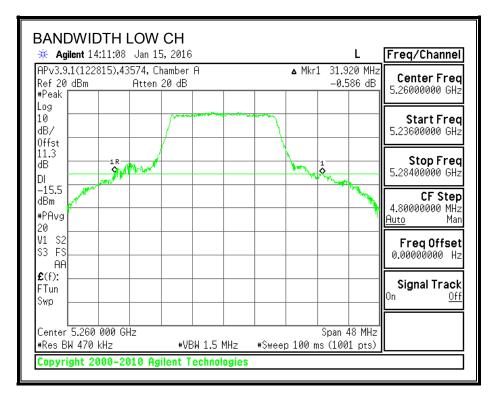
TATUS

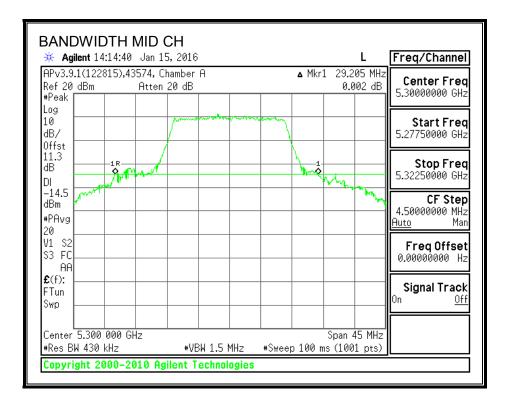
Page 94 of 600

9.8. 802.11a LEGACY MODE IN THE 5.3 GHz BAND

9.8.1. 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	31.920
Mid	5300	29.205
High	5320	32.128

Page 95 of 600

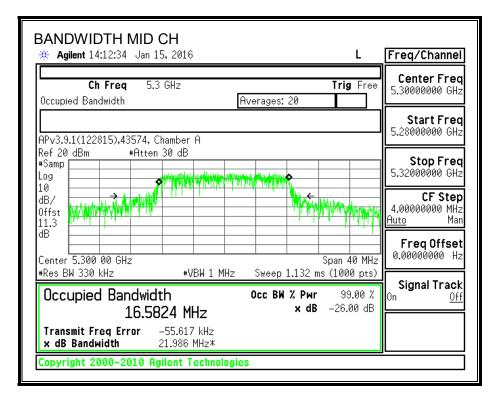
26 dB BANDWIDTH

Page 96 of 600

BANDWIE	-	-					L	Freq/Channel
APv3.9.1(122 Ref 20 dBm #Peak		Chamber A en 20 dB			▲ Mkr:	1 32.17 -0.2	28 MHz 36 dB	Center Freq 5.32000000 GHz
Log 10 dB/			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Start Freq 5.29600000 GHz
0ffst 11.3 dB DI	1R Or More				h	1		Stop Freq 5.34400000 GHz
-15.3 dBm #PAvg							لر	CF Step 4.80000000 MHz <u>Auto</u> Man
20 V1 S2 S3 FC AA								Freq Offset 0.00000000 Hz
£(f): FTun Swp								Signal Track On <u>Off</u>
Center 5.320 #Res BW 470		#VBW	1.5 MHz	#Swee	p 100 m	Span 4 1s (100:		
Copyright 2	000-2010	Agilent Te	chnologie	S				

Page 97 of 600

9.8.2. 99% BANDWIDTH


<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel Frequence		99% Bandwidth
	(MHz)	(MHz)
Low	5260	16.5689
Mid	5300	16.5824
High	5320	16.5875

BANDWIDTH LOW CH		L	Freq/Channel
Ch Freq 5.26 GHz Occupied Bandwidth	Ti Averages: 20	rig Free	Center Freq 5.26000000 GHz
APv3.9.1(122815),43574, Chamber A			Start Freq 5.24000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log			Stop Freq 5.28000000 GHz
10 dB/ Offst 11.3			CF Step 4.00000000 MHz <u>Auto</u> Man
dB /		n 40 MHz	FreqOffset 0.00000000 Hz
*Res BW 330 kHz *VBW 1 Occupied Bandwidth 16.5689 MHz		99.00 %	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -37.944 kHz x dB Bandwidth 22.196 MHz ^x	<		
Copyright 2000–2010 Agilent Tech	lologies		

Page 99 of 600

BANDWIDTH HIGH CH Agilent 14:16:43 Jan 15, 2016	L	Freq/Channel
Ch Freq 5.32 GHz Occupied Bandwidth	Trig Free Averages: 20	Center Freq 5.32000000 GHz
APv3.9.1(122815),43574, Chamber A		Start Freq 5.30000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10		Stop Freq 5.34000000 GHz
dB/ Offst		CF Step 4.0000000 MHz <u>Auto</u> Man
dB Center 5.320 00 GHz #Res BW 330 kHz #VBW 1 1	Span 40 MHz MHz Sweep 1.132 ms (1000 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwidth 16.5875 MHz	Occ BW % Pwr 99.00 % x dB -26.00 dB	Signal Track ^{On <u>Off</u>}
Transmit Freq Error x dB Bandwidth-52.415 kHz 21.279 MHz*		
Copyright 2000–2010 Agilent Techno	logies	

Page 100 of 600

9.8.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

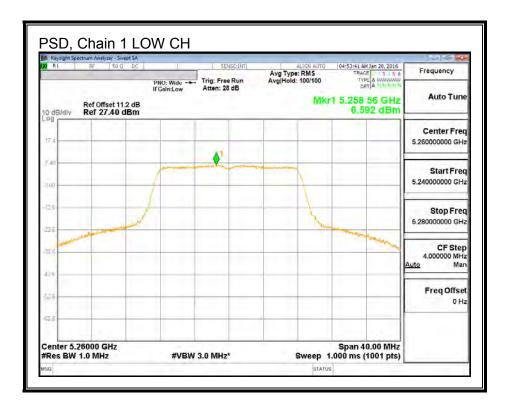
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 101 of 600

Bandwidth, Antenna Gain, and Limits

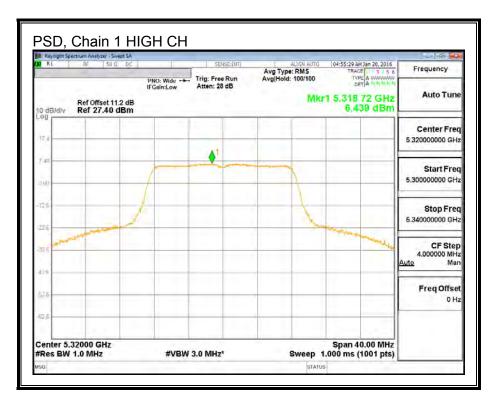
Channel	Frequency	Min	Directional	Power	PSD
		26 dB	Gain	Limit	Limit
		BW			
	(MHz)	(MHz)	(dBi)	(dBm)	(dBm)
Low	5260	31.920	3.96	24.00	11.00
Mid	5300	29.205	3.96	24.00	11.00
High	5320	32.128	3.96	24.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD


Output Power Results


Channel	Frequency	Chain 1	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	17.27	17.27	24.00	-6.73
Mid	5300	17.30	17.30	24.00	-6.70
High	5320	17.22	17.22	24.00	-6.78

PSD Results


Channel	Frequency	Chain 1	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	6.592	6.592	11.00	-4.41
Mid	5300	5.596	5.596	11.00	-5.40
High	5320	6.439	6.439	11.00	-4.56

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

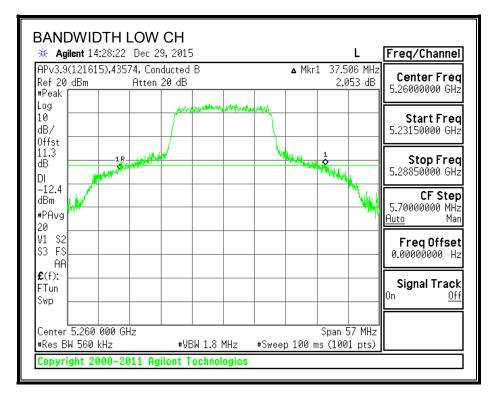
Page 103 of 600

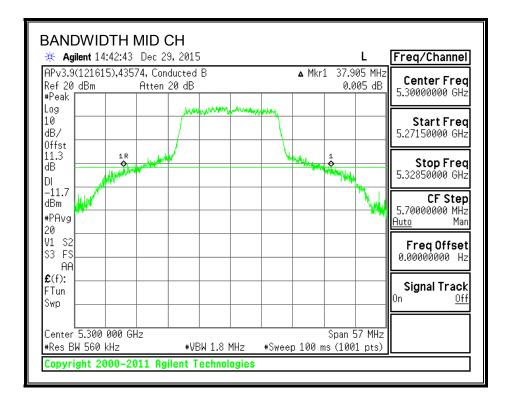
Page 104 of 600

9.9. 802.11n HT20 SISO MODE IN THE 5.3 GHz BAND

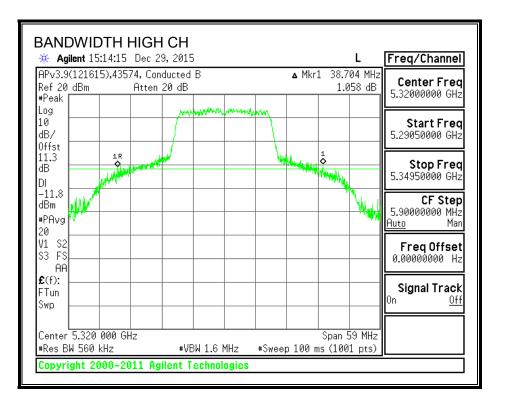
9.9.1. 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	37.506
Mid	5300	37.905
High	5320	38.704


Page 105 of 600

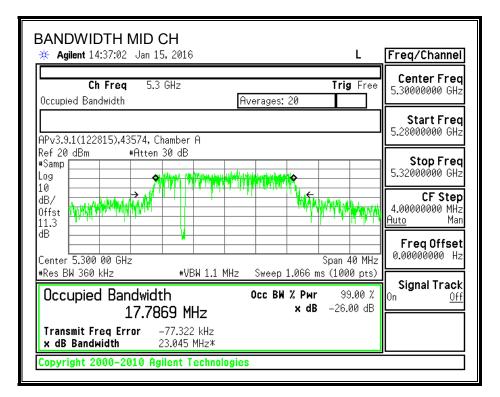
26 dB BANDWIDTH

Page 106 of 600

Page 107 of 600

9.9.2. 99% BANDWIDTH

<u>LIMITS</u>


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	5260	17.7838	
Mid	5300	17.7869	
High	5320	17.7957	

Page 108 of 600

✤ Agilent 14:33:54 Jan 15, 2016 L	Freq/Channel		
Ch Freq 5.26 GHz Trig Fr Occupied Bandwidth Averages: 20	ee Center Freq 5.26000000 GHz		
APv3.9.1(122815),43574, Chamber A	Start Freq 5.24000000 GHz		
Ref 20 dBm #Atten 30 dB #Samp Log 10	Stop Freq 5.28000000 GHz		
dB/ offst 1.3	CF Step 4.00000000 MHz <u>Auto</u> Man		
dB Center 5.260 00 GHz Span 40 M			
•Res BW 360 kHz •VBW 1.1 MHz Sweep 1.066 ms (1000 pts) Signal Track Occupied Bandwidth Осс BW % Риг 99.00 % Signal Track On Off 17.7838 MHz × dB -26.00 dB Image: Comparison of the state of t			
Transmit Freq Error -46.778 kHz x dB Bandwidth 23.858 MHz* Copyright 2000-2010 Agilent Technologies			

Page 109 of 600

BANDWIDTH HIGH CH		L	Freq/Channel
Ch Freq 5.32 GHz Occupied Bandwidth	Averages: 20	Trig Free	Center Freq 5.32000000 GHz
APv3.9.1(122815).43574, Chamb			Start Freq 5.30000000 GHz
Ref 20 dBm #Atten 30 d #Samp Log			Stop Freq 5.34000000 GHz
dB/ Offst 11.3			CF Step 4.00000000 MHz <u>Auto</u> Man
dB		pan 40 MHz	Freq Offset 0.00000000 Hz
*Res BW 360 kHz * Occupied Bandwidth 17.7957	VBW 1.1 MHz Sweep 1.066 ms Occ BW % Pwr MHz × dB		Signal Track ^{On <u>Off</u>}
Transmit Freq Error -44.1			
Copyright 2000-2010 Agilent	Technologies		

Page 110 of 600

9.9.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

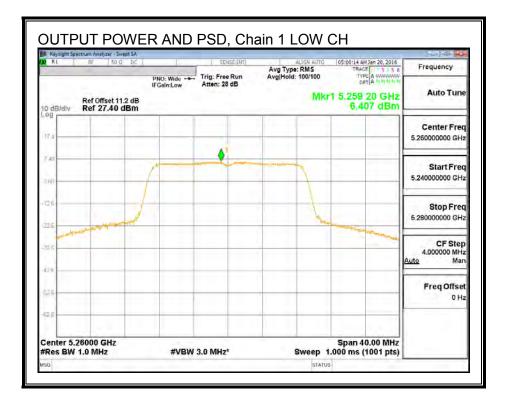
DIRECTIONAL ANTENNA GAIN

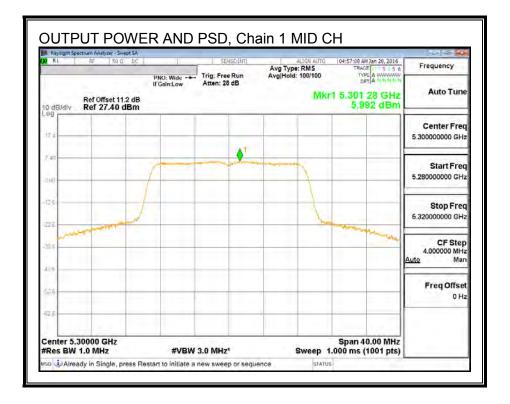
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 111 of 600

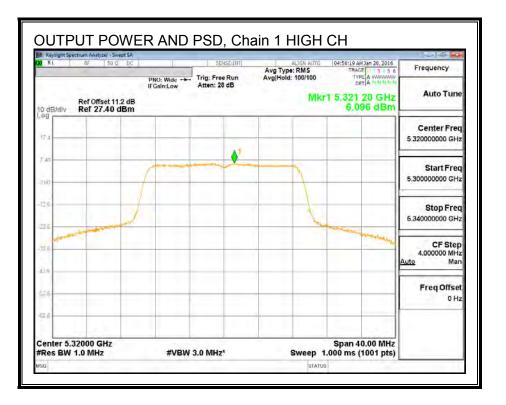
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power	PSD
		26 dB	Gain	Limit	Limit
		BW			
	(MHz)	(MHz)	(dBi)	(dBm)	(dBm)
Low	5260	39.15	3.96	24.00	11.00
Mid	5300	38.02	3.96	24.00	11.00
High	5320	38.40	3.96	24.00	11.00


Output Power Results


Channel	Frequency	Chain 1	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	17.37	17.37	24.00	-6.63
Mid	5300	17.25	17.25	24.00	-6.75
High	5320	17.34	17.34	24.00	-6.66

PSD Results


Channel	Frequency	Chain 1	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	6.41	6.41	11.00	-4.59
Mid	5300	5.99	5.99	11.00	-5.01
High	5320	6.10	6.10	11.00	-4.90

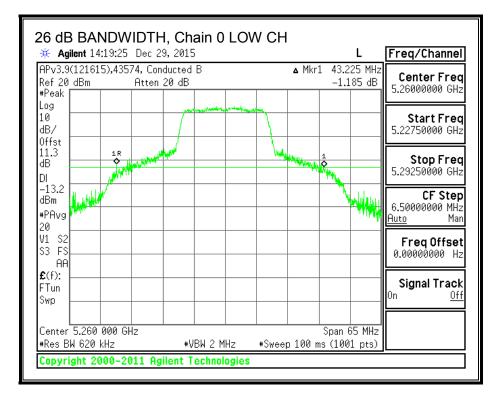
<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

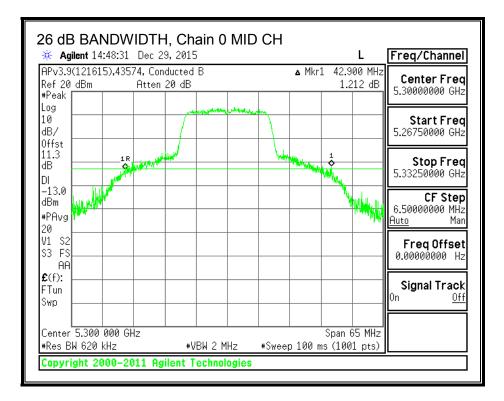
Page 113 of 600

Page 114 of 600

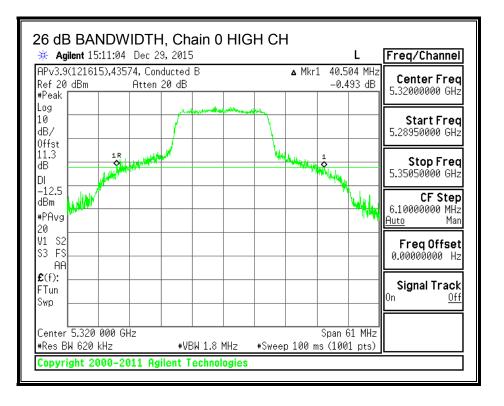
9.10. 802.11n HT20 CDD 3TX MODE IN THE 5.3 GHz BAND

9.10.1. 26 dB BANDWIDTH

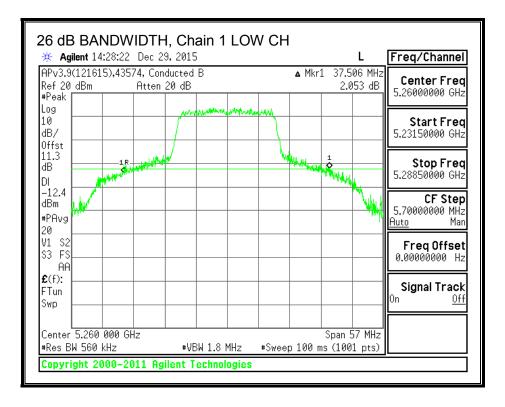

<u>LIMITS</u>

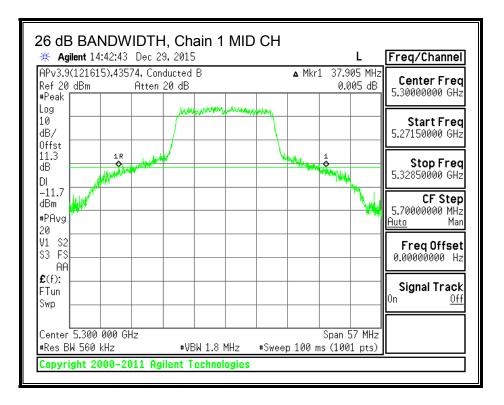

None; for reporting purposes only.

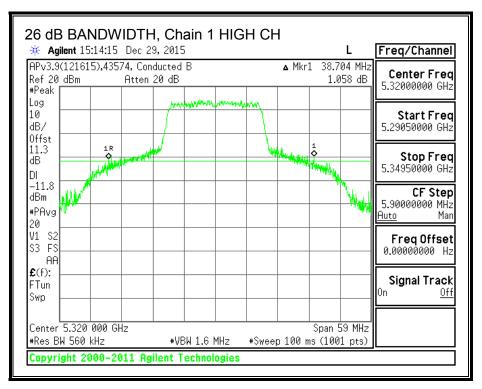
RESULTS


Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5260	43.225	37.506	31.680
Mid	5300	42.900	37.905	34.320
High	5320	40.504	38.704	36.190

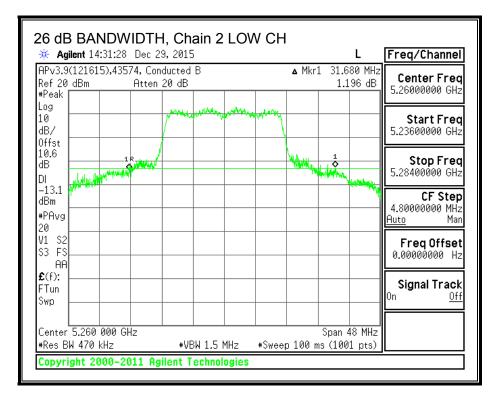
Page 115 of 600

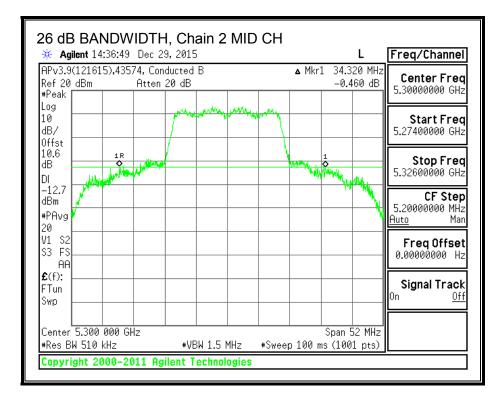


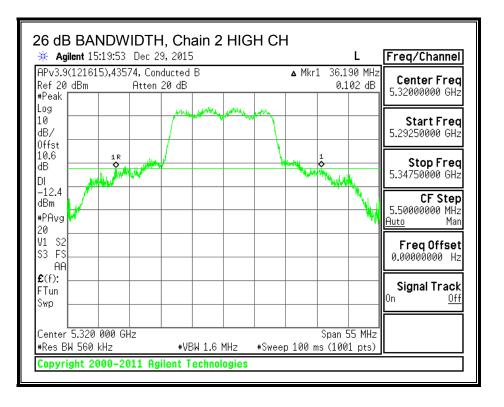

Page 116 of 600



26 dB BANDWIDTH, Chain 1




Page 117 of 600

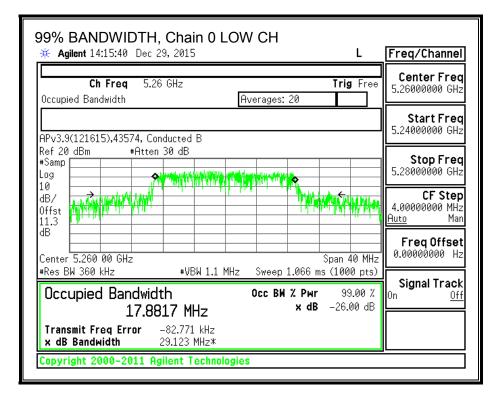


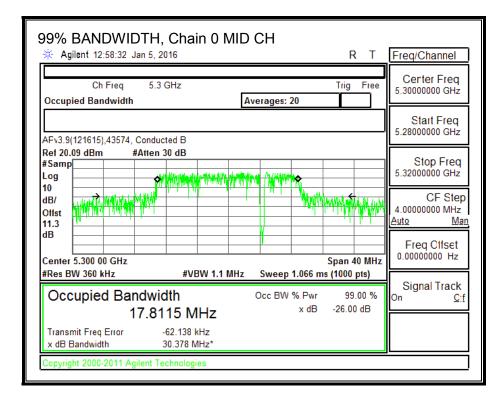
Page 118 of 600

Page 119 of 600

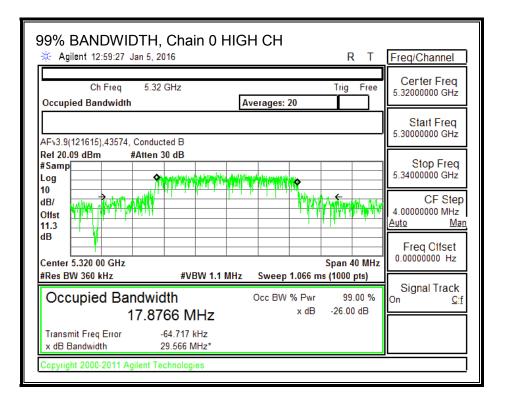
Page 120 of 600

9.10.2. 99% BANDWIDTH

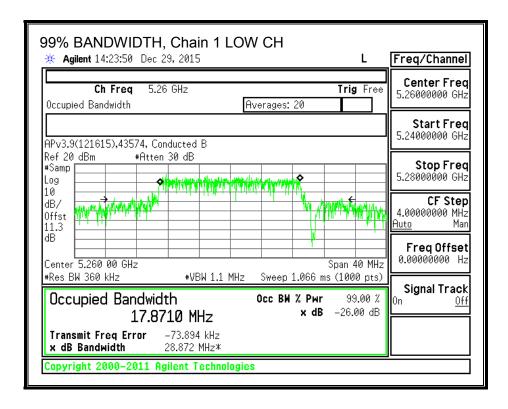

LIMITS


None; for reporting purposes only.

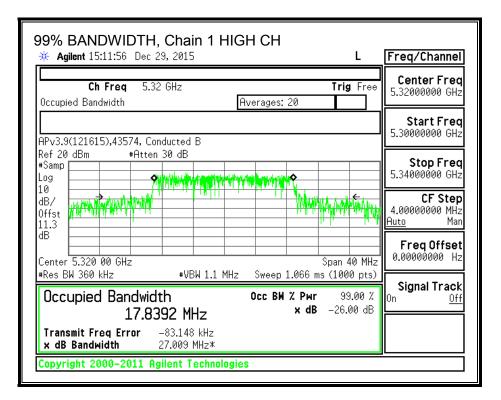
RESULTS


Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5260	17.8817	17.8710	17.7442
Mid	5300	17.8115	17.8227	17.7763
High	5320	17.8766	17.8392	17.8007

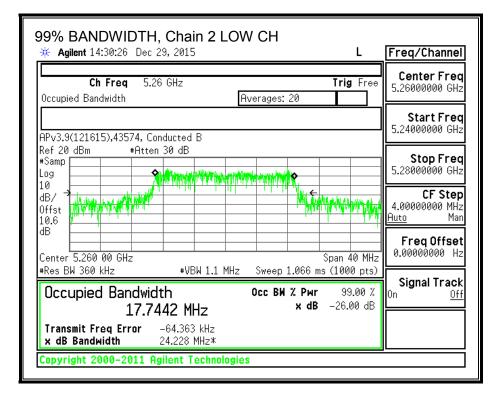
Page 121 of 600

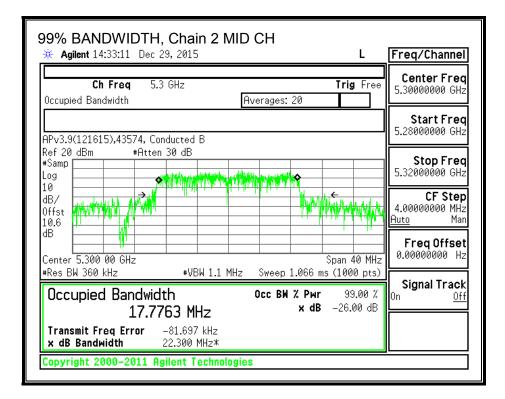


Page 122 of 600



99% BANDWIDTH, Chain 1




Page 123 of 600

99% BANDWIDTH, Chain 1 MID CH	Freq/Channel
Ch Freq 5.3 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.30000000 GHz
APv3.9(121615),43574, Conducted B	Start Freq 5.28000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log	Stop Freq 5.32000000 GHz
dB/ Offst 11.3	CF Step 4.00000000 MHz <u>Auto</u> Man
dB Center 5.300 00 GHz Span 40 MHz	Freq Offset 0.00000000 Hz
#Res BW 360 kHz #VBW 1.1 MHz Sweep 1.066 ms (1000 pts) Occupied Bandwidth Occ BW % Рыг 99.00 % 17.8227 MHz × dB -26.00 dB	Signal Track ^{On <u>Off</u>}
L7.8227 MHZ MHZ MHZ Transmit Freq Error -97.502 kHz -97.100 MHz*	
Copyright 2000-2011 Agilent Technologies	·

Page 124 of 600

Page 125 of 600

99% BANDWIDTH, Chain 2 HIGH CH	Freg/Channel
Ch Freq 5.32 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.32000000 GHz
APv3.9(121615),43574, Conducted B	Start Freq 5.30000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10	Stop Freq 5.34000000 GHz
dB/ Offst 10.6	CF Step 4.00000000 MHz <u>Auto</u> Man
dB	FreqOffset 0.00000000 Hz
	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -92.440 kHz x dB Bandwidth 24.639 MHz*	
Copyright 2000–2011 Agilent Technologies	

Page 126 of 600

9.10.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For power, the TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.77	3.92	3.23	4.02

For PSD, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.77	3.92	3.23	8.77

Page 127 of 600

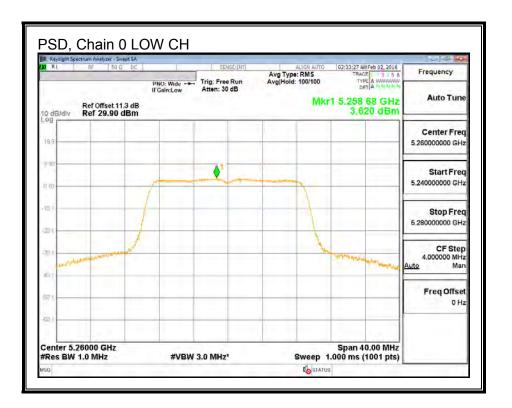
Bandwidth, Antenna Gain, and Limits

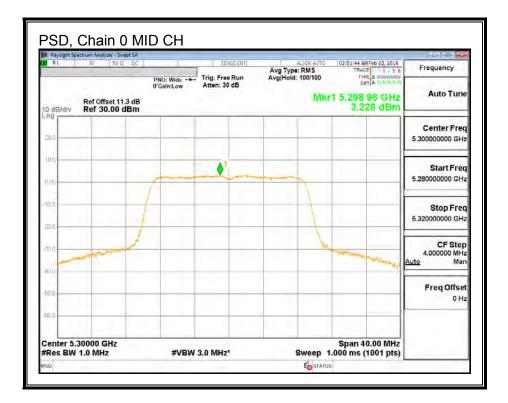
Channel	Frequency	Min 26 dB BW	Directional Gain for Power	Directional Gain for PSD	Power Limit	PSD Limit
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5260	31.68	4.02	8.77	24.00	8.23
Mid	5300	34.32	4.02	8.77	24.00	8.23
High	5320	36.19	4.02	8.77	24.00	8.23

Duty Cycle CF (dB) 0.00

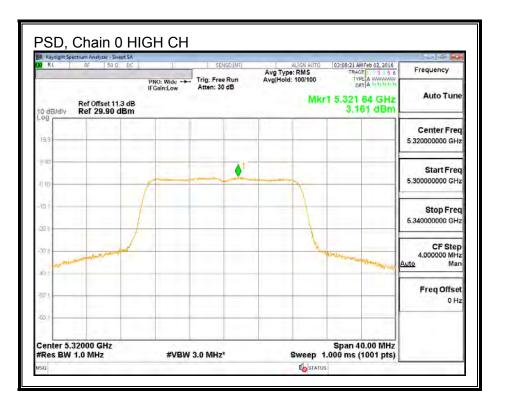
Included in Calculations of Corr'd PSD

Output Power Results

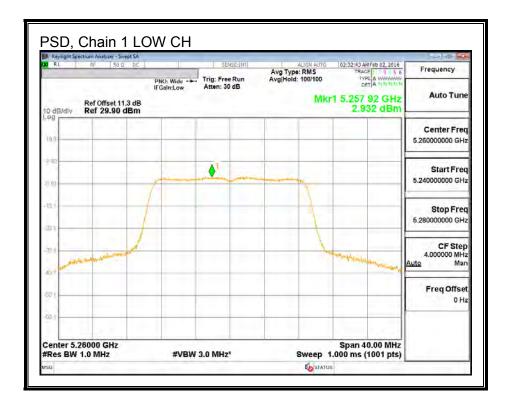

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	14.53	14.21	14.00	19.02	24.00	-4.98
Mid	5300	14.43	14.20	13.85	18.94	24.00	-5.06
High	5320	14.50	14.15	13.83	18.94	24.00	-5.06

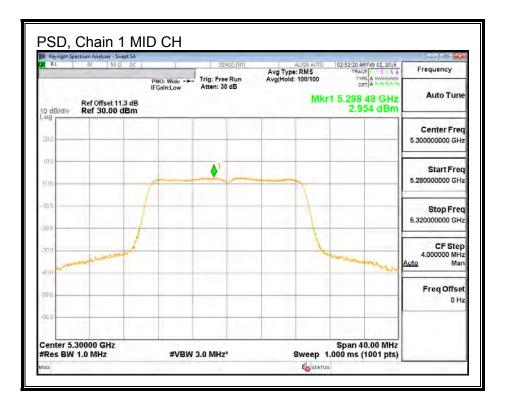

PPSD Results

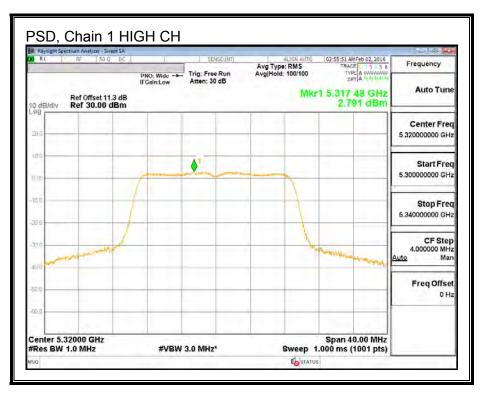
Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	3.620	2.932	3.063	7.987	8.23	-0.24
Mid	5300	3.228	2.954	2.228	7.595	8.23	-0.64
High	5320	3.161	2.791	2.484	7.592	8.23	-0.64


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

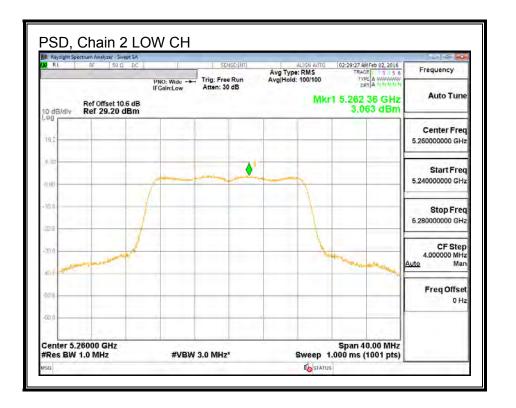
Page 128 of 600

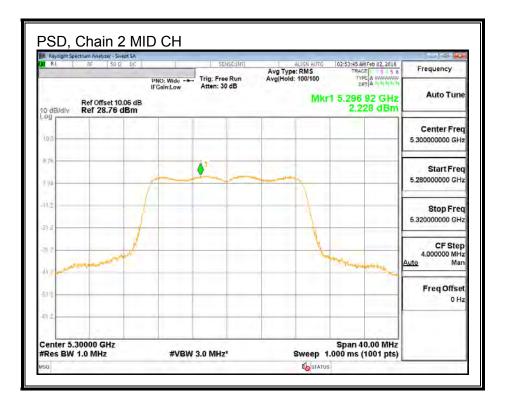


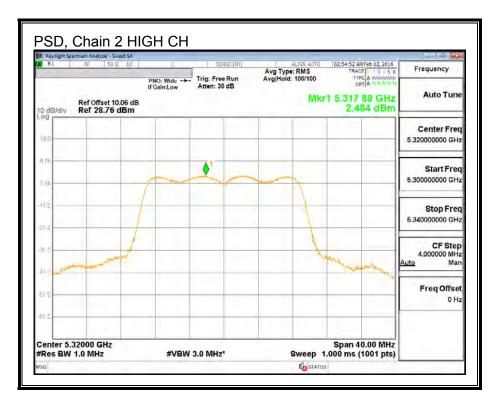

Page 129 of 600



PSD, Chain 1




Page 130 of 600



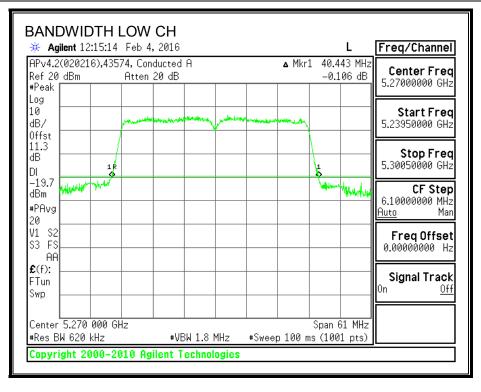
Page 131 of 600

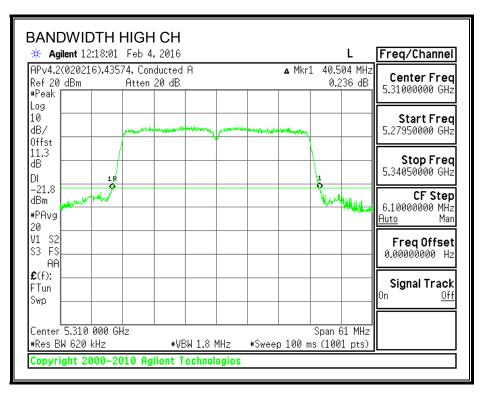
Page 132 of 600

Page 133 of 600

9.11. 802.11n HT40 SISO MODE IN THE 5.3 GHz BAND

9.11.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

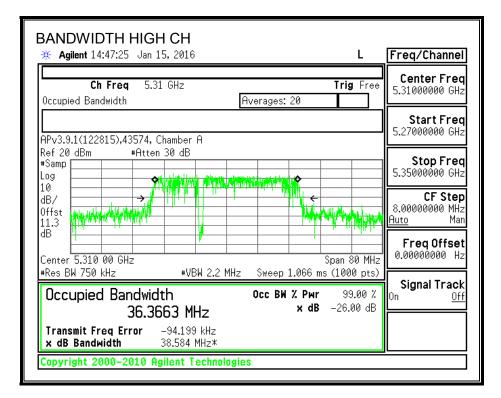
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5270	40.443
High	5310	40.504

Page 134 of 600

Page 135 of 600

9.11.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5270	36.5537
High	5310	36.3663

Page 136 of 600

BANDWIDTH LOW CH	L	Freq/Channel
Ch Freq 5.27 GHz Occupied Bandwidth Averages: 20	Trig Free	Center Freq 5.27000000 GHz
APv3.9.1(122815),43574, Chamber A Ref 20 dBm #Atten 30 dB		Start Freq 5.23000000 GHz
*Samp Log 10		Stop Freq 5.31000000 GHz CF Step
dB/ Offst 11.3 dB		8.00000000 MHz <u>Auto</u> Man
Center 5.270 00 GHz #Res BW 750 kHz #VBW 2.2 MHz Sweep 1.066 r	Span 80 MHz ns (1000 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwidth Occ BW % Pwr 36.5537 MHz × dB	99.00 % -26.00 dB	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -68.279 kHz x dB Bandwidth 56.585 MHz* Copyright 2000-2010 Agilent Technologies		

Page 137 of 600

9.11.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

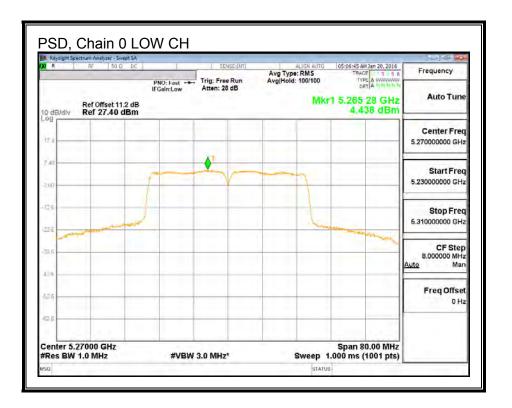
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

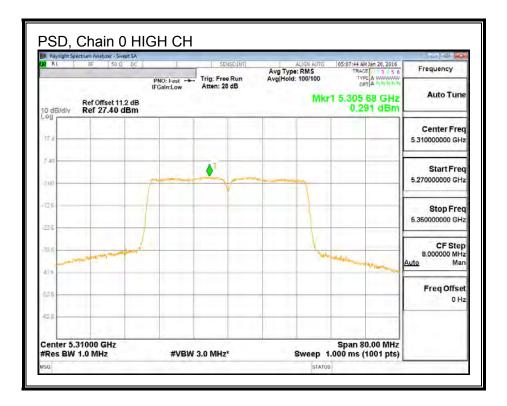
Page 138 of 600

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power	PSD
		26 dB	Gain	Limit	Limit
		BW			
	(MHz)	(MHz)	(dBi)	(dBm)	(dBm)
Low	5270	40.443	4.77	24.00	11.00
High	5310	40.504	4.77	24.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD


Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5270	(dBm) 18.00	(dBm) 18.00	(dBm) 24.00	(dB) -6.00

PSD Results

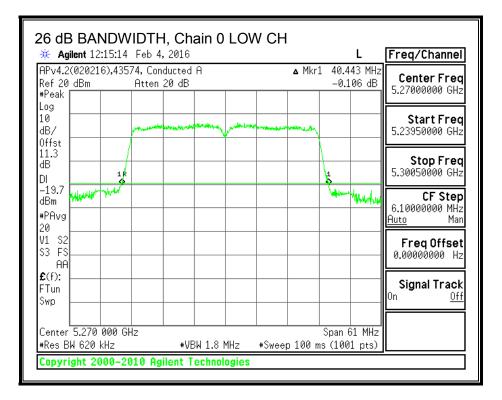
Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	4.438	4.438	11.00	-6.56
High	5310	0.291	0.291	11.00	-10.71

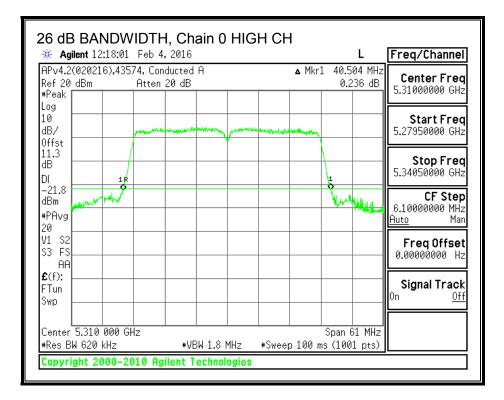
<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 140 of 600

9.12. 802.11n HT40 CDD 3TX MODE IN THE 5.3 GHz BAND

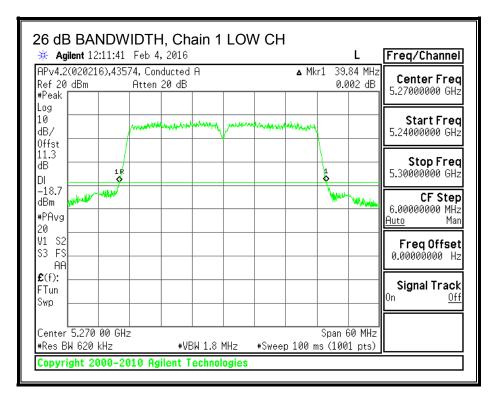
9.12.1. 26 dB BANDWIDTH

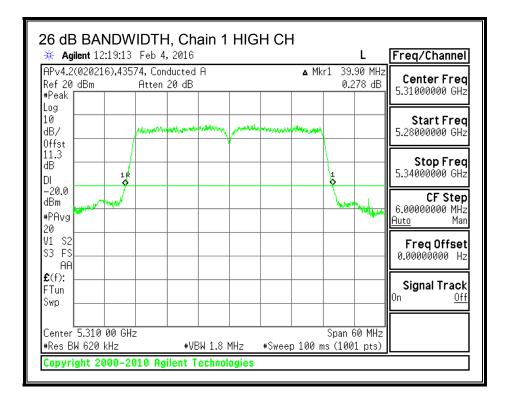

<u>LIMITS</u>


None; for reporting purposes only.

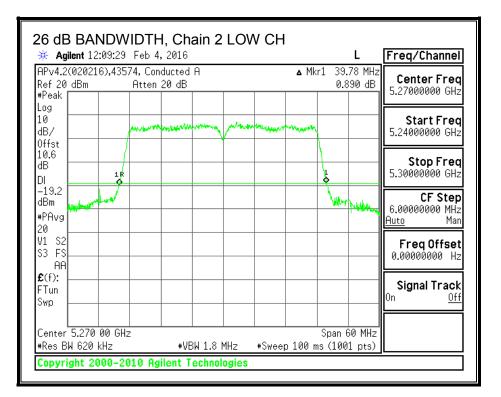
RESULTS

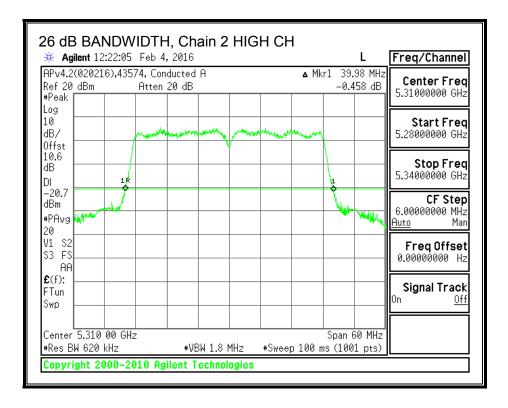
Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5270	40.443	39.840	39.780
High	5310	40.504	39.900	39.980


Page 141 of 600



Page 142 of 600


26 dB BANDWIDTH, Chain 1

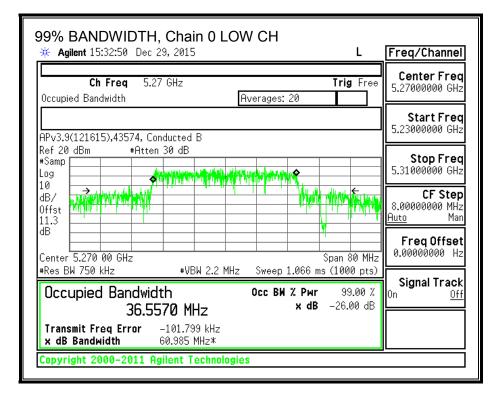


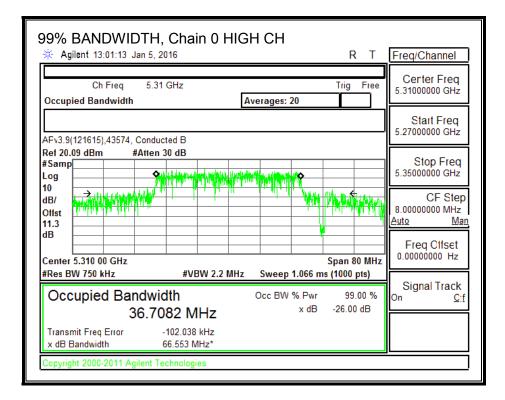
Page 143 of 600

26 dB BANDWIDTH, Chain 2

Page 144 of 600

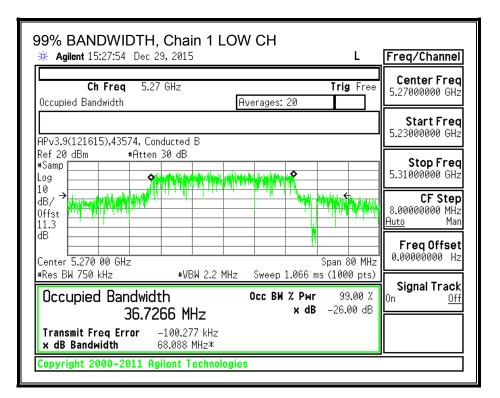
9.12.2. 99% BANDWIDTH

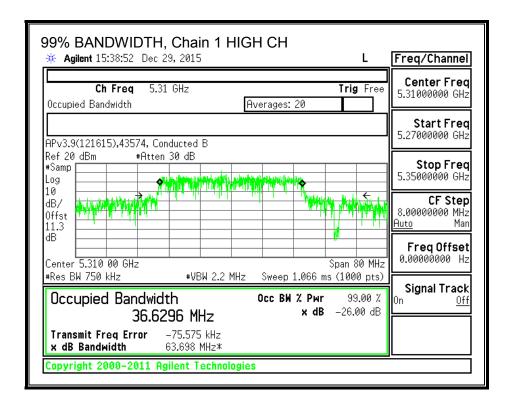

LIMITS


None; for reporting purposes only.

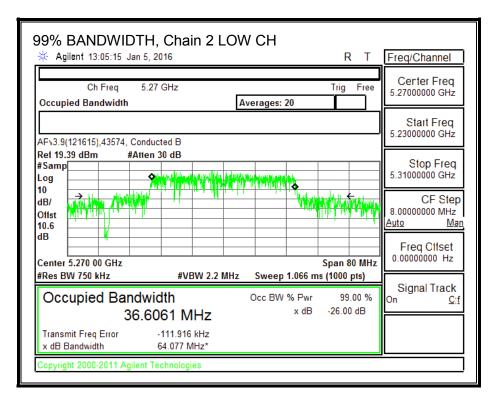
RESULTS

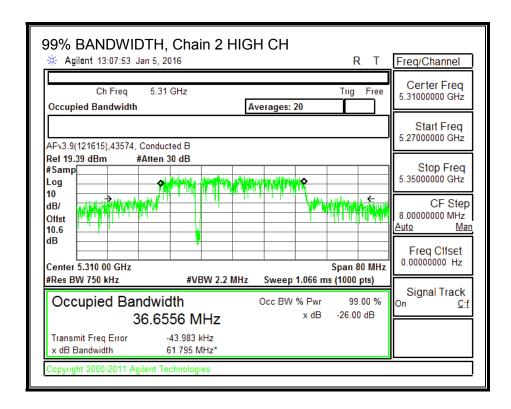
Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5270	36.5570	36.7266	36.6061
High	5310	36.7082	36.6296	36.6556


Page 145 of 600



Page 146 of 600


99% BANDWIDTH, Chain 1



Page 147 of 600

99% BANDWIDTH, Chain 2

Page 148 of 600

9.12.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For power, the TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.77	3.92	3.23	4.02

For PSD, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.77	3.92	3.23	8.77

Page 149 of 600

Bandwidth, Antenna Gain, and Limits

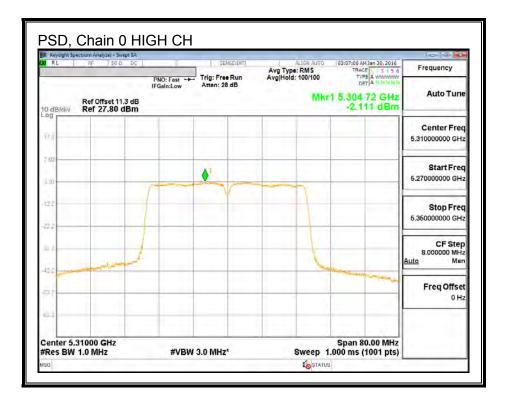
Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5270	39.780	4.02	8.77	24.00	8.23
High	5310	39.900	4.02	8.77	24.00	8.23

Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd PSD
-------------------------	--

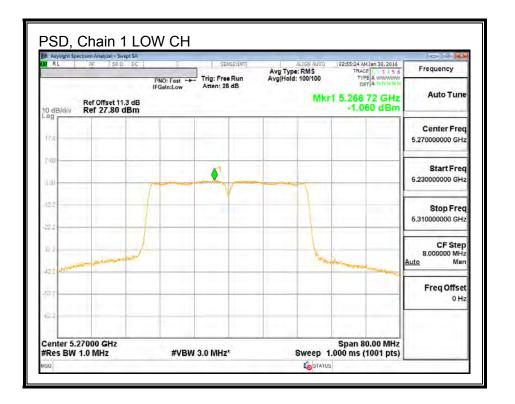
Output Power Results

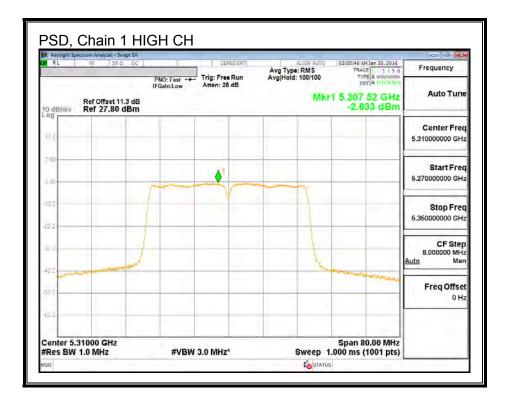
Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	13.45	13.02	12.81	17.87	24.00	-6.13
High	5310	11.84	11.61	11.10	16.30	24.00	-7.70

PSD Results

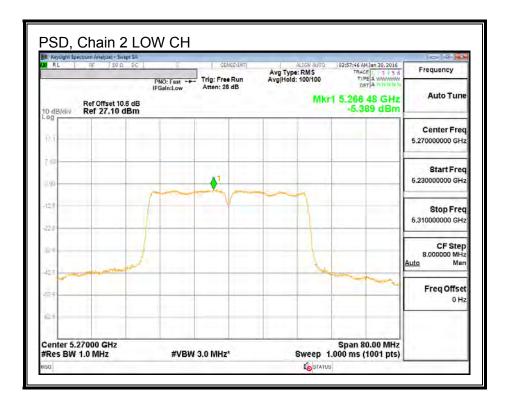

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	-0.733	-1.060	-5.389	2.83	8.23	-5.40
High	5310	-2.111	-2.633	-2.643	2.32	8.23	-5.91

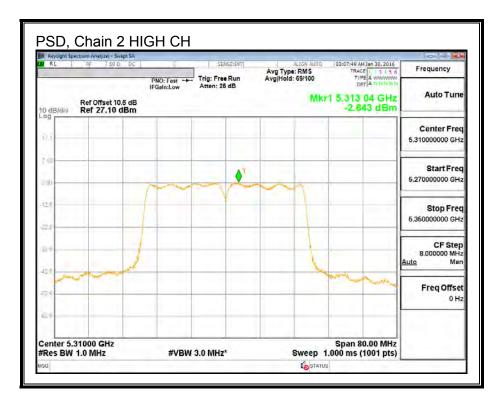
Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.


30



Te STATUS



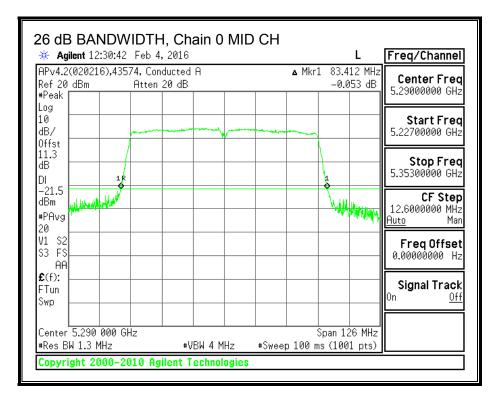

Page 151 of 600

Page 152 of 600

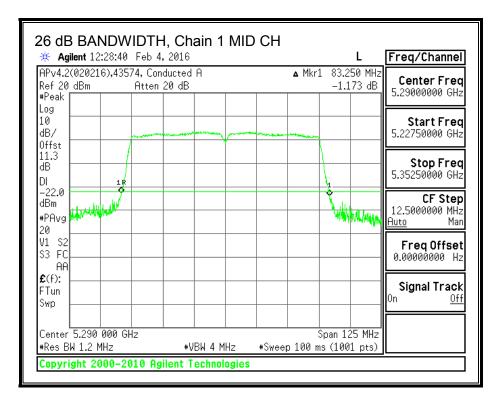
Page 153 of 600

9.13. 802.11ac VHT80 CDD 3TX MODE IN THE 5.3 GHz BAND

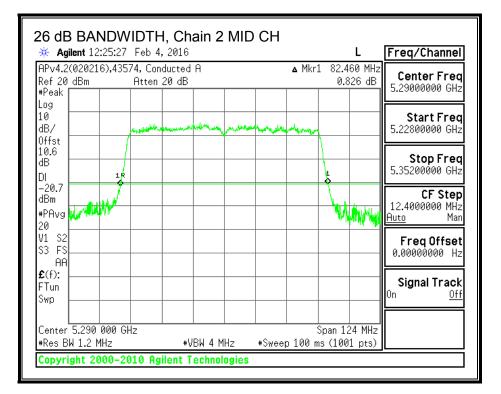
9.13.1. 26 dB BANDWIDTH


LIMITS

None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5290	83.412	83.250	82.460


Page 154 of 600

26 dB BANDWIDTH, Chain 1

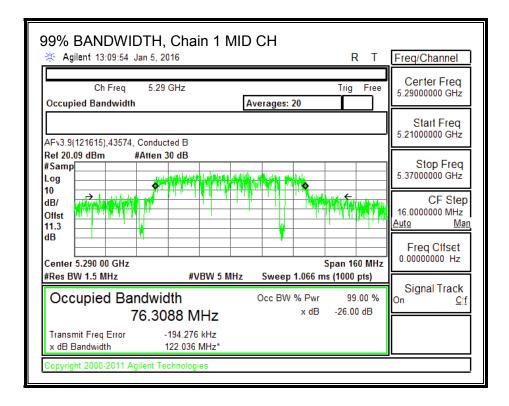
Page 155 of 600

Page 156 of 600

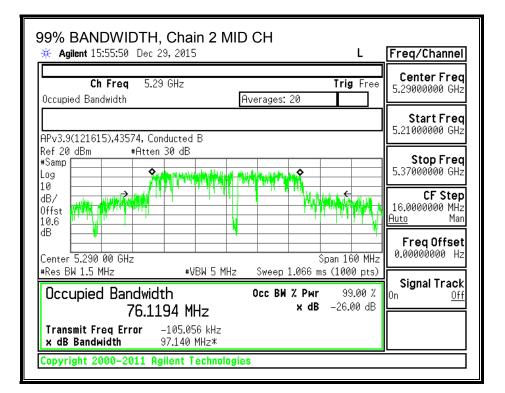
9.13.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


RESULTS

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5290	76.0253	76.3088	76.1194


Page 157 of 600

•	29 GHz	0	Trig Free	Center Fred 5.29000000 GHz
Occupied Bandwidth		Averages: 20		Start Fred
D2 0/10101EX 42E74 C	anduated D			5.21000000 GHz
₩ν3.9(121615),43574, C Ref 20 dBm	in 30 dB			L
Samp				Stop Fred
.0g		the state of the second se		5.37000000 GHz
·		A CONTRACTOR OF A	4.€	CF Ster
dB/			Within a Autora Mill	16.0000000 MHz
1.3				<u>Auto</u> Mar
яв <mark>– – –</mark>			μ μ	Freq Offset
				0.00000000 Hz
Center 5.290 00 GHz #Res BW 1.5 MHz	∗VBW 5 MH		Span 160 MHz	
		2 Jweep 1.000 I	113 (1000 pt3)	Signal Track
Occupied Bandwi	dth	Occ BW % Pwr		0n <u>0f</u>
76.0	253 MHz	x dB	–26.00 dB	
Transmit Freg Error	–146.170 kHz			
x dB Bandwidth	97.207 MHz*			

99% BANDWIDTH, Chain 1

Page 158 of 600

Page 159 of 600

9.13.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For power, the TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.77	3.92	3.23	4.02

For PSD, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
4.77	3.92	3.23	8.77

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Bandwidth, Antenna Gain, and Limits

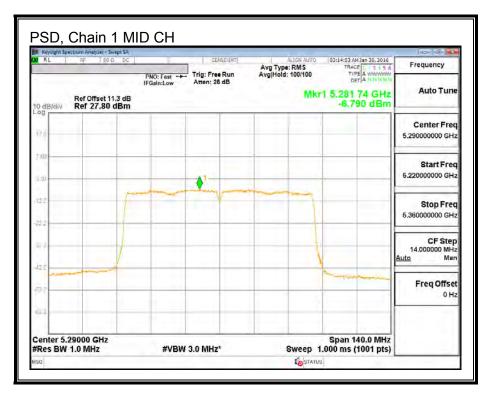
Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Mid	5290	82.46	4.02	8.77	24.00	8.23

 Duty Cycle CF (dB)
 0.17
 Included in Calculations of Corr'd PSD

Output Power Results

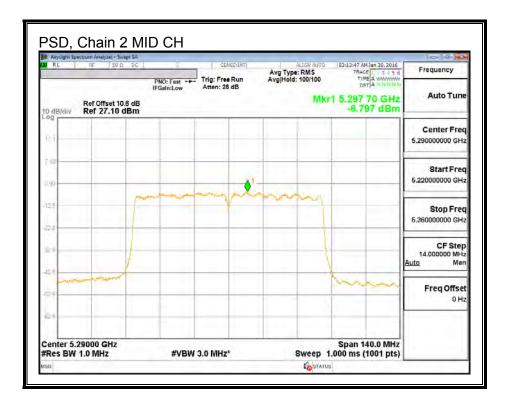
Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5290	11.74	11.07	11.01	16.06	24.00	-7.94

PSD Results


Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5290	-6.363	-6.790	-6.797	-1.70	8.23	-9.93

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 161 of 600


Keysight Spectrum An W RL AF	50 D DC	NO: Fast	I SENSENNT	Aug Type: RMS Avg Hold: 100/10	00 03:15:26 AM Jan 30, 2 TRACE 1 3 TO TYPE A WWW DET A HIM	5 6 Frequency
	iffset 11.3 dB 27.80 dBm	Gain:Low	Atten: 28 dB	0	Akr1 5.276 56 G -8.363 dE	Hz Auto Tune
i)á						Center Freq 5,290000000 GHz
7.00						Start Freq 5.220000000 GHz
-12.2	1		7			Stop Freq 5,36000000 GHz
10 P						CF Step 14.000000 MHz Auto Man
-122					hannel	Freq Offset 0 Hz
Center 5.29000 #Res BW 1.0 M			3.0 MHz*		Span 140.0 M p 1.000 ms (1001 p	IHz

PSD, Chain 1

Page 162 of 600

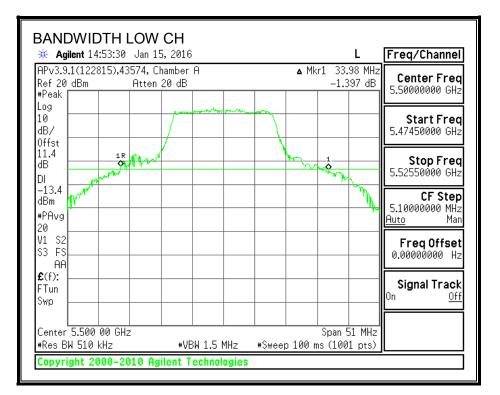
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

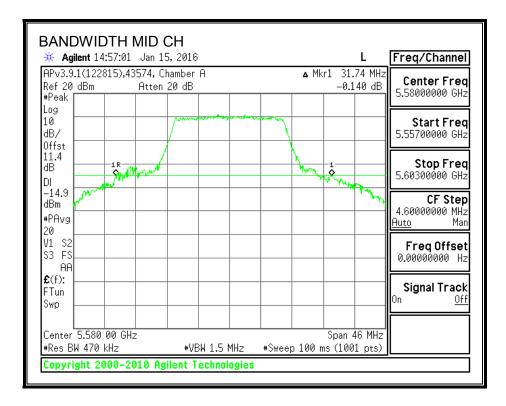
Page 163 of 600

9.14. 802.11a LEGACY MODE IN THE 5.6 GHz BAND

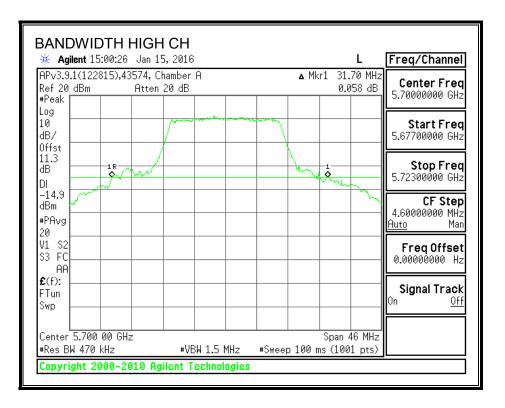
9.14.1. 26 dB BANDWIDTH

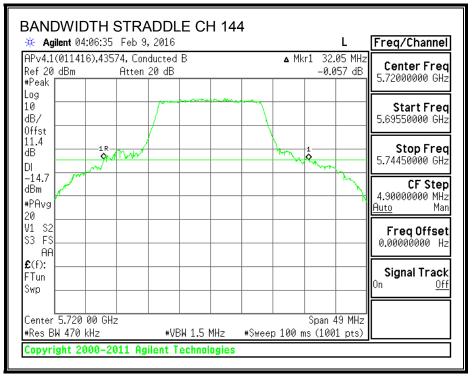
LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	33.98
Mid	5580	31.74
High	5700	31.70
144	5720	32.05


Page 164 of 600


26 dB BANDWIDTH

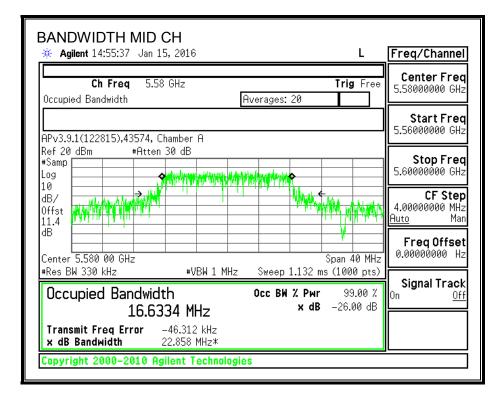
Page 165 of 600

Page 166 of 600

9.14.2. 99% BANDWIDTH

DATE: 3/16/2016

LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	16.6547
Mid	5580	16.6334
High	5700	16.5229
144	5720	16.3984

Page 167 of 600

BANDWIDTH LOW CH	Fre	q/Channel			
Ch Freq 5.5 GHz Trig F Occupied Bandwidth Averages: 20		enter Freq 0000000 GHz			
APv3.9.1(122815),43574, Chamber A Ref 20 dBm #Atten 30 dB	5.4	Start Freq 8000000 GHz			
*Samp Log 10	5.5	Stop Freq 2000000 GHz			
dB/ Offst 11.4 dB	4.0 <u>Auto</u>	CF Step 0000000 MHz <u>0</u> Man			
Center 5.500 00 GHz Span 40 #Res BW 330 kHz #VBW 1 MHz Sweep 1.132 ms (1000 p	MHz 0.0	Freq Offset 10000000 Hz			
Occupied Bandwidth Осс ВМ % Рыг 99.00 % 16.6547 MHz × dB -26.00 dB					
Transmit Freq Error -51.111 kHz x dB Bandwidth 25.704 MHz*					
Copyright 2000-2010 Agilent Technologies					

Page 168 of 600

BANDWIDTH HIGH CH	L	Freq/Channel
Ch Freq 5.7 GHz Occupied Bandwidth	Trig Free Averages: 20	Center Freq 5.70000000 GHz
APv3.9.1(122815),43574, Chamber A		Start Freq 5.68000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10		Stop Freq 5.72000000 GHz
dB/ Offst 11.3		CF Step 4.00000000 MHz <u>Auto</u> Man
dB Center 5.700 00 GHz #Res BW 330 kHz #VBW 1 1	Span 40 MHz MHz Sweep 1.132 ms (1000 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwidth 16.5229 MHz	Осс ВИ % Рыг 99.00 % х dB -26.00 dB	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -63.143 kHz x dB Bandwidth 22.583 MHz*		
Copyright 2000-2010 Agilent Techno	logies	

BANDWIDTH STRADDLE * Agilent 04:04:31 Feb 9, 2016	CH 144	L	Freq/Channel
Ch Freq 5.72 GHz Occupied Bandwidth	Averages: 20	Trig Free	Center Freq 5.72000000 GHz
APv4.1(011416),43574, Conducted B			Start Freq 5.70000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log			Stop Freq 5.74000000 GHz
dB/ Offst martine 100 million			CF Step 4.00000000 MHz <u>Auto</u> Man
dB		Span 40 MHz	FreqOffset 0.00000000 Hz
*Res BW 330 kHz *VBW Occupied Bandwidth 16,3984 MHz	1 MHz Sweep 1.132 m Occ BW % Pwr x dB		Signal Track ^{On <u>Off</u>}
LO.3304 MHZ Transmit Freq Error 88.465 kHz x dB Bandwidth 23.049 MHz	*		
Copyright 2000–2011 Agilent Tech	nologies		

Page 169 of 600

9.14.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.47–5.725 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

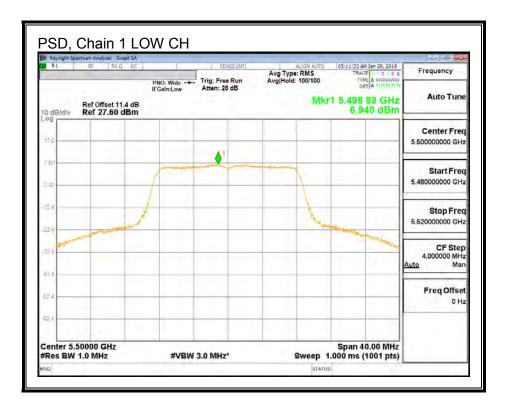
Page 170 of 600

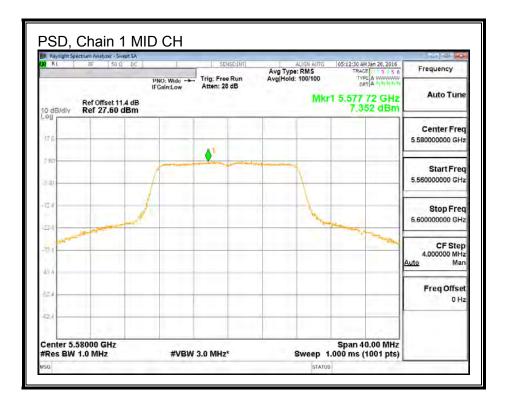
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power	PSD
		26 dB	Gain	Limit	Limit
		BW			
	(MHz)	(MHz)	(dBi)	(dBm)	(dBm)
Low	5500	33.98	3.46	24.00	11.00
Mid	5580	31.74	3.46	24.00	11.00
High	5700	31.70	3.46	24.00	11.00

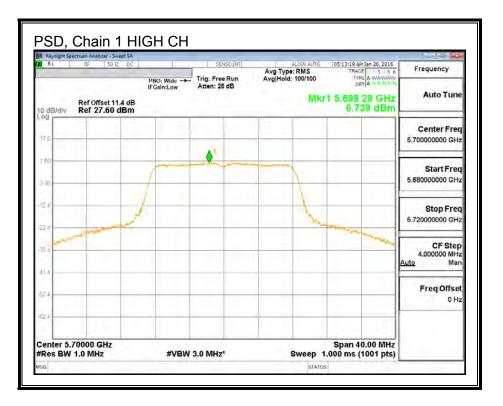
Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

Output Power Results


Channel	Frequency	Chain 1	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	17.60	17.60	24.00	-6.40
Mid	5580	17.87	17.87	24.00	-6.13
High	5700	17.48	17.48	24.00	-6.52


PSD Results

Channel	Frequency	Chain 1	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	6.940	6.940	11.00	-4.06
Mid	5580	7.352	7.352	11.00	-3.65
High	5700	6.739	6.739	11.00	-4.26


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

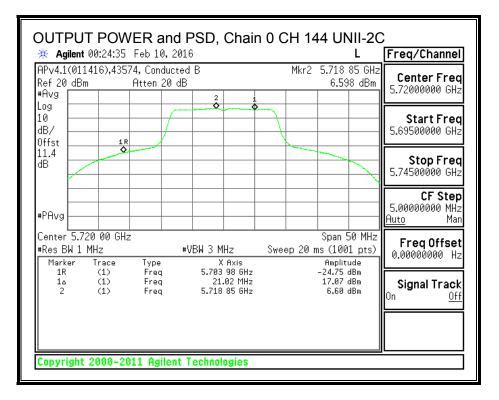
Page 171 of 600

Page 172 of 600

Page 173 of 600

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
144	5720	21.02	3.46	3.46	24.00	11.00


Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

Output Power Results

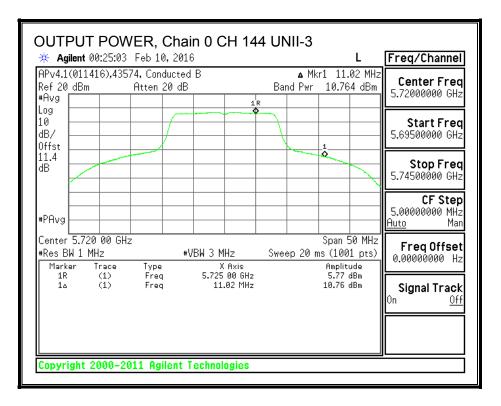
Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	17.07	17.07	24.00	-6.93

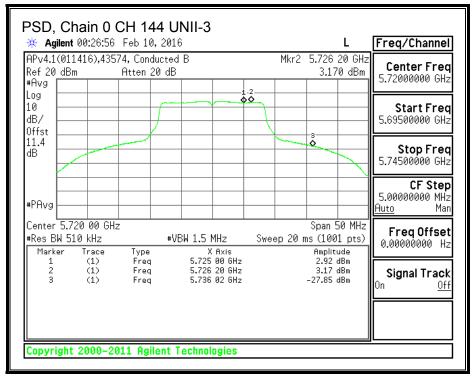
PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	6.598	6.598	11.00	-4.40

Page 175 of 600

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd Power & PSD


Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	10.764	10.764	30.00	-19.24

PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	3.170	3.170	30.00	-26.83

Page 176 of 600

Page 177 of 600

9.14.4. AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Output Power Results

Channel	Frequency	Chain 1	Total
		Meas	Corr'd
		Power	Power
	(MHz)	(dBm)	(dBm)
144	5720	17.91	17.91

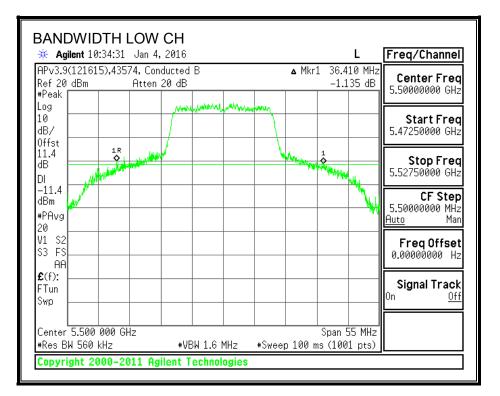
Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

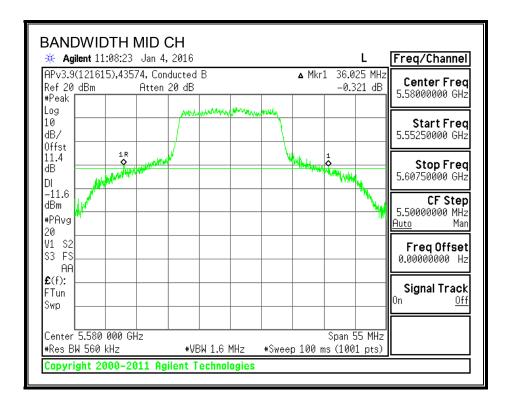
Page 178 of 600

9.15. 802.11n HT20 SISO MODE IN THE 5.6 GHz BAND

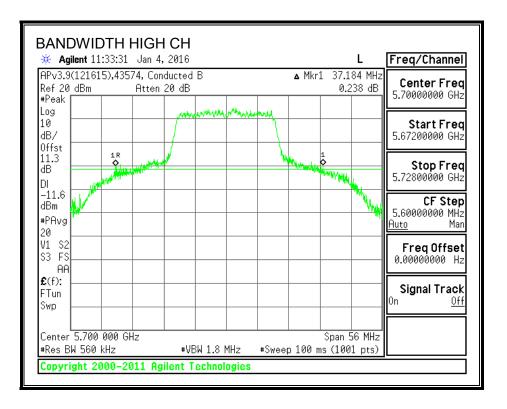
9.15.1. 26 dB BANDWIDTH

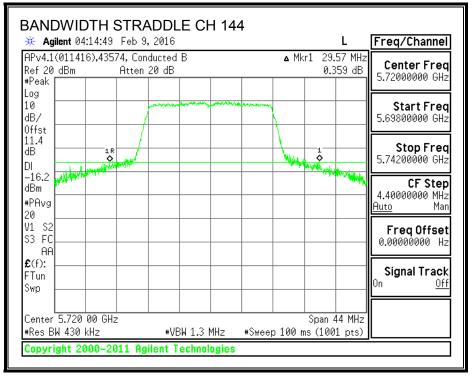
<u>LIMITS</u>


None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	36.410
Mid	5580	36.025
High	5700	37.184
144	5720	29.570


Page 179 of 600


26 dB BANDWIDTH

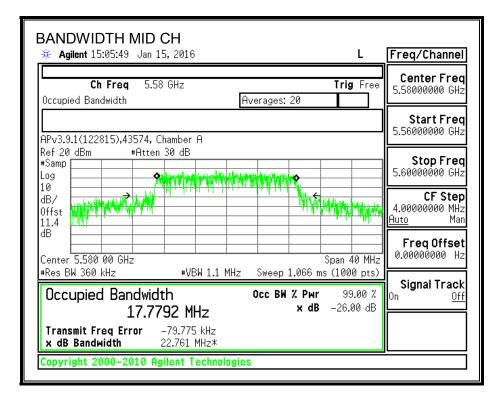
Page 180 of 600

Page 181 of 600

9.15.2. 99% BANDWIDTH

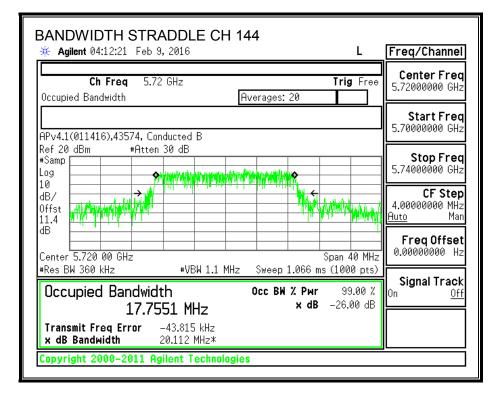
DATE: 3/16/2016

LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	17.8024
Mid	5580	17.7792
High	5700	17.7800
144	5720	17.7551


Page 182 of 600

BANDWIDTH LOW CH * Agilent 15:02:13 Jan 15, 2016 L	Freq/Channel
Ch Freq 5.5 GHz Trig Fr Occupied Bandwidth Averages: 20	ree Center Freq 5.50000000 GHz
APv3.9.1(122815),43574, Chamber A	Start Freq 5.48000000 GHz
Ref 20 dBm #Atten 30 dB #Samp Log 10	Stop Freq 5.52000000 GHz
dB/ Offst 11.4	CF Step 4.00000000 MHz <u>Auto</u> Man
dB Center 5.500 00 GHz Span 40 M	
*Res BW 360 kHz *VBW 1.1 MHz Sweep 1.066 ms (1000 p Occupied Bandwidth 0cc BW % Pwr 99.00 17.8024 MHz × dB -26.00 c	Signal Track
Transmit Freq Error -48.195 kHz x dB Bandwidth 24.186 MHz*	
Copyright 2000–2010 Agilent Technologies	

Page 183 of 600

BANDWIDTH HIGH CH * Agilent 15:12:13 Jan 15, 2016 L	Freq/Channel
Ch Freq 5.7 GHz Trig Free Occupied Bandwidth Averages: 20	Center Freq 5.70000000 GHz
APv3.9.1(122815),43574, Chamber A Ref 20 dBm #Atten 30 dB	Start Freq 5.68000000 GHz
*Samp Log 10	Stop Freq 5.72000000 GHz
dB/ Offst 11.3 dB	CF Step 4.00000000 MHz <u>Auto</u> Man
Center 5.700 00 GHz Span 40 MHz #Res BW 360 kHz #VBW 1.1 MHz Sweep 1.066 ms (1000 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwidth Осс ВИ % Рыг 99.00 % 17.7800 MHz × dB -26.00 dB	Signal Track ^{On <u>Off</u>}
Transmit Freq Error -53.968 kHz x dB Bandwidth 20.517 MHz* Copyright 2000-2010 Agilent Technologies	

Page 184 of 600

9.15.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.47–5.725 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

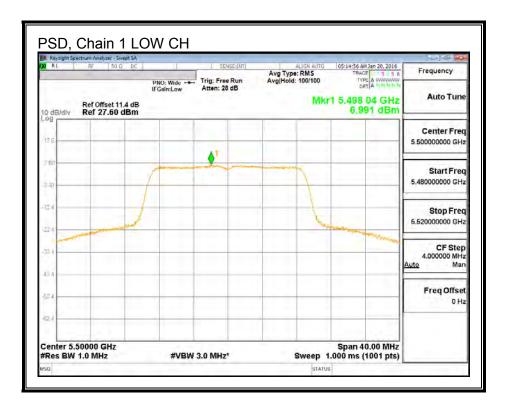
Page 185 of 600

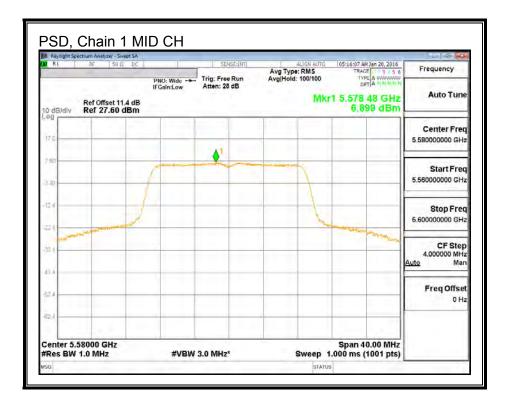
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power	PSD
		26 dB	Gain	Limit	Limit
		BW			
	(MHz)	(MHz)	(dBi)	(dBm)	(dBm)
Low	5500	38.63	3.46	24.00	11.00
Mid	5580	39.30	3.46	24.00	11.00
High	5700	25.50	3.46	24.00	11.00

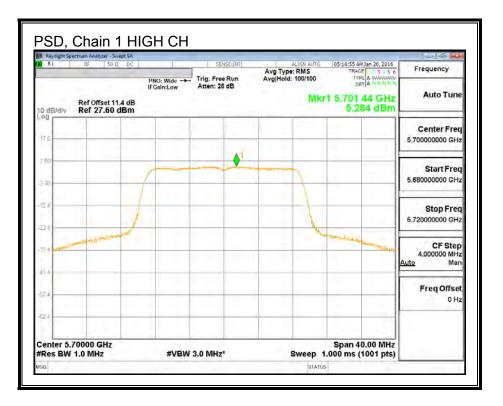
Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

Output Power Results


Channel	Frequency	Chain 1	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	17.67	17.67	24.00	-6.33
Mid	5580	17.97	17.97	24.00	-6.03
High	5700	16.19	16.19	24.00	-7.81


PSD Results

Channel	Frequency	Chain 1	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	6.991	6.991	11.00	-4.01
Mid	5580	6.899	6.899	11.00	-4.10
High	5700	5.284	5.284	11.00	-5.72


<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 186 of 600

Page 187 of 600

Page 188 of 600

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
144	5720	19.78	3.46	3.46	23.96	11.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	16.86	16.86	23.96	-7.10

PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	6.160	6.160	11.00	-4.84

Page 189 of 600

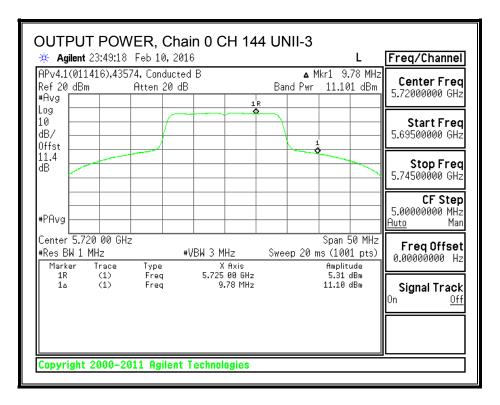
		-	n 0 CH 1	144 UNII-2	
Agilent 23:48:39	-				Freq/Channel
APv4.1(011416),43 Ref 20 dBm #Avg	5/4, Conducted Atten 20 dB	2 1	Mkr2	5.718 65 GHz 6.164 dBm	Center Freq 5.72000000 GHz
Log 10 dB/ Offst	1R				Start Freq 5.69500000 GHz
dB					Stop Freq 5.74500000 GHz
#PAvg					CF Step 5.00000000 MHz <u>Auto</u> Man
Center 5.720 00 GH #Res BW 1 MHz Marker Trace		/BW 3 MHz X Axis	Sweep 20 i	Span 50 MHz ms (1001 pts) Amplitude	FreqOffset 0.00000000 Hz
1R (1) 1a (1) 2 (1)	Freq Freq Freq	5.705 22 GHz 19.78 MHz 5.718 65 GHz		-23.41 dBm 16.86 dBm 6.16 dBm	Signal Track ^{On <u>Off</u>}
	044 0				
Copyright 2000-2	11 Agilent	ecnnologies			

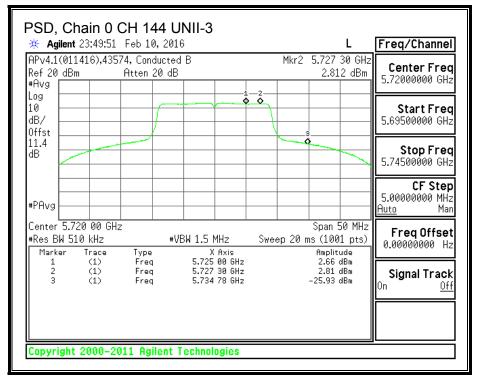
Page 190 of 600

Antenna Gain and Limit

Channel	Frequency	Directional	Power	PSD
		Gain	Limit	Limit
	(MHz)	(dBi)	(dBm)	(dBm)
144	5720	3.27	30.00	30.00

 Duty Cycle CF (dB)
 0.00
 Included in Calculations of Corr'd Power & PSD


Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	11.100	11.100	30.00	-18.90

PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	2.812	2.812	30.00	-27.19

Page 191 of 600

Page 192 of 600

9.15.4. AVERAGE OUTPUT POWER (WHOLE FUNDAMENTAL)

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Output Power Results

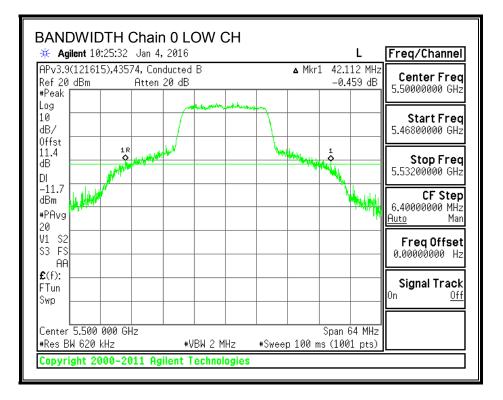
Channel	Frequency	Chain 1	Total
		Meas	Corr'd
		Power	Power
	(MHz)	(dBm)	(dBm)
144	5720	17.89	17.89

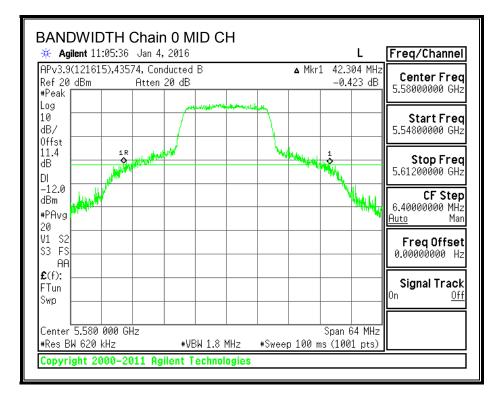
Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 193 of 600

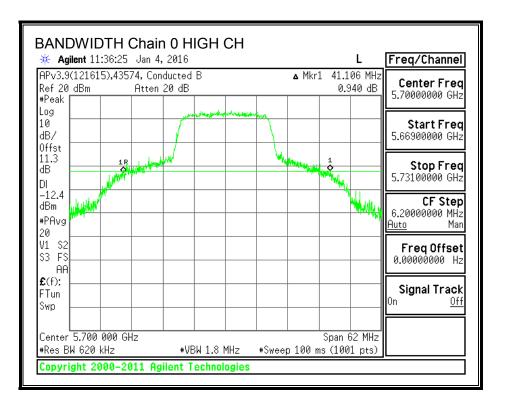
9.16. 802.11n HT20 CDD 3TX MODE IN THE 5.6 GHz BAND

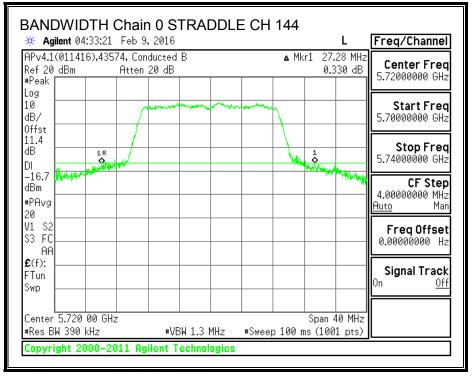
9.16.1. 26 dB BANDWIDTH

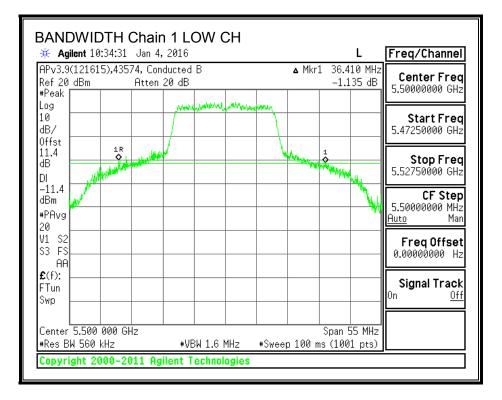

<u>LIMITS</u>


None; for reporting purposes only.

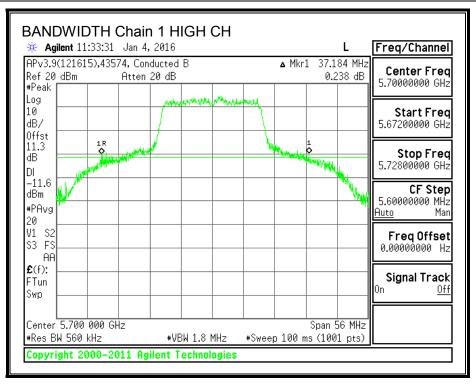
RESULTS

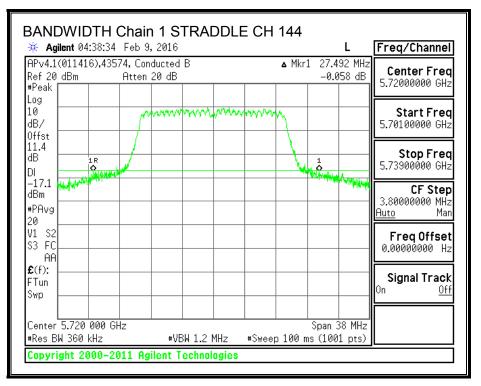

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5500	42.112	36.410	35.650
Mid	5580	42.304	36.025	31.114
High	5700	41.106	37.184	31.824
144	5720	27.28	27.49	21.28

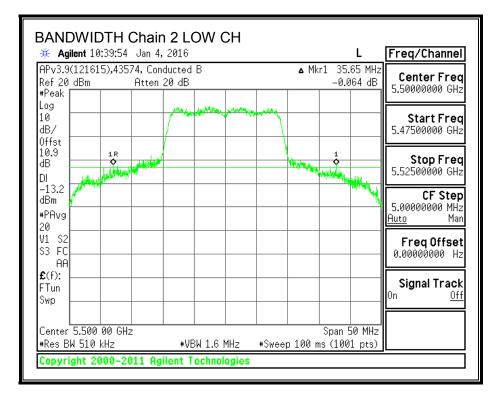

Page 194 of 600

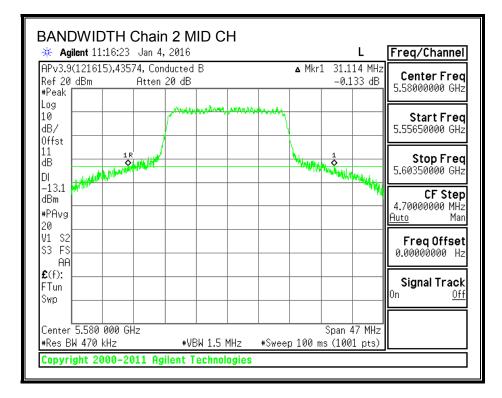


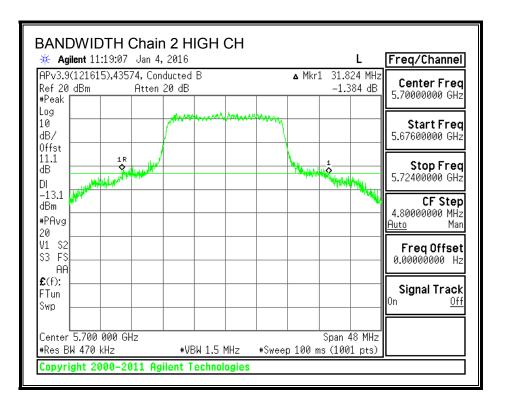
Page 195 of 600

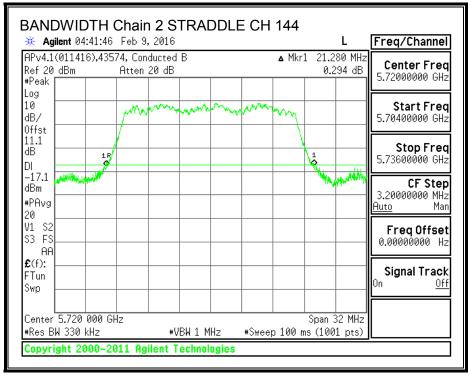



Page 196 of 600




Page 197 of 600




Page 198 of 600

Page 199 of 600

Page 200 of 600