

FCC Test Report

Product Name	Automatic Upper Arm Blood Pressure Monitor
Model No.	HL858A1-Z, HL858CB(HL858B1-BL,BU 580 Connect, BU 584 Connect)
FCC ID.	2ABTAHNL85A1Z

Applicant	Health & Life Co. Ltd.
Address	9F., No. 186, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan

Date of Receipt	Sep. 24, 2020
Issued Date	Dec. 16, 2020
Report No.	2090889R-E3032110108
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 2090889R-E3032110108

Test Report

Issued Date: Dec. 16, 2020

Report No.: 2090889R-E3032110108

Product Name	Automatic Upper Arm Blood Pressure Monitor		
Applicant	Health & Life Co. Ltd.		
Address	9F., No. 186, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan		
Manufacturer	Health & Life Co. Ltd.		
Model No.	HL858A1-Z, HL858CB(HL858B1-BL,BU 580 Connect, BU 584 Connect)		
FCC ID.	2ABTAHNL85A1Z		
EUT Rated Voltage	AC 100-240V, 50-60Hz		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	Health & Life		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C		
	ANSI C63.4: 2014, ANSI C63.10: 2013		
Test Result	Complied		

Documented By	:	Joanne Lin
Tested By	:	(Senior Adm. Specialist / Joanne Lin) Ivan Chuang
Approved By	:	(Senior Engineer / Ivan Chuang) (Director / Vincent Lin)

TABLE OF CONTENTS

scription	Page
GENERAL INFORMATION	
EUT Description	
EUT Exercise Software	,
List of Test Equipment.	
Uncertainty	10
Test Result of Conducted Emission	1
RADIATED EMISSION	2
lest Setup	2
RF ANTENNA CONDUCTED TEST	3′
Limits	3′
Test Procedure	3′
BAND EDGE	39
Test Setup	39
Test Result of Band Edge	42
6DB BANDWIDTH	50
Test Setup	50
Limits	50
Test Setup	5
ENTREDUCTION METHOD DURING COMEDIANCE TESTING	•••••••••••••••••••••••••••••••••••••••
	GENERAL INFORMATION GENERAL INFORMATION EUT Description Tested System Details. Configuration of Tested System EUT Exercise Software Test Facility List of Test Equipment Uncertainty. CONDUCTED EMISSION Test Setup Limits. Test Procedure Test Result of Conducted Emission PEAK POWER OUTPUT Test Setup Limit Test Setup Limit Test Procedure Test Result of Peak Power Output RADIATED EMISSION Test Setup Limits Test Procedure Test Result of Peak Power Output RADIATED EMISSION Test Setup Limits Test Procedure Test Result of Radiated Emission RF ANTENNA CONDUCTED TEST Test Setup Limits. Test Procedure Test Result of Radiated Emission Test Result of Radiated Emission RF ANTENNA CONDUCTED TEST Test Setup Limits Test Procedure Test Result of RP Antenna Conducted Test BAND EDGE Test Setup Limit Test Procedure Test Result of Band Edge 6DB BANDWIDTH Test Setup Limits Test Procedure Test Result of Band Edge 6DB BANDWIDTH Test Setup Limits Test Procedure Test Result of Fore Density DUTY CYCLE Test Setup Test Result of Duty Cycle

Attachment 1: EUT Test Photographs Attachment 2: EUT Detailed Photographs

Revision History

Report No.	Version	Description	Issued Date
2090889R-E3032110108	V1.0	Initial issue of report.	Dec. 16, 2020

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Automatic Upper Arm Blood Pressure Monitor
Trade Name	Health & Life
Model No.	HL858A1-Z, HL858CB(HL858B1-BL,BU 580 Connect, BU 584 Connect)
FCC ID.	2ABTAHNL85A1Z
Frequency Range	2402-2480MHz
Channel Number	V4.2: 40CH
Type of Modulation	V4.2: GFSK(1Mbps)
Antenna Type	PCB Antenna
Channel Control	Auto
Antenna Gain	Refer to the table "Antenna List"
USB Cable (for DC Jack)	Shielded, 0.6m
Power Adapter	MFR: FranMar, M/N: FRM06-S05-UU
	Input: AC 100-240V, 50-60Hz, 0.3~1.5A
	Output: 5V=1.2A

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	atl	LB-BLE-005	PCB Antenna	2.23dBi for 2.4GHz

Note: The antenna of EUT is conforming to FCC 15.203.

Center Frequency of Each Channel: (For V4.2)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 01:	2404 MHz	Channel 02:	2406 MHz	Channel 03:	2408 MHz
Channel 04:	2410 MHz	Channel 05:	2412 MHz	Channel 06:	2414 MHz	Channel 07:	2416 MHz
Channel 08:	2418 MHz	Channel 09:	2420 MHz	Channel 10:	2422 MHz	Channel 11:	2424 MHz
Channel 12:	2426 MHz	Channel 13:	2428 MHz	Channel 14:	2430 MHz	Channel 15:	2432 MHz
Channel 16	2434 MHz	Channel 17:	2436 MHz	Channel 18:	2438 MHz	Channel 19:	2440 MHz
Channel 20:	2442 MHz	Channel 21:	2444 MHz	Channel 22:	2446 MHz	Channel 23:	2448 MHz
Channel 24:	2450 MHz	Channel 25:	2452 MHz	Channel 26:	2454 MHz	Channel 27:	2456 MHz
Channel 28:	2458 MHz	Channel 29:	2460 MHz	Channel 30:	2462 MHz	Channel 31:	2464 MHz
Channel 32:	2466 MHz	Channel 33:	2468 MHz	Channel 34:	2470 MHz	Channel 35:	2472 MHz
Channel 36:	2474 MHz	Channel 37:	2476 MHz	Channel 38:	2478 MHz	Channel 39:	2480 MHz

Note:

- 1. The EUT is an Automatic Upper Arm Blood Pressure Monitor with a built-in Bluetooth V4.2.
- 2. This device is designed for operation with batteries or an adapter.

Every model according to different adapter jack or the device designed (AC/DC or Micro-USB or Type-C jack).

For AD/DC jack type, connect to main board directly.

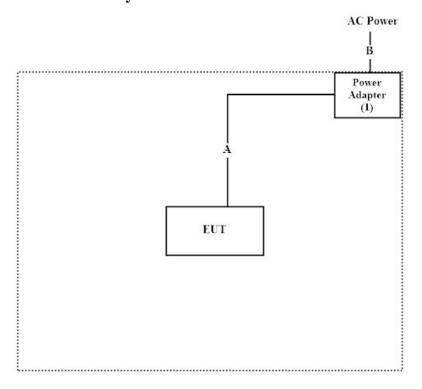
For Micro USB or Type-C jack, connect to main board via adapter board and use the same adapter board. According to RF technical judgement, Model HL858A1-Z with full function, HL858A1-Z could be as representative model and perform full test.

For others model(s) are different marketing purposes.

Model	HL858A1-Z	HL858CB(HL858B1-BL,BU 580 Connect, BU 584 Connect)
Components, Function	Talking IC, Speaker, Backlit, BLE module	BLE module, Backlit

- 3. In addition to Conducted Emission & Radiated Emission(Below 1GHz) mode(DC Jack/Micro USB/Type C), only the worst case mode(DC Jack) for other tests is shown in the test report.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
- 5. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth V4.2 transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 6. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.

Test Mode	Mode 1: Transmit - BLE
1050111040	Mode 1. Hunding BEE


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Power Adapter	FranMar	FRM06-S05-UU	N/A	N/A

Signal Cable Type		Signal cable Description
A	USB Cable (for DC Jack)	Shielded, 0.6m
A	USB Cable (for Micro USB)	Shielded, 1m
A	USB Cable (for Type C)	Shielded, 1m
В	Power Cable	Non-shielded, 1.8m

1.3. Configuration of Tested System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.3.
- (2) Press the button.
- (3) Start transmits continually.
- (4) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

	•		
Performed Item	Items	Required	Actual
Condented Francisco	Temperature (°C)	10~40 °C	20.2 °C
Conducted Emission	Humidity (%RH)	10~90 %	65.5 %
D 1: 4 1 E : :	Temperature (°C)	10~40 °C	20.5°C
Radiated Emission	Humidity (%RH)	10~90 %	62.8%
C 1 t	Temperature (°C)	10~40 °C	26°C
Conductive	Humidity (%RH)	10~90 %	55.8%

USA : FCC Registration Number: TW0023

Canada : IC Registration Number: 25880

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd Address : No.159, Sec. 2, Wenhua 1st Rd., Linkou Dist.,

New Taipei City 24457, Taiwan, R.O.C.

Phone number : 886-2-2602-7968

Fax number : 866-2-2602-3286

Email address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements /ASR1

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
X	EMI Test Receiver	R&S	ESR7	101601	2020.05.28	2021.05.27
X	Two-Line V-Network	R&S	ENV216	101306	2020.03.25	2021.03.24
X	Two-Line V-Network	R&S	ENV216	101307	2020.04.17	2021.04.16
X	Coaxial Cable	DEKRA	RG400_BNC	RF001	2020.05.24	2021.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: DEKRA Testing System V2.0.

For Conducted measurements /ASR2

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
X	Spectrum Analyzer	R&S	FSV30	103464	2020.02.11	2021.02.10
X	Power Meter	Anritsu	ML2496A	1548003	2019.12.17	2020.12.16
X	Power Sensor	Anritsu	MA2411B	1531024	2019.12.17	2020.12.16
X	Power Sensor	Anritsu	MA2411B	1531025	2019.12.17	2020.12.16

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: DEKRA Conduction Test System V9.0.5.

For Radiated measurements /ACB1

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
X	Loop Antenna	AMETEK	HLA6121	49611	2020.03.16	2021.03.15
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2020.07.10	2021.07.09
X	Horn Antenna	ETS-Lindgren	3117	00201366	2020.09.21	2021.09.20
	Horn Antenna	Com-Power	AH-840	101088	2020.09.11	2021.09.10
X	Pre-Amplifier	EMCI	EMC001330	980301	2020.06.04	2021.06.03
X	Pre-Amplifier	EMCI	EMC051835SE	980312	2020.06.10	2021.06.09
X	Pre-Amplifier	EMCI	EMC05820SE	980308	2020.09.18	2021.09.17
X	Pre-Amplifier	EMCI	EMC184045SE	980314	2020.06.10	2021.06.09
X	Filter	MICRO-TRONICS	BRM50702	G270	2020.08.17	2021.08.16
	Filter	MICRO-TRONICS	BRM50716	G196	2020.08.17	2021.08.16
X	EMI Test Receiver	R&S	ESR7	101602	2019.12.16	2020.12.15
X	Spectrum Analyzer	R&S	FSV40	101148	2020.03.16	2021.03.15
X	Coaxial Cable	SUHNER	SUCOFLEX 106	RF002	2020.07.03	2021.07.02
X	Mircoflex Cable	HUBER SUHNER	SUCOFLEX 102	MY3381/2	2020.06.10	2021.06.09

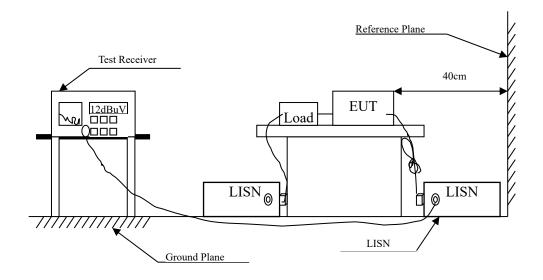
- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : DEKRA Testing System V2.0.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.


Test item	Uncertainty		
Conducted Emission	±3.4	2 dB	
Peak Power Output	Power Meter ±0.91 dB		
Radiated Emission	Under 1GHz ±4.06 dB	Above 1GHz ±3.73 dB	
RF Antenna Conducted Test	±2.5	3 dB	
Band Edge	±2.5	3 dB	
6dB Bandwidth	±682.	83 Hz	
Power Density	±2.53 dB		
Duty Cycle	±2.3	1 ms	

Page: 10 of 58

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit									
Frequency	Lin	nits							
MHz	QP	AV							
0.15 - 0.50	66-56	56-46							
0.50-5.0	56	46							
5.0 - 30	60	50							

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

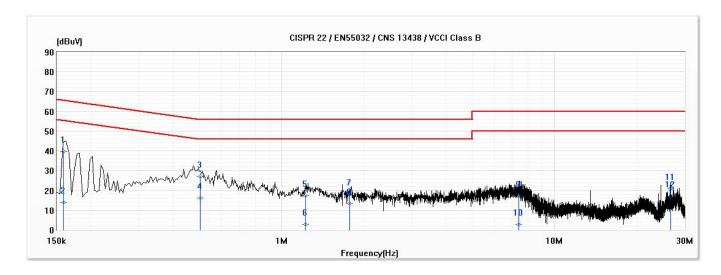
Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.

Page: 12 of 58

2.4. Test Result of Conducted Emission


Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : Conducted Emission Test

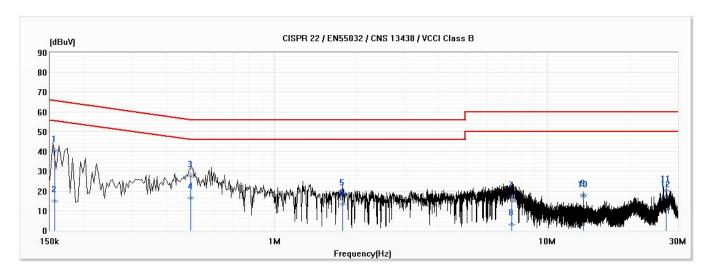
Power Line : L1

Test Mode : Mode 1: Transmit - BLE (2440MHz) (DC Jack)

Test date : 2020/12/15

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV)	(dB)	(dBµV)	(dB)	Type
		(dBµV)					
*1	0.159	39.82	65.52	-25.70	30.16	9.66	QP
2	0.159	13.91	55.52	-41.62	4.25	9.66	AV
3	0.503	27.13	56.00	-28.87	17.47	9.66	QP
4	0.503	16.26	46.00	-29.74	6.60	9.66	AV
5	1.224	17.52	56.00	-38.48	7.82	9.70	QP
6	1.224	2.64	46.00	-43.36	-7.05	9.70	AV
7	1.776	17.99	56.00	-38.01	8.28	9.71	QP
8	1.776	13.31	46.00	-32.69	3.59	9.71	AV
9	7.377	16.94	60.00	-43.06	7.10	9.84	QP
10	7.377	2.88	50.00	-47.12	-6.96	9.84	AV
11	26.610	20.86	60.00	-39.14	10.91	9.96	QP
12	26.610	16.93	50.00	-33.07	6.97	9.96	AV

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit.



Test Item : Conducted Emission Test

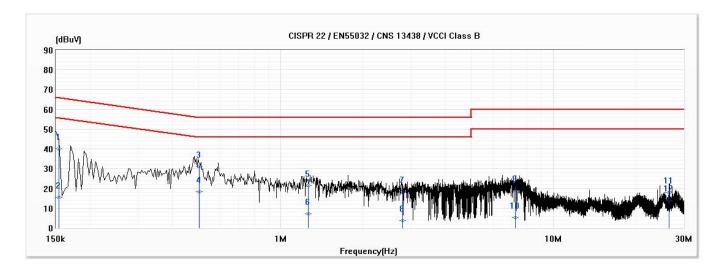
Power Line : N

Test Mode : Mode 1: Transmit - BLE (2440MHz) (DC Jack)

Test date : 2020/12/15

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV)	(dB)	(dBµV)	(dB)	Type
		(dBµV)					
*1	0.156	40.23	65.65	-25.42	30.56	9.67	QP
2	0.156	14.79	55.65	-40.86	5.12	9.67	AV
3	0.493	27.76	56.12	-28.36	18.09	9.67	QP
4	0.493	16.46	46.12	-29.66	6.79	9.67	AV
5	1.777	18.39	56.00	-37.61	8.67	9.72	QP
6	1.777	13.22	46.00	-32.78	3.49	9.72	AV
7	7.377	16.97	60.00	-43.03	7.11	9.85	QP
8	7.377	2.97	50.00	-47.03	-6.89	9.85	AV
9	13.560	17.89	60.00	-42.11	7.92	9.97	QP
10	13.560	17.28	50.00	-32.72	7.31	9.97	AV
11	27.162	20.05	60.00	-39.95	9.96	10.08	QP
12	27.162	17.47	50.00	-32.53	7.39	10.08	AV

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit.



Test Item : Conducted Emission Test

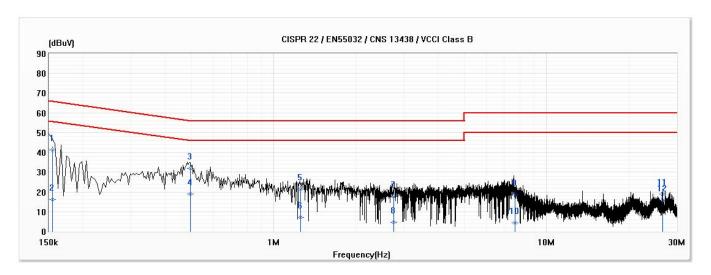
Power Line : L1

Test Mode : Mode 1: Transmit - BLE (2440MHz) (Micro USB)

Test date : 2020/12/15

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV)	(dB)	(dBµV)	(dB)	Type
		$(dB\mu V)$					
1	0.154	40.06	65.78	-25.72	30.40	9.66	QP
2	0.154	15.51	55.78	-40.27	5.85	9.66	AV
*3	0.503	31.00	56.00	-25.00	21.33	9.66	QP
4	0.503	18.38	46.00	-27.62	8.72	9.66	AV
5	1.265	21.27	56.00	-34.73	11.57	9.70	QP
6	1.265	7.02	46.00	-38.98	-2.68	9.70	AV
7	2.799	18.46	56.00	-37.54	8.72	9.74	QP
8	2.799	3.62	46.00	-42.38	-6.12	9.74	AV
9	7.224	18.78	60.00	-41.22	8.94	9.84	QP
10	7.224	5.18	50.00	-44.82	-4.66	9.84	AV
11	26.551	17.93	60.00	-42.07	7.98	9.96	QP
12	26.551	14.05	50.00	-35.95	4.09	9.96	AV

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit.



Test Item : Conducted Emission Test

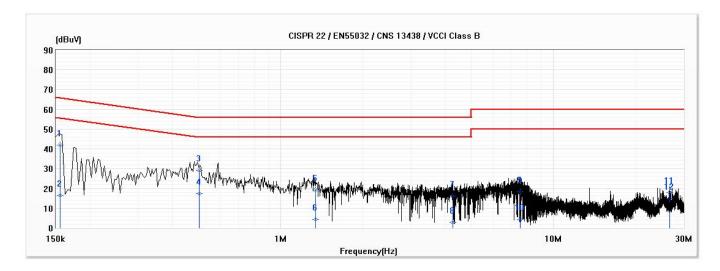
Power Line : N

Test Mode : Mode 1: Transmit - BLE (2440MHz) (Micro USB)

Test date : 2020/12/15

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV)	(dB)	(dBµV)	(dB)	Type
		$(dB\mu V)$					
1	0.155	41.25	65.74	-24.49	31.58	9.67	QP
2	0.155	16.19	55.74	-39.54	6.52	9.67	AV
*3	0.495	31.88	56.08	-24.20	22.21	9.67	QP
4	0.495	18.82	46.08	-27.25	9.15	9.67	AV
5	1.254	21.52	56.00	-34.48	11.82	9.70	QP
6	1.254	7.07	46.00	-38.93	-2.63	9.70	AV
7	2.747	17.76	56.00	-38.24	8.01	9.74	QP
8	2.747	4.52	46.00	-41.48	-5.23	9.74	AV
9	7.659	18.69	60.00	-41.31	8.83	9.87	QP
10	7.659	4.20	50.00	-45.80	-5.67	9.87	AV
11	26.612	19.03	60.00	-40.97	8.95	10.08	QP
12	26.612	15.75	50.00	-34.25	5.67	10.08	AV

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit.



Test Item : Conducted Emission Test

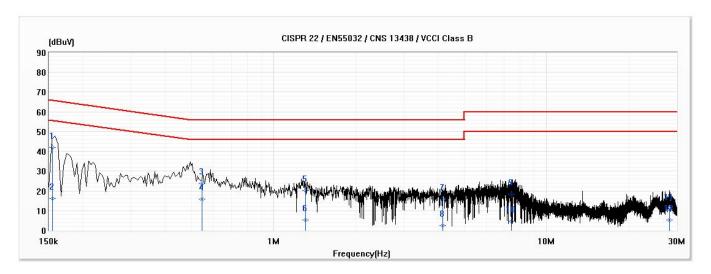
Power Line : L1

Test Mode : Mode 1: Transmit - BLE (2440MHz) (Type C)

Test date : 2020/12/15

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV)	(dB)	(dBµV)	(dB)	Type
		$(dB\mu V)$					
*1	0.156	41.88	65.68	-23.81	32.22	9.66	QP
2	0.156	16.37	55.68	-39.31	6.71	9.66	AV
3	0.504	29.10	56.00	-26.90	19.44	9.66	QP
4	0.504	17.28	46.00	-28.72	7.62	9.66	AV
5	1.344	19.25	56.00	-36.75	9.55	9.70	QP
6	1.344	4.45	46.00	-41.55	-5.25	9.70	AV
7	4.281	16.29	56.00	-39.71	6.51	9.78	QP
8	4.281	2.89	46.00	-43.11	-6.88	9.78	AV
9	7.528	18.39	60.00	-41.61	8.55	9.85	QP
10	7.528	4.25	50.00	-45.75	-5.59	9.85	AV
11	26.612	18.12	60.00	-41.88	8.17	9.96	QP
12	26.612	15.01	50.00	-34.99	5.05	9.96	AV

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit.



Test Item : Conducted Emission Test

Power Line : N

Test Mode : Mode 1: Transmit - BLE (2440MHz) (Type C)

Test date : 2020/12/15

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV)	(dB)	(dBµV)	(dB)	Type
		$(dB\mu V)$					
*1	0.154	42.00	65.76	-23.76	32.33	9.67	QP
2	0.154	15.99	55.76	-39.77	6.32	9.67	AV
3	0.547	23.90	56.00	-32.10	14.22	9.67	QP
4	0.547	15.74	46.00	-30.26	6.07	9.67	AV
5	1.306	20.05	56.00	-35.95	10.35	9.70	QP
6	1.306	5.39	46.00	-40.61	-4.31	9.70	AV
7	4.169	15.74	56.00	-40.26	5.95	9.78	QP
8	4.169	2.63	46.00	-43.37	-7.15	9.78	AV
9	7.428	18.28	60.00	-41.72	8.42	9.85	QP
10	7.428	4.74	50.00	-45.26	-5.12	9.85	AV
11	28.258	10.97	60.00	-49.03	0.87	10.09	QP
12	28.258	5.25	50.00	-44.75	-4.85	10.09	AV

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit.

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

3.3. Test Procedure

The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

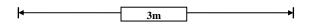
3.4. Test Result of Peak Power Output

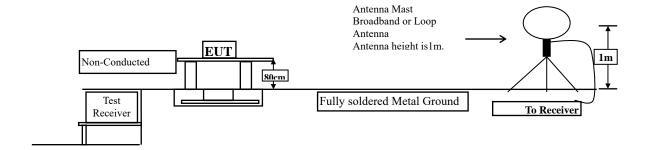
Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : Peak Power Output

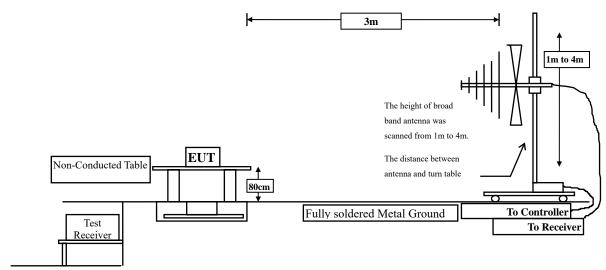
Test Mode : Mode 1: Transmit - BLE (DC jack)

Test Date : 2020/10/08

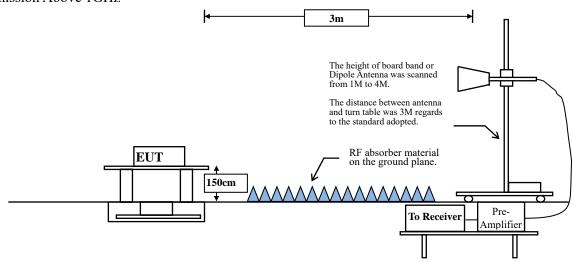

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	-0.93	1 Watt= 30 dBm	Pass
Channel 19	2440.00	-1.23	1 Watt= 30 dBm	Pass
Channel 39	2480.00	-1.81	1 Watt= 30 dBm	Pass



4. Radiated Emission


4.1. Test Setup

Radiated Emission Under 30MHz



Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.2. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	Field strength	Measurement distance					
IVIIIZ	(microvolts/meter)	(meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

Page: 23 of 58

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \geq 98 %

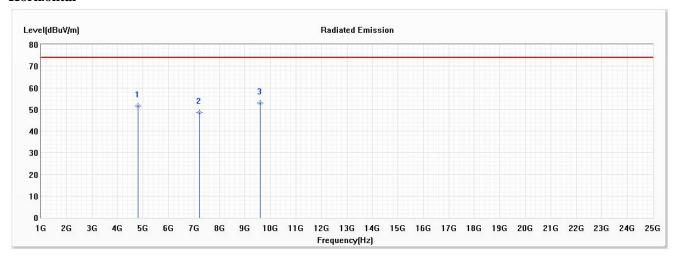
VBW \geq 1/T, when duty cycle \leq 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	T	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE	89.80	0.6340	1577	2000

Note: Duty Cycle Refer to Section 9.

4.4. Test Result of Radiated Emission


Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : Harmonic Radiated Emission

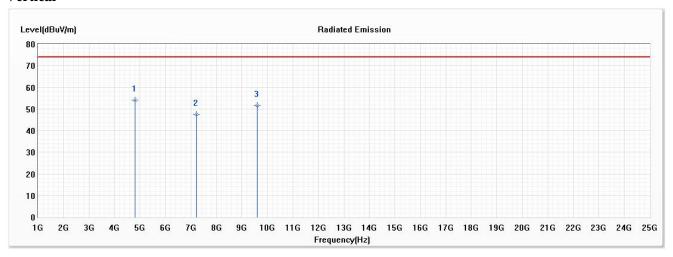
Test Mode : Mode 1: Transmit - BLE (2402MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	4804.000	51.67	74.00	-22.33	56.51	-4.84	PK
2	7206.000	48.45	74.00	-25.55	49.54	-1.09	PK
* 3	9608.000	53.02	74.00	-20.98	52.19	0.83	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test Item : Harmonic Radiated Emission

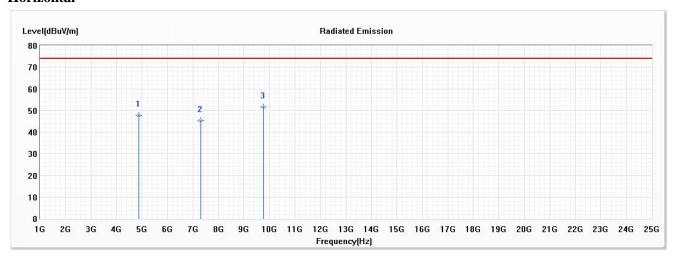
Test Mode : Mode 1: Transmit - BLE (2402MHz) (DC Jack)

Test Date : 2020/11/10

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
* 1	4804.000	53.95	74.00	-20.05	58.79	-4.84	PK
2	7206.000	47.33	74.00	-26.67	48.42	-1.09	PK
3	9608.000	51.46	74.00	-22.54	50.63	0.83	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test Item : Harmonic Radiated Emission

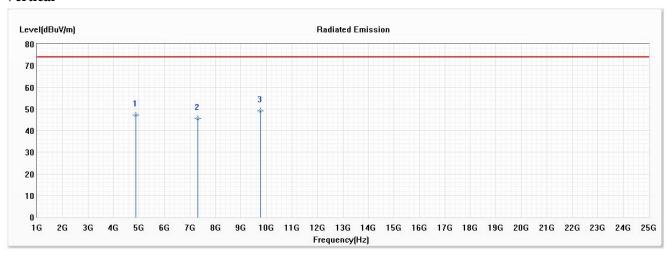
Test Mode : Mode 1: Transmit - BLE (2440MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency (MHz)	Emission Level	Limit (dBµV/m)	Margin (dB)	Reading Level (dBµV)	Correct Factor (dB)	Detector Type
	(WILL)	(dBμV/m)	(ασμν/ιιι)	(ub)	(ασμν)	(ub)	турс
1	4880.000	47.59	74.00	-26.41	52.36	-4.77	PK
2	7320.000	45.33	74.00	-28.67	46.56	-1.23	PK
* 3	9760.000	51.70	74.00	-22.30	50.60	1.10	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test Item : Harmonic Radiated Emission

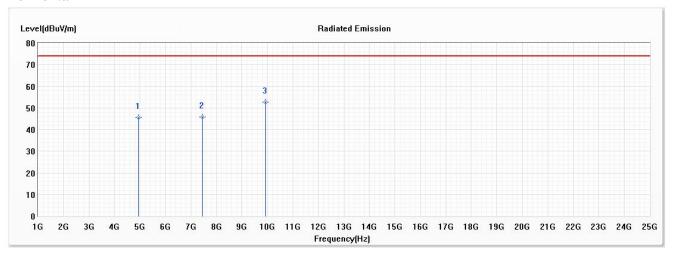
Test Mode : Mode 1: Transmit - BLE (2440MHz) (DC Jack)

Test Date : 2020/11/10

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	4880.000	47.25	74.00	-26.75	52.02	-4.77	PK
2	7320.000	45.50	74.00	-28.50	46.73	-1.23	PK
* 3	9760.000	49.00	74.00	-25.00	47.90	1.10	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test Item : Harmonic Radiated Emission

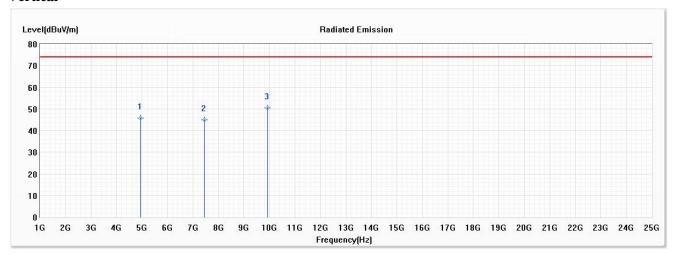
Test Mode : Mode 1: Transmit - BLE (2480MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	4960.000	45.58	74.00	-28.42	50.00	-4.42	PK
2	7440.000	45.87	74.00	-28.13	47.10	-1.23	PK
* 3	9920.000	52.69	74.00	-21.31	51.47	1.22	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test Item : Harmonic Radiated Emission

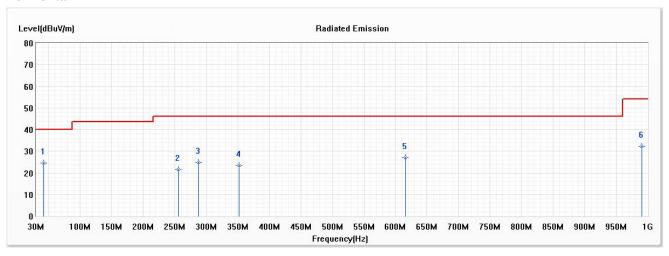
Test Mode : Mode 1: Transmit - BLE (2480MHz) (DC Jack)

Test Date : 2020/11/10

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	4960.000	45.78	74.00	-28.22	50.20	-4.42	PK
2	7440.000	44.84	74.00	-29.16	46.07	-1.23	PK
* 3	9920.000	50.49	74.00	-23.51	49.27	1.22	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Test Item : General Radiated Emission

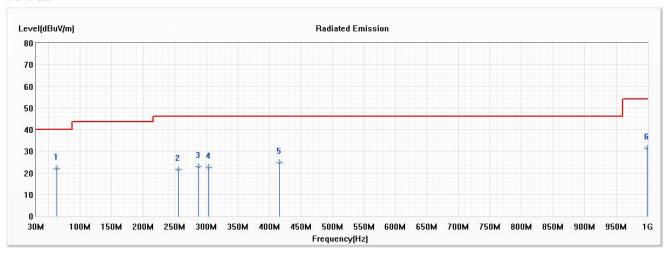
Test Mode : Mode 1: Transmit - BLE (2440MHz) (DC Jack)

Test Date : 2020/11/11

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
* 1	42.610	24.64	40.00	-15.36	35.44	-10.80	QP
2	256.010	21.64	46.00	-24.36	33.19	-11.55	QP
3	288.020	24.87	46.00	-21.13	35.05	-10.18	QP
4	352.040	23.56	46.00	-22.44	32.15	-8.59	QP
5	615.880	27.00	46.00	-19.00	30.25	-3.25	QP
6	990.300	32.20	54.00	-21.80	30.43	1.77	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.



Test Item : General Radiated Emission

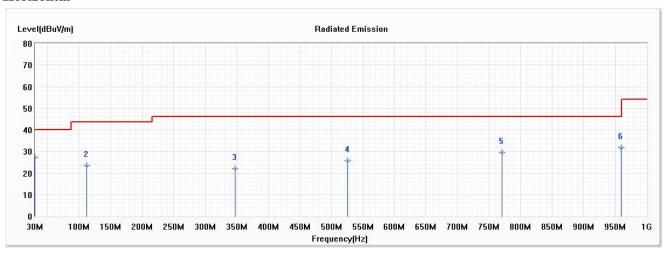
Test Mode : Mode 1: Transmit - BLE (2440MHz) (DC Jack)

Test Date : 2020/11/11

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
* 1	62.980	22.11	40.00	-17.89	34.15	-12.04	QP
2	256.010	21.65	46.00	-24.35	33.20	-11.55	QP
3	288.020	22.86	46.00	-23.14	33.04	-10.18	QP
4	303.540	22.51	46.00	-23.49	32.34	-9.83	QP
5	416.060	24.75	46.00	-21.25	31.83	-7.08	QP
6	999.030	31.41	54.00	-22.59	29.55	1.86	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.



Test Item : General Radiated Emission

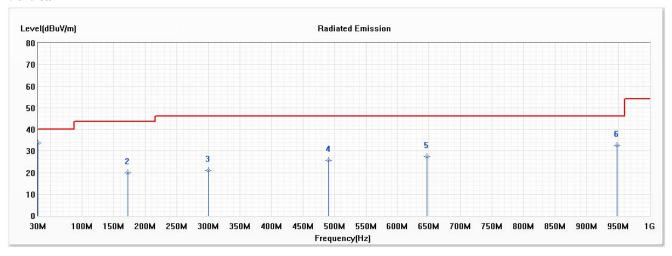
Test Mode : Mode 1: Transmit - BLE (2440MHz) (Micro USB)

Test Date : 2020/11/11

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBuV/m)	(dB)	(dBuV)	(dB)	Type
		(dBuV/m)					
* 1	30.000	27.40	40.00	-12.60	39.30	-11.90	QP
2	112.450	23.40	43.50	-20.10	37.30	-13.90	QP
3	347.190	22.15	46.00	-23.85	30.84	-8.69	QP
4	525.670	25.67	46.00	-20.33	30.38	-4.71	QP
5	770.110	29.63	46.00	-16.37	30.63	-1.00	QP
6	959.260	31.74	46.00	-14.26	30.43	1.31	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.



Test Item : General Radiated Emission

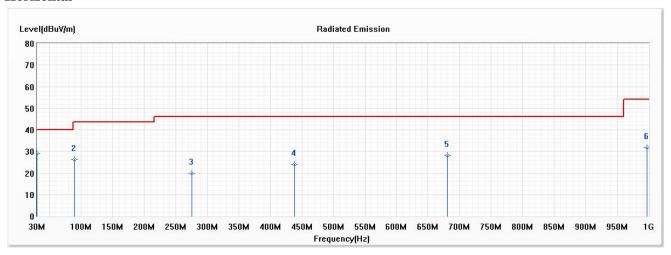
Test Mode : Mode 1: Transmit - BLE (2440MHz) (Micro USB)

Test Date : 2020/11/11

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBuV/m)	(dB)	(dBuV)	(dB)	Type
		(dBuV/m)					
* 1	30.000	33.71	40.00	-6.29	45.61	-11.90	QP
2	172.590	19.80	43.50	-23.70	31.36	-11.56	QP
3	299.660	20.91	46.00	-25.09	30.83	-9.92	QP
4	490.750	25.60	46.00	-20.40	31.13	-5.53	QP
5	646.920	27.27	46.00	-18.73	30.17	-2.90	QP
6	947.620	32.53	46.00	-13.47	31.43	1.10	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.



Test Item : General Radiated Emission

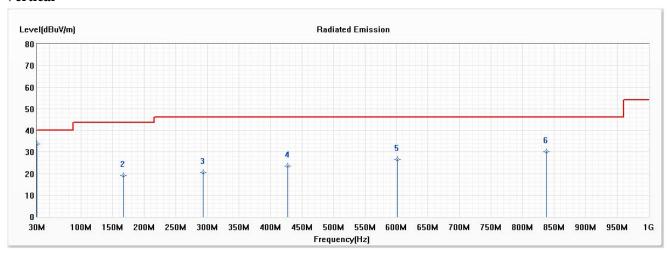
Test Mode : Mode 1: Transmit - BLE (2440MHz) (Type C)

Test Date : 2020/11/11

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBuV/m)	(dB)	(dBuV)	(dB)	Type
		(dBuV/m)					
* 1	30.000	29.00	40.00	-11.00	40.90	-11.90	QP
2	89.170	26.17	43.50	-17.33	43.25	-17.08	QP
3	275.410	19.89	46.00	-26.11	30.46	-10.57	QP
4	438.370	23.99	46.00	-22.01	30.58	-6.59	QP
5	680.870	28.22	46.00	-17.78	30.51	-2.29	QP
6	997.090	31.78	54.00	-22.22	29.96	1.82	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

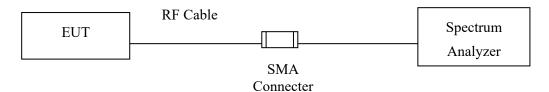


Test Item : General Radiated Emission

Test Mode : Mode 1: Transmit - BLE (2440MHz) (Type C)

Test Date : 2020/11/11

Vertical


No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBuV/m)	(dB)	(dBuV)	(dB)	Type
		(dBuV/m)					
* 1	30.000	33.68	40.00	-6.32	45.58	-11.90	QP
2	166.770	19.01	43.50	-24.49	30.02	-11.01	QP
3	293.840	20.35	46.00	-25.65	30.48	-10.13	QP
4	427.700	23.32	46.00	-22.68	30.23	-6.91	QP
5	601.330	26.61	46.00	-19.39	29.87	-3.26	QP
6	838.010	30.13	46.00	-15.87	30.31	-0.18	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

5. RF Antenna Conducted Test

5.1. Test Setup

5.2. Limits

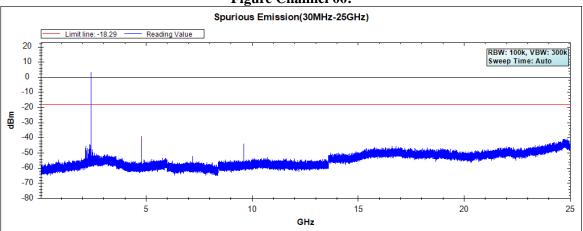
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure

The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.4. Test Result of RF Antenna Conducted Test


Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : RF Antenna Conducted Test

Test Mode : Mode 1: Transmit - BLE (DC jack)

Test Date : 2020/10/08

Figure Channel 00:

Figure Channel 19:

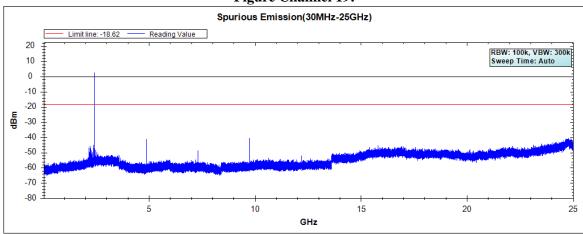
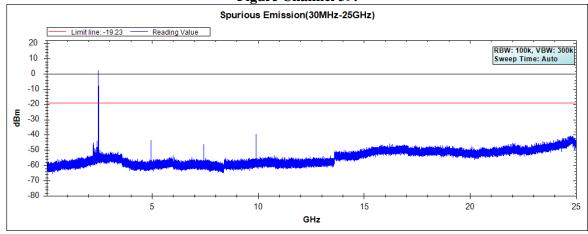
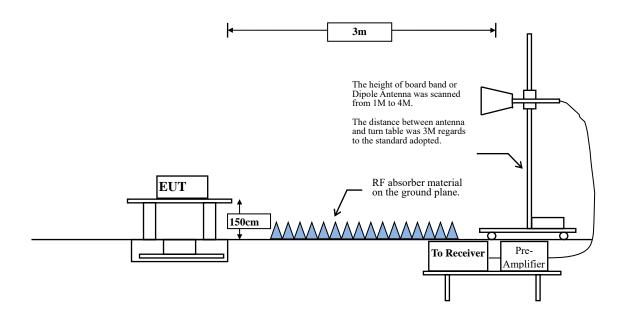



Figure Channel 39:

Note: The above test pattern is synthesized by multiple of the frequency range.


6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \geq 98 %

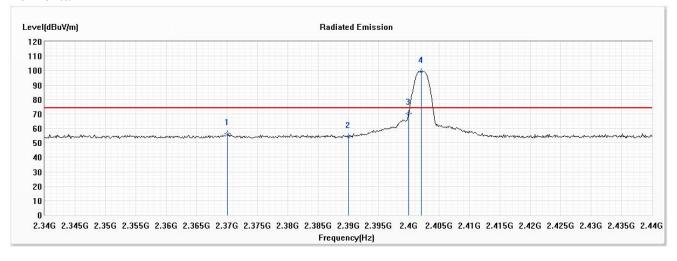
VBW \geq 1/T, when duty cycle \leq 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	T	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE	89.80	0.6340	1577	2000

Note: Duty Cycle Refer to Section 9

6.4. Test Result of Band Edge


Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : Band Edge

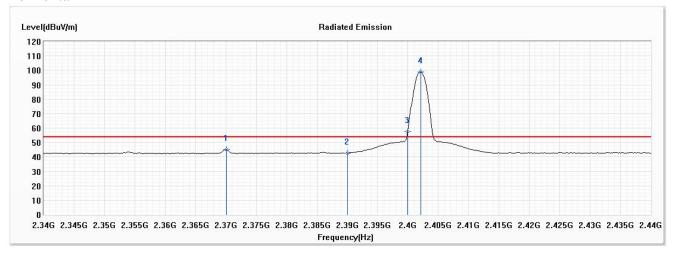
Test Mode : Mode 1: Transmit - BLE (2402MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		$(dB\mu V/m)$					
1	2370.100	56.14	74.00	-17.86	45.07	11.07	PK
2	2390.000	54.32	74.00	-19.68	43.13	11.19	PK
3	2400.000	70.25			59.03	11.22	PK
4	2402.000	99.18			87.95	11.23	PK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.



Test Item : Band Edge

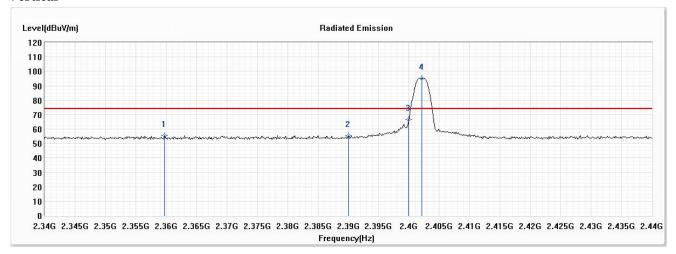
Test Mode : Mode 1: Transmit - BLE (2402MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		$(dB\mu V/m)$					
1	2370.100	45.10	54.00	-8.90	34.03	11.07	AV
2	2390.000	42.75	54.00	-11.25	31.56	11.19	AV
3	2400.000	57.65		-	46.43	11.22	AV
4	2402.100	98.95			87.72	11.23	AV

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.



Test Item : Band Edge

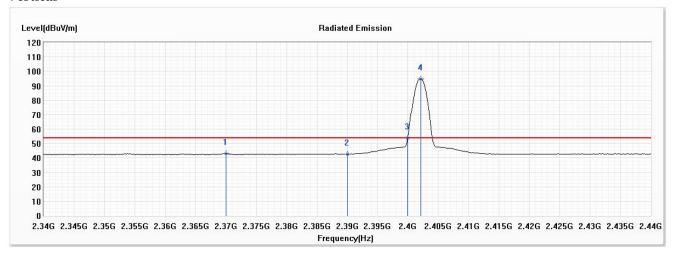
Test Mode : Mode 1: Transmit - BLE (2402MHz) (DC Jack)

Test Date : 2020/11/10

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	2359.700	55.54	74.00	-18.46	44.50	11.04	PK
2	2390.000	55.25	74.00	-18.75	44.06	11.19	PK
3	2400.000	66.54		1	55.32	11.22	PK
4	2402.100	95.07			83.84	11.23	PK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.



Test Item : Band Edge

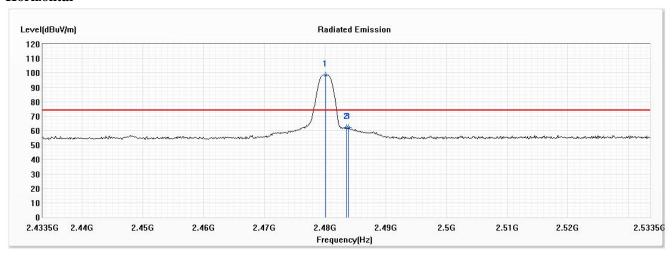
Test Mode : Mode 1: Transmit - BLE (2402MHz) (DC Jack)

Test Date : 2020/11/10

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	2370.000	43.16	54.00	-10.84	32.09	11.07	AV
2	2390.000	42.58	54.00	-11.42	31.39	11.19	AV
3	2400.000	54.00		-	42.78	11.22	AV
4	2402.100	94.85			83.62	11.23	AV

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.



Test Item : Band Edge

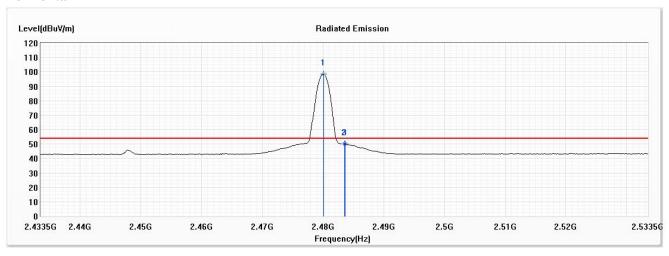
Test Mode : Mode 1: Transmit - BLE (2480MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	2480.100	98.57			87.10	11.47	PK
2	2483.500	61.91	74.00	-12.09	50.43	11.48	PK
3	2483.800	62.12	74.00	-11.88	50.64	11.48	PK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.



Test Item : Band Edge

Test Mode : Mode 1: Transmit - BLE (2480MHz) (DC Jack)

Test Date : 2020/11/10

Horizontal

No	Frequency (MHz)	Emission Level	Limit (dBµV/m)	Margin (dB)	Reading Level (dBµV)	Correct Factor (dB)	Detector Type
	` ′	(dBµV/m)	• /		• /		71
1	2480.100	98.33			86.86	11.47	AV
2	2483.500	50.03	54.00	-3.97	38.55	11.48	AV
3	2483.600	50.18	54.00	-3.82	38.70	11.48	AV

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.



Test Item : Band Edge

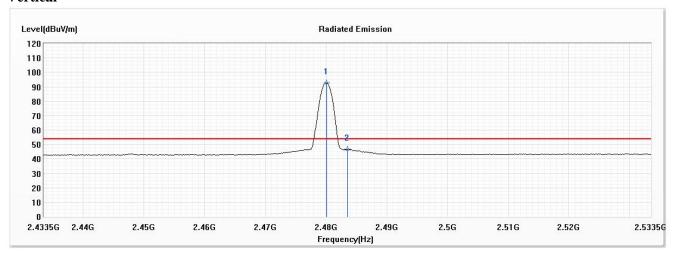
Test Mode : Mode 1: Transmit - BLE (2480MHz) (DC Jack)

Test Date : 2020/11/10

Vertical

No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	2480.100	93.08			81.61	11.47	PK
2	2483.500	57.93	74.00	-16.07	46.45	11.48	PK
3	2483.700	58.70	74.00	-15.30	47.22	11.48	PK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.

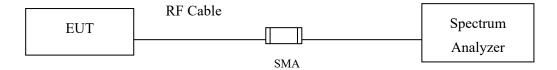


Test Item : Band Edge

Test Mode : Mode 1: Transmit - BLE (2480MHz) (DC Jack)

Test Date : 2020/11/10

Vertical


No	Frequency	Emission	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	Level	(dBµV/m)	(dB)	(dBµV)	(dB)	Type
		(dBµV/m)					
1	2480.100	92.81			81.34	11.47	AV
2	2483.500	46.57	54.00	-7.43	35.09	11.48	AV

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.

7. 6dB Bandwidth

7.1. Test Setup

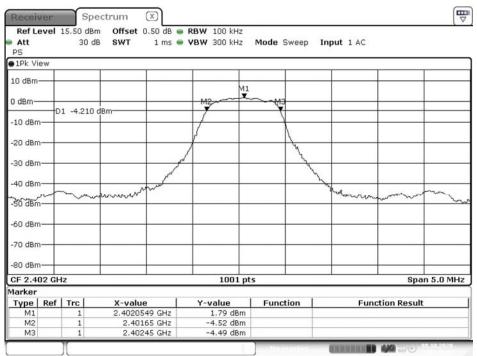
7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

The EUT was setup according to ANSI C63.4, 2014; tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements.

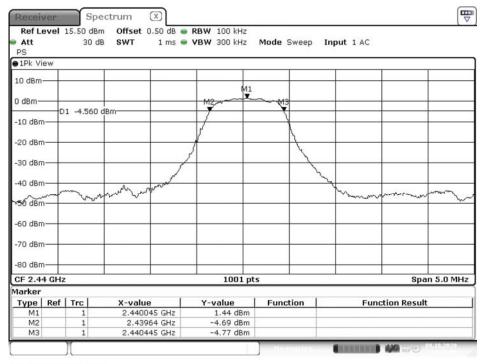
7.4. Test Result of 6dB Bandwidth


Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : 6dB Bandwidth Data

Test Mode : Mode 1: Transmit - BLE (DC Jack)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
02	2402	800	>500	Pass
19	2440	805	>500	Pass
39	2480	805	>500	Pass


Figure Channel 00:

Date: 8.OCT.2020 08:45:19

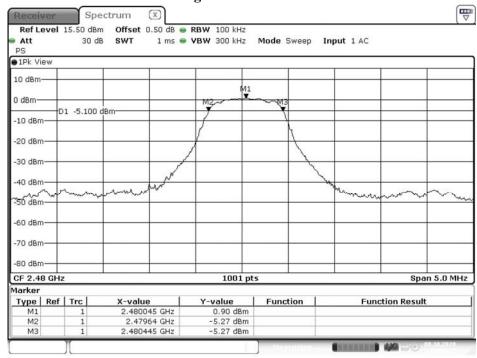
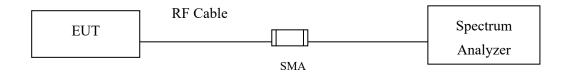


Figure Channel 19:

Date: 8.OCT.2020 08:51:06

Figure Channel 39:



Date: 8.OCT.2020 08:56:17

8. Power Density

8.1. Test Setup

8.2. Limits

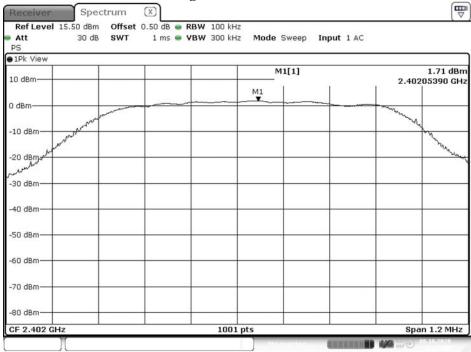
The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD)

8.4. Test Result of Power Density

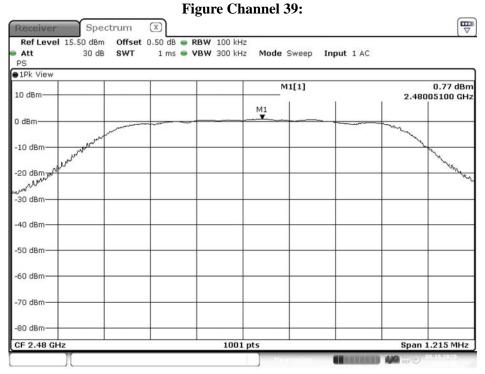

Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : Power Density Data

Test Mode : Mode 1: Transmit - BLE (DC Jack)

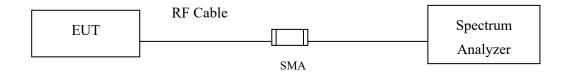
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	1.71	≦8dBm	Pass
19	2440	1.38	≦8dBm	Pass
39	2480	0.77	≦8dBm	Pass

Figure Channel 00:



Date: 8.OCT.2020 08:45:41

Date: 8.OCT.2020 08:51:28



Date: 8.OCT.2020 08:56:39

9. Duty Cycle

9.1. Test Setup

9.2. Test Procedure

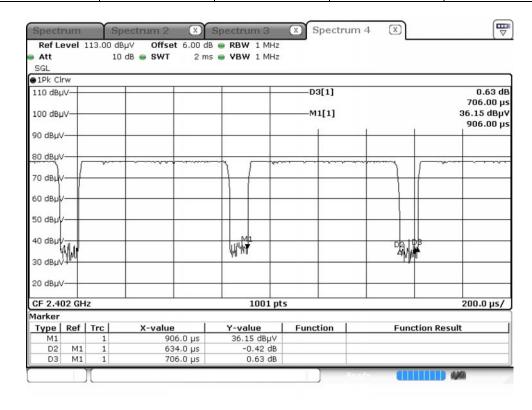
The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

9.3. Test Result of Duty Cycle

Product : Automatic Upper Arm Blood Pressure Monitor

Test Item : Duty Cycle

Test Mode : Mode 1: Transmit - BLE (DC Jack)


Duty Cycle Formula:

Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)

Results:

2.4GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
BLE	0.6340	0.7060	89.80	0.47

10. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page : 58 of 58