

FCC Test Report

Product Name	Automatic Upper Arm Blood Pressure Monitor
Model No.	HL858CB
FCC ID.	2ABTAHNL85CBA

Applicant	HEALTH & LIFE CO., LTD.
Address	9F No.186, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan

Date of Receipt	Aug. 06, 2015
Issued Date	Aug. 21, 2015
Report No.	1580266R-RFUSP01V00
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: Aug. 21, 2015 Report No.: 1580266R-RFUSP01V00

Product Name	Automatic Upper Arm Blood Pressure Monitor		
Applicant	HEALTH & LIFE CO., LTD.		
Address	9F No.186, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan		
Manufacturer	HEALTH & LIFE CO., LTD.		
Model No.	HL858CB		
FCC ID.	2ABTAHNL85CBA		
EUT Rated Voltage	DC 6V by Battery		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	Health & Life		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2014		
	ANSI C63.4: 2014, ANSI C63.10: 2013		
	KDB 558074 D01 DTS Meas Guidance v03r03		
Test Result	Complied		

Documented By	:	Anita Chan
		(Senior Engineering Adm. Specialist / Anita Chou)
Tested By	:	Ken chen
		(Engineer / Ken Chen)
Approved By	:	Howks
		(Manager / Vincent Lin)

TABLE OF CONTENTS

	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Operational Description	
1.3.	Tested System Details	8
1.4.	Configuration of Tested System	8
1.5.	EUT Exercise Software	8
1.6.	Test Facility	
2.	CONDUCTED EMISSION	
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	11
2.6.	Test Result of Conducted Emission	12
3.	PEAK POWER OUTPUT	14
3.1.	Test Equipment	
3.2.	Test Setup	14
3.3.	Limit	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	RADIATED EMISSION	
4.1.	Test Equipment	
4.2.	Test Setup	16
4.3.	Limits	18
4.4.	Test Procedure	
4.5.	Uncertainty	19
4.6.	Test Result of Radiated Emission	20
5.	RF ANTENNA CONDUCTED TEST	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	27
5.4.	Test Procedure	2- 24
5.5.	Uncertainty	
5.6.	Test Result of RF Antenna Conducted Test	
6.	BAND EDGE	
6 .1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limit	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
0.0. 7.		
	OCCUPIED BANDWIDTH (6DB BW)	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	POWER DENSITY	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	45

Attachment 1:EUT Test PhotographsAttachment 2:EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Automatic Upper Arm Blood Pressure Monitor	
Trade Name	Health & Life	
Model No.	HL858CB	
FCC ID.	2ABTAHNL85CBA	
Frequency Range	2402 – 2480MHz	
Channel Number	V4.0: 40CH	
Type of Modulation	V4.0: GFSK (1Mbps)	
Antenna Type	PCB Antenna	
Channel Control	Auto	
Antenna Gain	Refer to the table "Antenna List"	
Contain Module	AMICCOM/A8105	

Antenna List

No.	Manufacturer	Model No.	Antenna Type	Peak Gain
1	SIGNAL	SMD8105-A0X	PCB Antenna	-2.39556dBi for 2.4 GHz

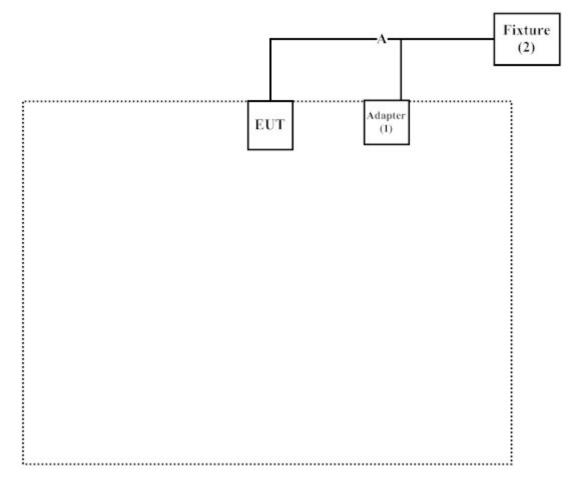
Note: The antenna of EUT is conforming to FCC 15.203.

Center Frequency of Each Channel: (For V4.0)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 01:	2404 MHz	Channel 02:	2406 MHz	Channel 03:	2408 MHz
Channel 04:	2410 MHz	Channel 05:	2412 MHz	Channel 06:	2414 MHz	Channel 07:	2416 MHz
Channel 08:	2418 MHz	Channel 09:	2420 MHz	Channel 10:	2422 MHz	Channel 11:	2424 MHz
Channel 12:	2426 MHz	Channel 13:	2428 MHz	Channel 14:	2430 MHz	Channel 15:	2432 MHz
Channel 16:	2434 MHz	Channel 17:	2436 MHz	Channel 18:	2438 MHz	Channel 19:	2440 MHz
Channel 20:	2442 MHz	Channel 21:	2444 MHz	Channel 22:	2446 MHz	Channel 23:	2448 MHz
Channel 24:	2450 MHz	Channel 25:	2452 MHz	Channel 26:	2454 MHz	Channel 27:	2456 MHz
Channel 28:	2458 MHz	Channel 29:	2460 MHz	Channel 30:	2462 MHz	Channel 31:	2464 MHz
Channel 32:	2466 MHz	Channel 33:	2468 MHz	Channel 34:	2470 MHz	Channel 35:	2472 MHz
Channel 36:	2474 MHz	Channel 37:	2476 MHz	Channel 38:	2478 MHz	Channel 39:	2480 MHz

- 1. The EUT is a Automatic Upper Arm Blood Pressure Monitorwith a built-in Bluetooth V4.0 transceiver.
- 2. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmit - BLE (GFSK)	
-----------	-------------------------------	--


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	Adapter	Mass Power	SDF0600100C1BA	N/A	N/A
2	Fixture	FLUKE	BP PUMP2	9170010	Non-Shielded, 1.8m

Sign	nal Cable Type	Signal cable Description
А	Air Cable (1 to 2)	Non-Shielded, 4.2m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4.
- (2) Execute continue transmitter on the EUT
- (3) Check the test mode, the test channel, and the data rate.
- (4) Verify that the EUT works properly.

1.6. Test Facility

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	30-65
Barometric pressure (mbar)	860-1060	950-1000

Ambient conditions in the laboratory:

The related certificate for our laboratories about the test site and management system can be downloaded from

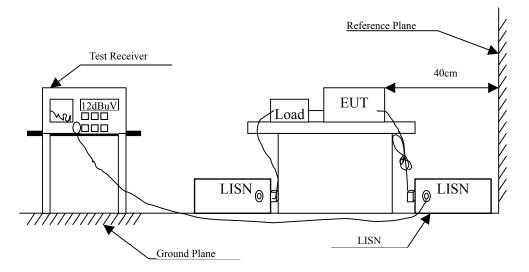
QuieTek Corporation's Web Site: <u>http://www.quietek.com/chinese/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195

Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Next Cal.	Remark		
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2014	Sep., 2015			
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2015	Feb., 2016	Peripherals		
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2015	Feb., 2016	EUT		
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2015	Mar, 2016	EUT		
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2015	Feb., 2016			
	No.1 Shielded Room							

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit							
Frequency	Lir	nits					
MHz	QP	AV					
0.15 - 0.50	66-56	56-46					
0.50-5.0	56	46					
5.0 - 30	60	50					

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2442MHz)

Frequency	Correct	Reading Measure		Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 1					
Quasi-Peak					
0.150	9.764	23.670	33.434	-32.566	66.000
0.173	9.758	21.870	31.628	-33.715	65.343
0.193	9.754	20.060	29.814	-34.957	64.771
0.271	9.760	15.190	24.950	-37.593	62.543
0.447	9.774	22.460	32.234	-25.280	57.514
0.732	9.796	24.540	34.336	-21.664	56.000
Average					
0.150	9.764	9.190	18.954	-37.046	56.000
0.173	9.758	7.240	16.998	-38.345	55.343
0.193	9.754	3.300	13.054	-41.717	54.771
0.271	9.760	6.520	16.280	-36.263	52.543
0.447	9.774	11.470	21.244	-26.270	47.514
0.732	9.796	12.190	21.986	-24.014	46.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " " means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line	 Automatic Upper Arm Blood Pressure Monitor Conducted Emission Test Line 2 						
Test Mode	: Mode 1	Mode 1: Transmit - BLE (GFSK) (2442MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
LINE 2							
Quasi-Peak							
0.154	9.763	22.690	32.453	-33.433	65.886		
0.166	9.760	21.740	31.500	-34.043	65.543		
0.248	9.758	14.160	23.918	-39.291	63.210		
0.295	9.762	13.330	23.092	-38.765	61.857		
0.455	9.774	21.050	30.824	-26.462	57.286		
0.603	9.786	10.780	20.566	-35.434	56.000		
Average							
0.154	9.763	1.890	11.653	-44.233	55.886		

21.070

23.958

14.762

22.434

12.706

-34.473

-29.251

-37.095

-24.852

-33.294

55.543

53.210

51.857

47.286

46.000

Note:

0.166

0.248

0.295

0.455

0.603

1. All Reading Levels are Quasi-Peak and average value.

11.310

14.200

5.000

12.660

2.920

2. " means the worst emission level.

9.760

9.758

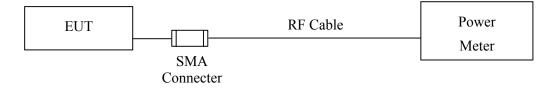
9.762

9.774

9.786

3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output


3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2015	May, 2016
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2015	Jun, 2016
	1 4 11				

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limit

The maximum peak power shall be less 1Watt.

3.4. Test Procedure

Tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 section 9.1.3 PKPM1 Peak power meter method.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

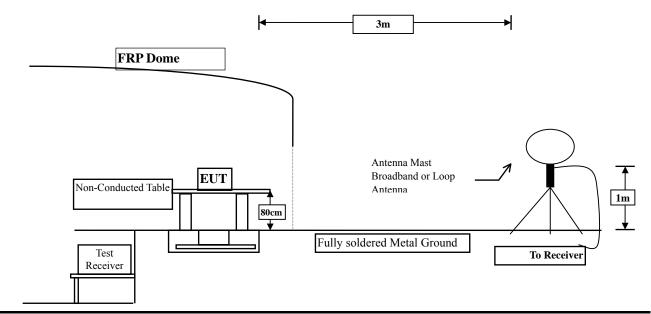
Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	4.95	1 Watt= 30 dBm	Pass
Channel 19	2440.00	5.01	1 Watt= 30 dBm	Pass
Channel 39	2480.00	4.57	1 Watt= 30 dBm	Pass

4. **Radiated Emission**

4.1. Test Equipment

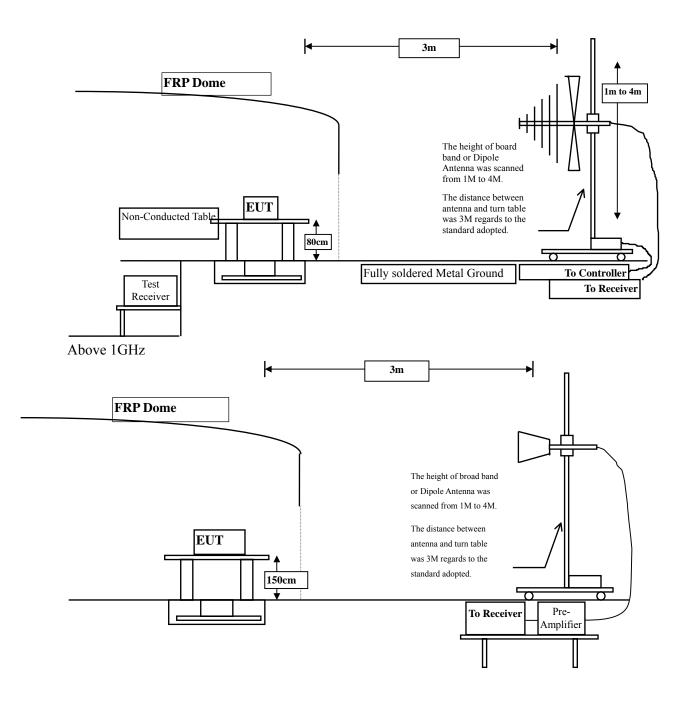
The following test equipments are used during the radiated emission test:

Test Site	Equi	pment	Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2014	Sep, 2015
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2015	Jun, 2016
	Х	EMI Test Receiver	R&S	ESCS 30/838251/001	Jun, 2015	Jun, 2016
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2015	Jun, 2016
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2015	Jun, 2016


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014	Oct, 2015
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015	Mar, 2016
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015	Jan, 2016
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2015	Aug, 2016
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015	Jan, 2016
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P /153945	Jul, 2015	Jul, 2016
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2015	Jul, 2016

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.


4.2. Test Setup

9kHz~30MHz

30MHz~1GHz

4.3. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	Field strength	Measurement distance				
IVITIZ	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks: 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

Product Test Item Test Site Test Mode	 Automatic Upper Arm Blood Pressure Monitor Harmonic Radiated Emission No.3 OATS Mode 1: Transmit - BLE (GFSK)(2402MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4804.000	3.327	65.440	68.767	-5.233	74.000		
7206.000	10.136	41.980	52.116	-21.884	74.000		
9608.000	13.706	36.250	49.956	-24.044	74.000		
Average Detector:							
4804.000	3.327	31.850	35.177	-18.823	54.000		
Vertical							
Peak Detector:							
4804.000	6.638	65.860	72.497	-1.503	74.000		
7206.000	11.005	45.980	56.985	-17.015	74.000		
9608.000	14.103	33.680	47.783	-26.217	74.000		
Average Detector:							
4804.000	6.638	30.250	36.887	-17.113	54.000		
7206.000	11.005	28.520	39.525	-14.475	54.000		

4.6. Test Result of Radiated Emission

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Automatic Upper Arm Blood Pressure Monitor Harmonic Radiated Emission No.3 OATS Mode 1: Transmit - BLE (GFSK) (2440MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	C			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4880.000	3.010	60.510	63.520	-10.480	74.000		
7320.000	11.833	40.450	52.284	-21.716	74.000		
9760.000	12.580	33.190	45.771	-28.229	74.000		
Average Detector:							
4880.000	3.010	27.520	30.530	-23.470	54.000		
Vertical							
Peak Detector:							
4880.000	5.738	66.310	72.048	-1.952	74.000		
7320.000	12.703	44.930	57.633	-16.367	74.000		
9760.000	13.052	35.250	48.302	-25.698	74.000		
Average Detector:							
4880.000	5.738	28.520	34.258	-19.742	54.000		
7320.000	12.703	25.230	37.933	-16.067	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Automatic Upper Arm Blood Pressure Monitor							
Test Item	: Harmoni	: Harmonic Radiated Emission						
Test Site	: No.3 OA	: No.3 OATS						
Test Mode	: Mode 1:	Transmit - BLE ((GFSK) (2480MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4960.000	2.760	58.940	61.700	-12.300	74.000			
7440.000	12.567	40.620	53.186	-20.814	74.000			
9920.000	13.456	35.250	48.706	-25.294	74.000			
Average Detector:								
4960.000	2.760	26.580	29.340	-24.660	54.000			
Vertical								
Peak Detector:								
4960.000	5.557	64.030	69.587	-4.413	74.000			
7440.000	13.426	43.300	56.725	-17.275	74.000			
9920.000	13.958	35.250	49.208	-24.792	74.000			
Average Detector:								
4960.000	5.557	28.250	33.807	-20.193	54.000			
7440.000	13.426	25.950	39.375	-14.625	54.000			

Note:

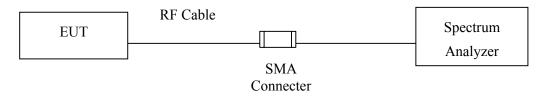
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2440MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
248.001	-6.122	23.550	17.428	-28.572	46.000
370.203	-1.080	17.416	16.337	-29.663	46.000
462.986	1.017	17.410	18.427	-27.573	46.000
541.710	2.900	16.986	19.886	-26.114	46.000
606.377	4.638	17.685	22.322	-23.678	46.000
713.217	3.567	18.726	22.292	-23.708	46.000
Vertical					
380.043	-1.440	17.131	15.691	-30.309	46.000
540.304	0.105	17.130	17.235	-28.765	46.000
685.101	2.239	18.115	20.354	-25.646	46.000
755.391	3.286	19.070	22.356	-23.644	46.000
842.551	3.059	18.807	21.866	-24.134	46.000
966.261	8.016	17.997	26.013	-27.987	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF** Antenna Conducted Test


5.1. Test Equipment

Equipment		Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2015	Jun, 2016
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2015	Jun, 2016
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015	Apr., 2016

Note: 1. All equipments are calibrated every one year.

2. The test instruments Marked "X" are used to measure the final test results.

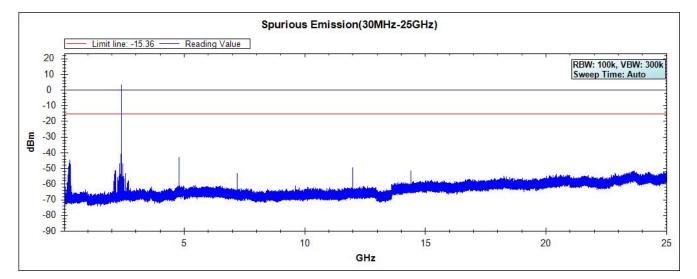
5.2. Test Setup

5.3. Limits

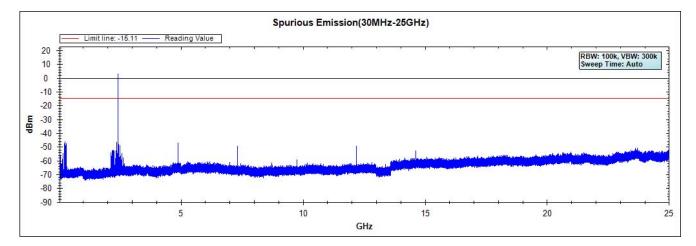
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.


5.5. Uncertainty

± 150Hz


5.6. Test Result of RF Antenna Conducted Test

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

Figure Channel 00:

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

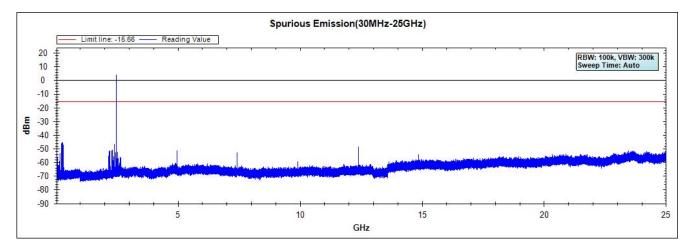


Figure Channel 19:

:	Automatic Upper Arm Blood Pressure Monitor
:	RF Antenna Conducted Test
:	No.3 OATS
:	Mode 1: Transmit - BLE (GFSK)
	:

Figure Channel 39:

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

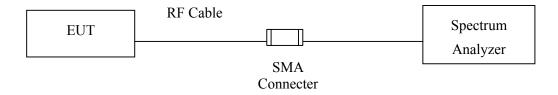
The following test equipments are used during the band edge tests:

Equipment		Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2015	Jun, 2016
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2015	Jun, 2016
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015	Apr., 2016

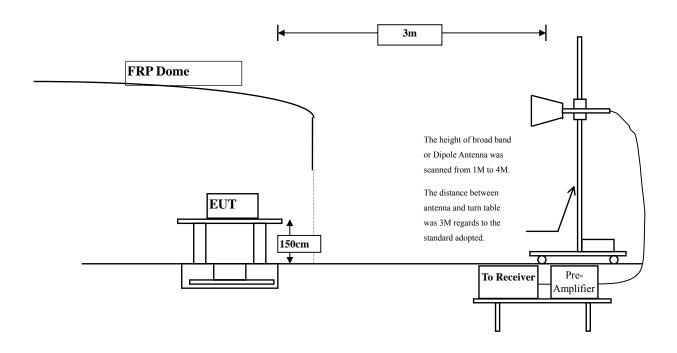
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site	Equi	pment	Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014	Oct, 2015
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015	Mar, 2016
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015	Jan, 2016
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2015	Aug, 206
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015	Jan, 2016
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2015	Jul, 2016
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2015	Jul, 2016


Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.


6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

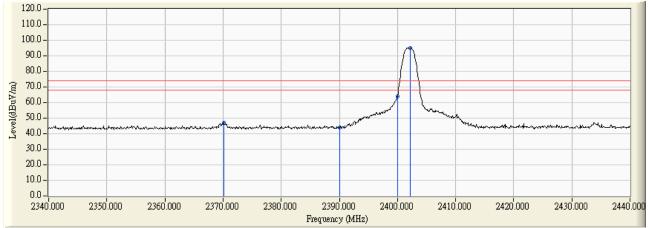
The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

6.5. Uncertainty

± 3.9 dB above 1GHz

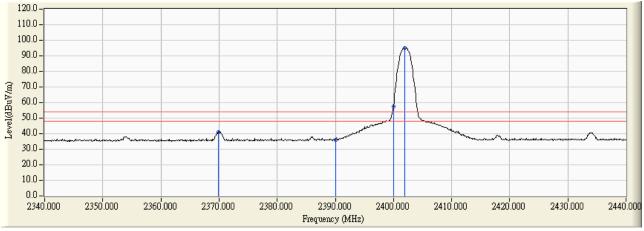
± 3.8 dB below 1GHz

6.6. Test Result of Band Edge


Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
00 (Peak)	2370.100	-2.775	49.591	46.816	74.00	54.00	Pass
00 (Peak)	2390.000	-2.687	46.470	43.783	74.00	54.00	Pass
00 (Peak)	2400.000	-2.660	66.607	63.947			
00 (Peak)	2402.200	-2.657	97.736	95.079			
00 (Average)	2369.900	-2.776	44.003	41.227	74.00	54.00	Pass
00 (Average)	2390.000	-2.687	38.789	36.102	74.00	54.00	Pass
00 (Average)	2400.000	-2.660	60.380	57.720			
00 (Average)	2402.000	-2.657	97.706	95.049			

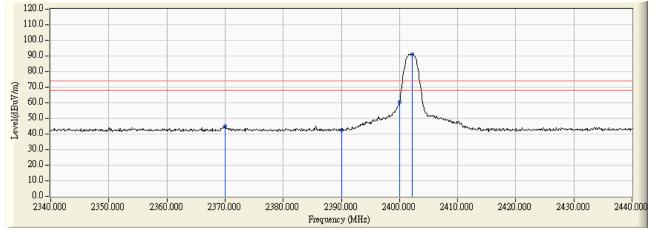

Figure Channel 00:

Horizontal (Peak)

Figure Channel 00:

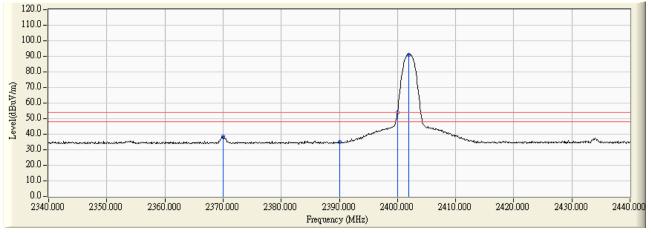
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Ų	Emission Level		Ç	Result
Channel IVO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
00 (Peak)	2370.000	-4.091	48.907	44.816	74.00	54.00	Pass
00 (Peak)	2390.000	-4.159	46.907	42.748	74.00	54.00	Pass
00 (Peak)	2400.000	-4.171	64.589	60.418			
00 (Peak)	2402.200	-4.171	95.311	91.140			
00 (Average)	2370.000	-4.091	42.536	38.445	74.00	54.00	Pass
00 (Average)	2390.000	-4.159	39.004	34.845	74.00	54.00	Pass
00 (Average)	2400.000	-4.171	58.099	53.928			
00 (Average)	2402.000	-4.171	95.288	91.117			

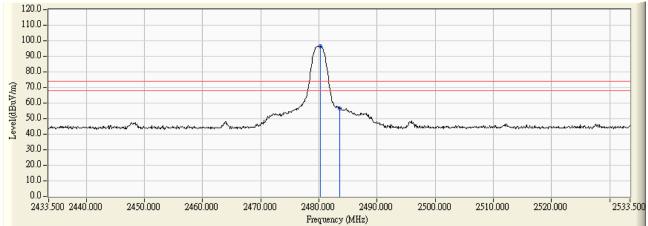

Figure Channel 00:

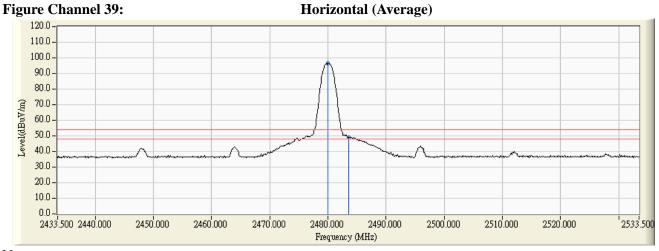
Vertical (Peak)

Figure Channel 00:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

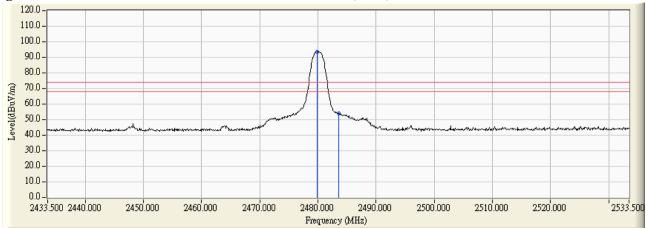

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
39 (Peak)	2480.300	-2.605	98.938	96.333			
39 (Peak)	2483.500	-2.601	59.152	56.550	74.00	54.00	Pass
39 (Average)	2480.000	-2.605	98.937	96.332			
39 (Average)	2483.500	-2.601	51.412	48.810	74.00	54.00	Pass

Figure Channel 39:

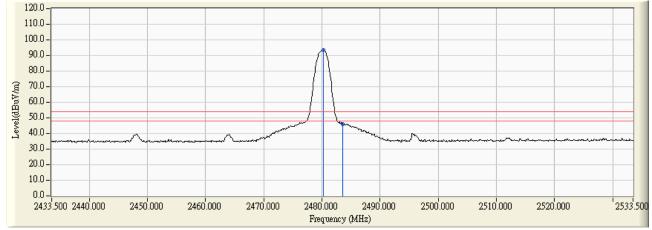
Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
39 (Peak)	2479.800	-3.978	97.317	93.339			
39 (Peak)	2483.500	-3.966	57.937	53.970	74.00	54.00	Pass
39 (Average)	2480.300	-3.977	97.447	93.470			
39 (Average)	2483.500	-3.966	50.148	46.181	74.00	54.00	Pass

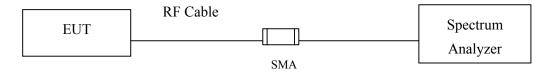

Figure Channel 39:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth (6dB BW)


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.	Next Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2015	Jun, 2016
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2015	Jun, 2016
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015	Apr., 2016

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2402MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	670	>500	Pass

Figure Channel 00:

	um Analyzer - Swept SA								
Span 5.0	RF 50 Ω AC			Avg T	ALIGNAUTO ype: Log-Pwr	TRACI	Aug 15, 2015		Span
		PNO: Wide 🖵 IFGain:Low	Trig: Free Ru #Atten: 20 dB			DE			Spar
10 dB/div	Ref Offset 0.5 dB Ref 10.50 dBm				Mkr2	2.401 6	80 GHz 5 dBm	5.0	000000 MH:
Log 0.500			2 - 1	~^ ³			-1.33 dBm		
-9.50									
-19.5		m		1	~				
39.5	many	1			horm	n and			Full Spar
-49.5	and of the					Ver-	w. w.w.		
-59.5									
-09.5									Zero Spa
Center 2.4	402000 GHz					Span 5.	000 MHz		
#Res BW		#VBW	300 kHz		Sweep 1				Last Spa
MKR MODE TR		02 010 GHz	Y 4.67 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	N VALUE		
2 N 1 3 N 1		01 680 GHz 02 350 GHz	-1.45 dBm -1.75 dBm						
4 5									
6 7 8									ignal Trac
9 10									(Span Zoom
11			101				~	On	<u>O</u> 1
MSG					STATUS	6		<u></u>	

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2440MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
19	2440	680	>500	Pass

Figure Channel 19:

RL	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	11:55:24 AM Aug 15, 2015	0
pan 5.00	000000 MHz	PNO: Wide 🕞	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Span
		IFGain:Low	#Atten: 20 dB			Sp
0 dB/div	Ref Offset 0.5 dB Ref 10.50 dBm			IVIKI2	2 2.439 670 GHz -1.37 dBm	5.00000000 M
og 500			\$ ² -{1	3	-1.07 dBm	
.50				and the second s		
9.5						
9.5					~~~~	
9.5	how we want we	1		Un t	June man	Full Sp
9.5						
9.5						Zero Sp
9.5						2010 30
	40000 GHz				On an 5 000 Mile	
Res BW 1		#VBW	/ 300 kHz	Sweep 7	Span 5.000 MHz 1.000 ms (1001 pts)	Last Sp
KR MODE TRU				UNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 2 N 1	f 2.4	40 010 GHz 39 670 GHz	4.93 dBm -1.37 dBm			
3 N 1 4	f 2.4	40 350 GHz	-1.44 dBm			
5 6						
7						Signal Tra
9						(Span Zoo On
1			inter and		×	
11			Statt 22		*	on

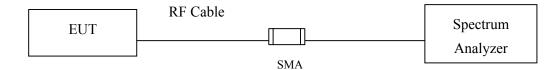
Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
39	2480	725	>500	Pass

Figure Channel 39:

Agilent Spectrum Analyzer - Swept S	λ				
α RL RF 50Ω A Span 5.00000000 MHz		SENSE:INT Avg T Free Run	ALIGNAUTO ype: Log-Pwr	12:00:09 PM Aug 15, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Span
		n: 20 dB		DET PNNNN	Spa
Ref Offset 0.5 dE 10 dB/div Ref 10.50 dBr			Mkr2 2	.479 645 GHz -1.72 dBm	5.0000000 MH
Log 0.500	¢2	$m 1 \sqrt{3}$		1.68 dBm	
-9.50					
-19.5		2	~		
-29.5	w		1 m	~	Full Spa
-49.5				month	-
-59.5					
-69.5					Zero Spa
Center 2.480000 GHz #Res BW 100 kHz	#VBW 300 I	۲	Sweep 1.0	Span 5.000 MHz 00 ms (1001 pts)	Last Spa
MKR MODE TRC SCL	X Y 2,480 010 GHz 4,3	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2	2.479 645 GHz -1.7	2 dBm 96 dBm			
4 5					
6 7					
8 9 10					Signal Trac (Span Zoor
				<u>×</u>	On <u>O</u>
ISG			STATUS		

8. Power Density


8.1. Test Equipment

	Equipment	Manufactu	Model No./Serial No.	Last Cal.	Next Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2015	Jun, 2016
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2015	Jun, 2016
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015	Apr., 2016

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013, the maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2402MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	4.64	< 8dBm	Pass

Figure Channel 00:

Agilent Spectrum Analyzer - Swept SA				op s	
LX/RL RF 50Ω AC		SENSE:INT	ALIGN AUTO	11:51:02 AM Aug 15, 2015	Francisco
Center Freq 2.4020000	0 GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide 🖵	Trig: Free Run		TYPE MWWWWW DET P N N N N N	
	IFGain:Low	#Atten: 20 dB		C 21	Auto Turre
Ref Offset 0.5 dB			Mkr1 2	.402 007 0 GHz	Auto Tune
10 dB/div Ref 10.50 dBm				4.64 dBm	
			-r		
					Contor From
	man haven	mon	man man man		Center Fred
0.500				1 to min	2.402000000 GH:
				monthemen	
9.50				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
10000					Start Fred
					2.401497500 GH
-19.5					2.401497500 GH2
29.5					
20.0					Stop Free
					2.402502500 GH
-39.5					
					-
49.5					CF Step
45.0					100.500 kH
					Auto Mar
59.5					
69.5					Freq Offset
69.5					0 H:
79.5					
ABSYLVE A					
Center 2.4020000 GHz	· · · · ·			Span 1.005 MHz	
Res BW 100 kHz	#\/B\/	300 kHz	Sween 1	.000 ms (1001 pts)	
	#*D**	500 NH2			
ISG			STATUS		

:	Automatic Upper Arm Blood Pressure Monitor
:	Power Density Data
:	No.3OATS
:	Mode 1: Transmit - BLE (GFSK) (2440MHz)
	:

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
19	2440	4.89	< 8dBm	Pass

Figure Channel 19:

			8						
					wept SA	trum Analyzer - Sv			
Frequency	11:55:46 AM Aug 15, 2015	ALIGN AUTO	SENSE:INT			RF 50	X/RL		
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWW	vg Type: Log-Pwr	ig: Free Run	Hz -	00000 GI	req 2.4400	Center I		
	DET P N N N N N		tten: 20 dB						
Auto Tun		Million A. A.		Galli.Luw	11				
	40 022 44 GHz	WIKFT 2.4		Ref Offset 0.5 dB					
	4.89 dBm				dBm	Ref 10.50	10 dB/div		
			1						
Center Fre		mon	m	ma man man por	m				
2.440000000 GH	the second se				al and		0.500		
	and a superior					m	~		
					-		-9.50		
Start Fre									
2.439490000 GH							-19.5		
-							10.0		
Stop Fre							-29.5		
2.440510000 GH									
							-39.5		
CF Ste					2.		49.5		
102.000 kH Auto Ma									
Auto me							-59.5		
Freq Offs							69.5		
0 1							00.0		
1									
							79.5		
	Chan 1 030 MHz				1-1	.4400000 GH			
	Span 1.020 MHz .000 ms (1001 pts)	Sween 1	0 647	#VBW 30	12	.4400000 Gr / 100 kHz			
				#VDVV JU	0.0				
		STATUS			ted	nment Comple	usg 😲 Alig		

Product	:	Automatic Upper Arm Blood Pressure Monitor
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
39	2480	4.34	< 8dBm	Pass

Figure Channel 39:

Agilent Spectr	um Analyzer - Swept SA					
X/RL	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	12:00:30 PM Aug 15, 2015	Frequency
Center F	req 2.48000000) GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	•	PNO: Wide 🖵	¹ Trig: Free Run #Atten: 20 dB		TYPE MWWWWW DET P N N N N N	
		IFGain:Low	#Atten: 20 db		(2 - 1) (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Auto Tun
	Ref Offset 0.5 dB			Mkr1 2.4	180 004 32 GHz	Auto Tuli
10 dB/div	Ref 10.50 dBm				4.34 dBm	
og				<u> </u>		
			₽ '			Center Fre
.500		and marken	man	man man man many many many many many man	· · · ·	
.500					mannen	2.48000000 GH
	- Andrew Contraction of the second se				and the second s	
9.50						
						Start Fre
19.5						2.479460000 GI
19.0						
29.5						Stop Fre
39.5						2.480540000 GH
39.5						
						05.04
49.5	4					CF Ste 108.000 k
						방가님 것은 것 같아요. 것 같아요. 것 같아요.
59.5						<u>Auto</u> M
19.5						
						Freq Offs
59.5						Land distance of a possible of the second
						0
79.5						
13.3						
	1000000 011-				On an 4 007 Mile	
	4800000 GHz		000111-		Span 1.087 MHz	
fRes BW	100 KHZ	#VBW	300 kHz	Sweep 1	.000 ms (1001 pts)	
SG				STATUS		
				2 653		

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs