

Report No. : EED32L00104501 Page 1 of 43

TEST REPORT

Product : Blood Pressure Monitor

Trade mark : N/A

Model/Type reference : BUA6350

Serial Number : N/A

Report Number : EED32L00104501 FCC ID : 2ABRGBUA6350

Date of Issue : May 23, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Kaz USA, Inc. 400 DONALD LYNCH BOULEVARD SUITE 300 MARLBOROUGH, MA 01752

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Approved by

Report Seal

REVON

Jay Zheng

Kevin Lan

Rein

Reviewed by:

Ware Xin

Kevin Yang

Date:

May 23, 2019

Check No.:3570140796

(1)

Page 2 of 43

2 Version

Version No.	Date	(6)	Description	9
00	May 23, 2019		Original	
	000	A*S	/5	75
((c'\s^)	(6.42)	(6,7)

Report No.: EED32L00104501 Page 3 of 43

3 Test Summary

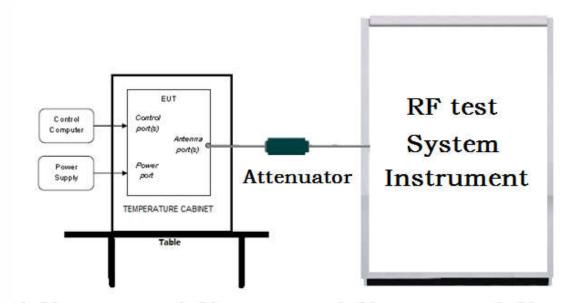
165t Sullillary			_
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c) ANSI C63.10-201		PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No. : EED32L00104501 Page 4 of 43

4 Content

1 COVER PAGE	••••••	•••••	••••••	•••••	•••••	1
2 VERSION			•••••	•••••		2
3 TEST SUMMARY			•••••	•••••		3
4 CONTENT			•••••		•••••	4
5 TEST REQUIREM	IENT					5
5.1 TEST SETUP						5
	ducted test setup					
	ated Emissions tes					
	ON					
6 GENERAL INFOR	RMATION			•••••		7
6.1 CLIENT INFOR	MATION					7
	CRIPTION OF EUT					
	ECIFICATION SUBJEC					
	OF SUPPORT UNITS					
	OM STANDARDS					_
	S FROM STANDARD					
	MATION REQUESTED					
	T UNCERTAINTY (95		1000			
7 EQUIPMENT LIST	Г			•••••		10
8 RADIO TECHNIC	AL REQUIREMEN	ITS SPECIFICAT	ION	•••••	•••••	12
Appendix A): 6	dB Occupied Band	dwidth				13
Appendix B): (Conducted Peak O	utput Power				15
	Band-edge for RF (
	RF Conducted Spu Power Spectral Der					
	Intenna Requireme					
	Restricted bands a					
	Radiated Spurious					
PHOTOGRAPHS O	F TEST SETUP			••••••	•••••	36
PHOTOGRAPHS O	F EUT CONSTRU	CTIONAL DETAI	LS	•••••		38



Report No. : EED32L00104501 Page 5 of 43

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

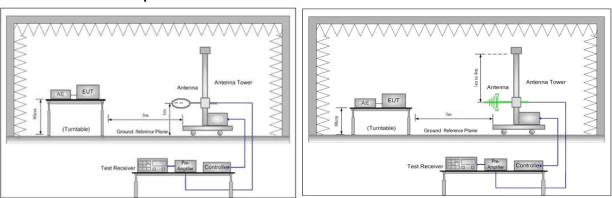


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

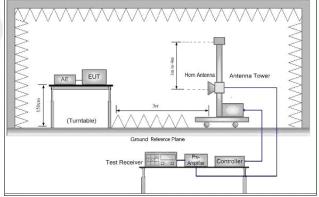
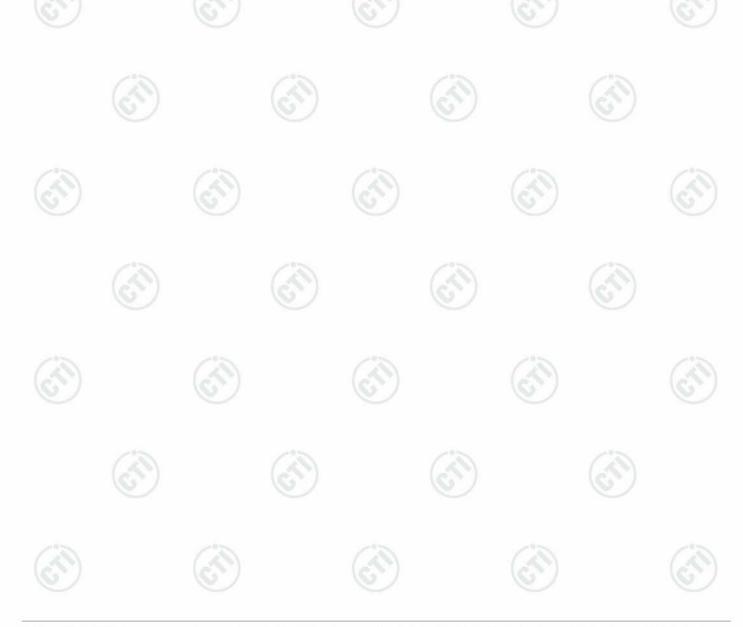


Figure 3. Above 1GHz


5.2 Test Environment

Operating Environment for RF Conducted test:					
Temperature:	22°C				
Humidity:	57%				
Atmospheric Pressure:	101kPa				

5.3 Test Condition

Test channel:

T. 1000	T.//D.:	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M) High(H)		
OFOK	0.4000411- 0.4000411-	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480MHz	2402MHz	2440MHz	2480MHz	
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				

6 General Information

6.1 Client Information

Applicant:	Kaz USA, Inc.
Address of Applicant:	400 DONALD LYNCH BOULEVARD SUITE 300 MARLBOROUGH, MA 01752
Manufacturer:	Guangdong Transtek Medical Electronics Co., Ltd.
Address of Manufacturer:	Zone A, No.105 , Dongli Road, Torch Development District, Zhongshan, 528437, Guangdong,China
Factory:	Guangdong Transtek Medical Electronics Co., Ltd.
Address of Factory:	Zone B, No.105, Dongli Road, Torch Development District, Zhongshan, 528437, Guangdong, China

6.2 General Description of EUT

Product Name:	Blood Pressure Monitor
Model No.(EUT):	BUA6350
Trade mark:	N/A
EUT Supports Radios application:	BT: 4.0 BLE Single mode: 2402MHz to 2480MHz ;
Power Supply:	AA Battery 4X1.5V
Hardware version:	V1.0 (manufacturer declare)
Firmware version:	1.0.13 (manufacturer declare)
Sample Received Date:	May 08, 2019
Sample tested Date:	May 13, 2019 to May 16, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	4.0	
Modulation Technique:	DSSS	
Modulation Type:	GFSK	
Number of Channel:	40	
Test Power Grade:	N/A	
Test Software of EUT:	N/A	100
Antenna Type:	PCB Printed Trace (PIFA)	
Antenna Gain:	5 dBi	
Test Voltage:	6V	

Report No.: EED32L00104501 Page 8 of 43

-0.7			-	100		205	
Operation F	requency eac	h of channe	1	(2)		(2)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32L00104501 Page 9 of 43

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
Z RF	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3 Radiated Sp	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction operation	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

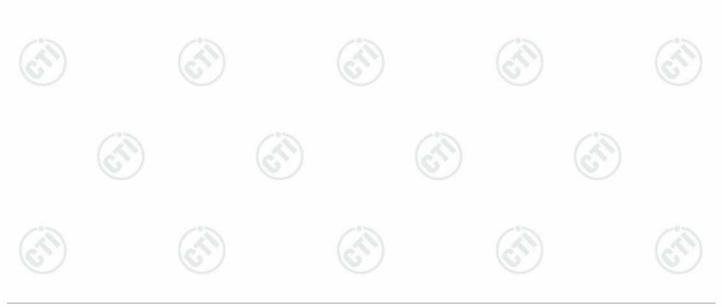
7 Equipment List

Report No. : EED32L00104501

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Cal. Da Number (mm-dd-)		Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02	(01-09-2019	01-08-2020
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d	(C)-1	03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Report No. : EED32L00104501 Page 11 of 43

100				(3)	7
	31	/ Semi/full-anechoi		0-1 -1-4-	O-I D d-4-
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A0242 5	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	08-08-2018	08-07-2019
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938-003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/10711 112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY4509574 4	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY5340110 6	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB4705053 4	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(<u>~~)</u>	01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	<u></u>	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-09-2019	01-08-2020

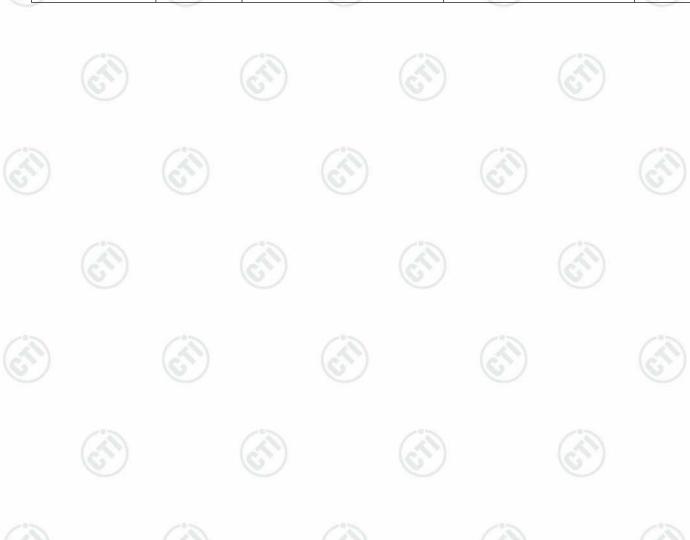

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est ivesuits Fist.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10 Power Spectral Den		PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)



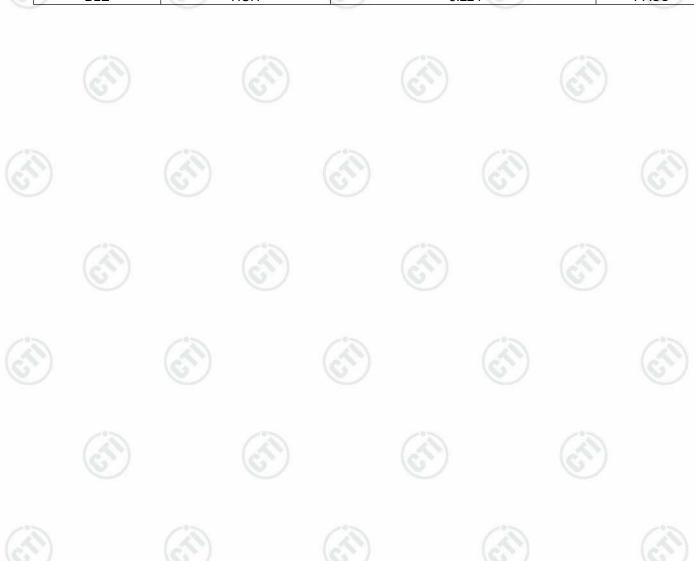
Appendix A): 6dB Occupied Bandwidth

Test Result


Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6806	1.0963	PASS
BLE	МСН	0.6875	1.0948	PASS
BLE	нсн	0.6729	1.1028	PASS

Report No. : EED32L00104501 Page 14 of 43

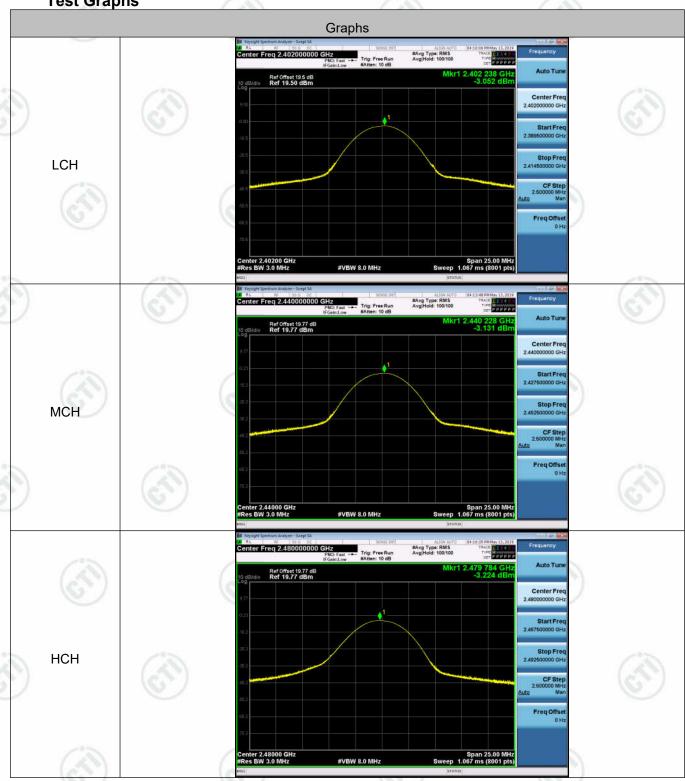
Test Graphs



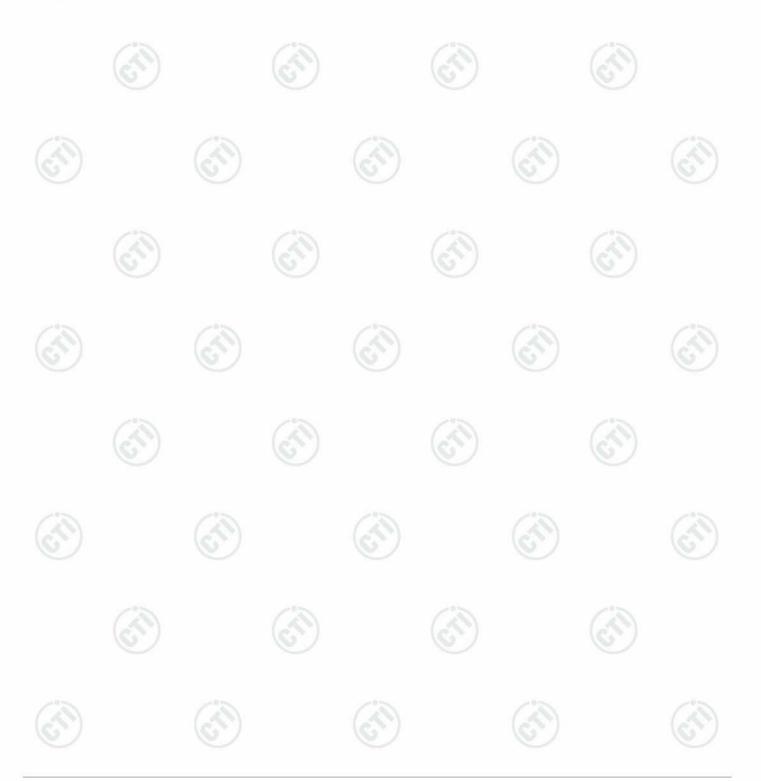
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.052	PASS
BLE	MCH	-3.131	PASS
BLE	HCH	-3.224	PASS



Test Graphs



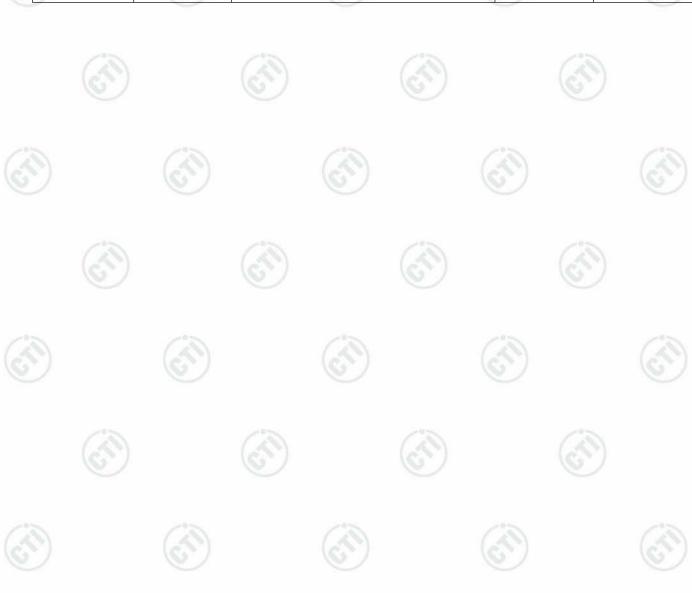
Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-3.885	-51.389	-23.89	PASS
BLE	HCH	-3.822	-45.102	-23.82	PASS

Test Graphs

Report No.: EED32L00104501

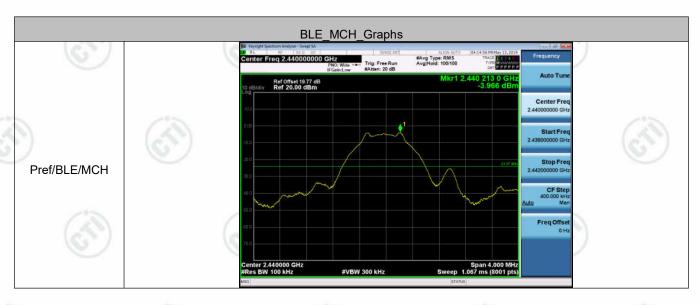


Report No. : EED32L00104501 Page 19 of 43

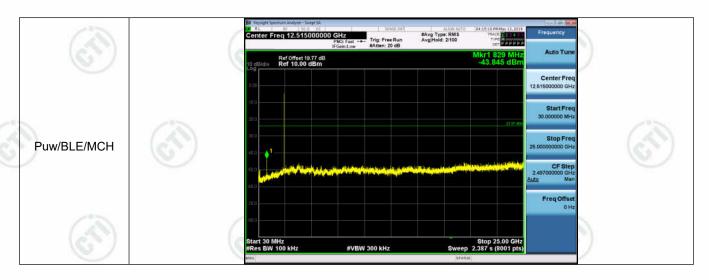
Appendix D): RF Conducted Spurious Emissions

Result Table

The second second				<i>-</i>
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.809	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-3.966	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-4.046	<limit< td=""><td>PASS</td></limit<>	PASS



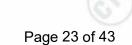
Test Graphs

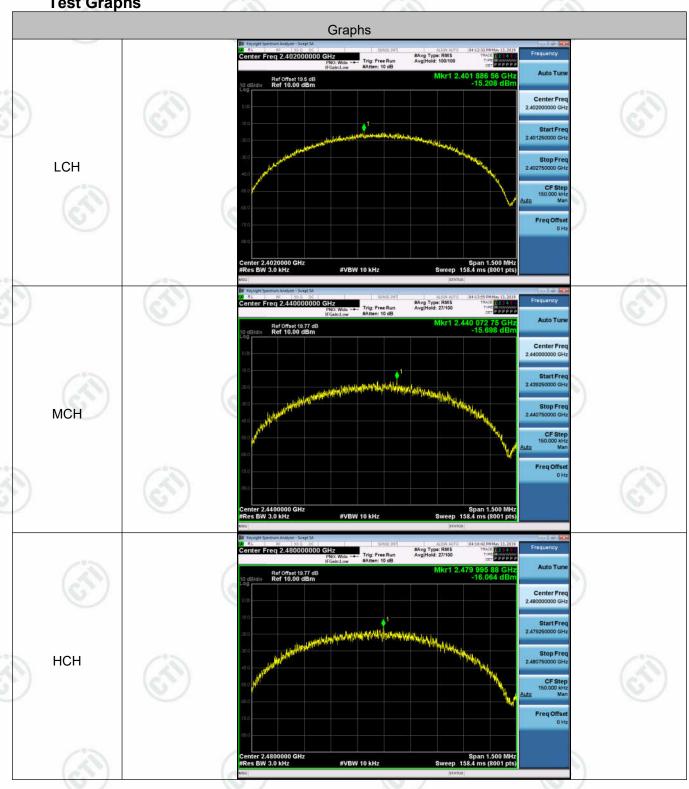


Appendix E): Power Spectral Density

Result Table

	5.507 /	15.300	5.000	The state of the s
	Mode	Channel	PSD [dBm]	Verdict
	BLE	LCH	-15.208	PASS
R	BLE	MCH	-15.698	PASS
3	BLE	HCH	-16.064	PASS



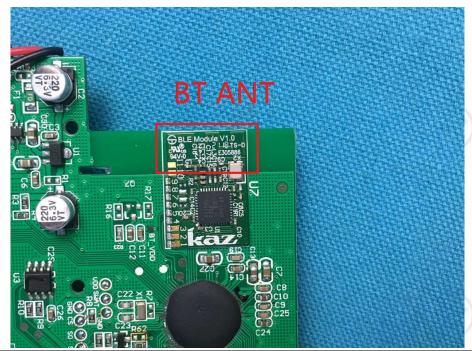


Test Graphs

Report No.: EED32L00104501

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

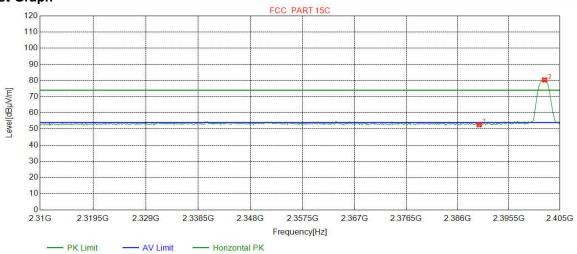
EUT Antenna:

The antenna is PCB Printed Trace (PIFA) antenna and no consideration of replacement. The best case gain of the antenna is 5 dBi

Report No. : EED32L00104501 Page 25 of 43

Appendix G): Restricted bands around fundamental frequency (Radiated)

(1 10 0 10 0)	143	19.3	1	\	10.2	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Al 4011-	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the too the control of the second of the second of the second of the antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 degenorms. The test-receiver systems and width with Maximular forms of the second	ure as below: on the top of a rochoic camber. The of the highest rate eters away from op of a variable-rate from one are value of the finatenna are set to mission, the EUT of to heights from grees to 360 degreem was set to Penum Hold Mode. end of the restrict mpliance. Also me	otating table the table was adiation. the interfer neight ante meter to fo eld strengtl make the r was arran 1 meter to rees to find eak Detect	e 0.8 meter as rotated 3 rence-recei nna tower. our meters h. Both hor measurement aged to its way 4 meters at the maxing Function a	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotation reading and Specified the transmit in the restri	to I, whice ound to rertical and there able cted
	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above proced	channel lure as below: ove is the test site mber change form of 1 meter and tabl owest channel, in ements are perform ond found the X ax	e, change for table 0.8 le is 1.5 me the Highes red in X, kis position	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch.5 meter(Aboositioning fo	nambe ove r
_imit:	Frequency	Limit (dBµV	/m @3m)	Rer	mark	
	30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	216MHz-960MHz	46.0	0	Quasi-pe	eak Value	
	960MHz-1GHz	54.0	0	Quasi-pe	eak Value	
		54.0	0	Averag	e Value	
	Above 1GHz			+		
	/15070 10112	74.0	0	Peak	Value	
Test Ambient:		74.0 Humid.: 57%	0	Peak		



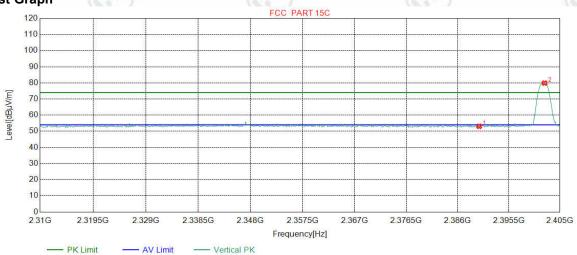
Report No. : EED32L00104501 Page 26 of 43

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

→ PK Limit → AV Limit → Holizontal PK

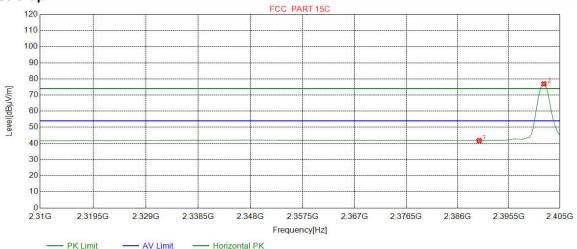

* AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.51	52.69	74.00	21.31	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	77.18	80.32	74.00	-6.32	Pass	Horizontal

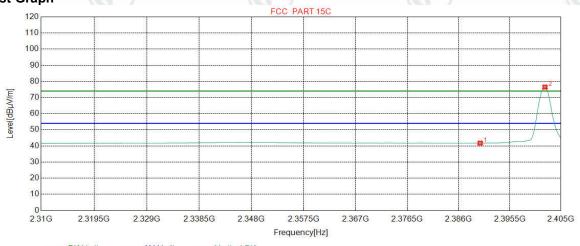
Mode: BLE GFSK Transmitting Channel: 2402


Remark: PK

Test Graph


Ant Cable Pream Margin Freq. Reading Level Limit NO gain Factor loss Result **Polarity** [dBµV] [MHz] [dBµV/m] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -42.44 49.92 53.10 74.00 20.90 **Pass** Vertical 2 2402.1464 32.26 13.31 -42.43 76.75 79.89 74.00 -5.89 **Pass** Vertical

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.55	41.73	54.00	12.27	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	73.77	76.91	54.00	-22.91	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		/

Test Graph

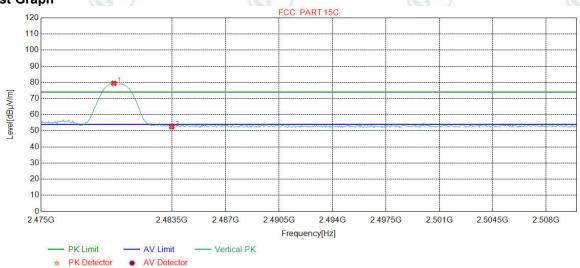
PK Limit — AV Limit — Vertical PK

★ PK Detector

★ AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.56	41.74	54.00	12.26	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	73.34	76.48	54.00	-22.48	Pass	Vertical

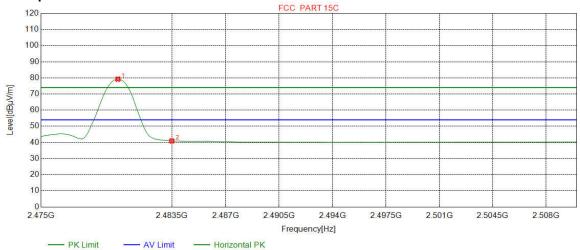
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	76.82	80.19	74.00	-6.19	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.73	54.09	74.00	19.91	Pass	Horizontal

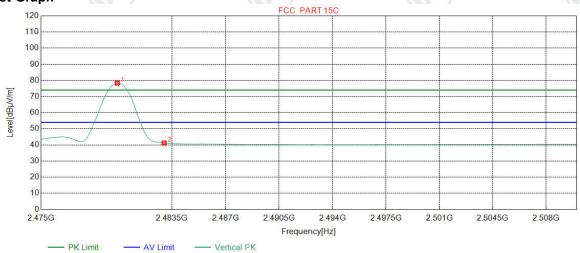
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		/

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	76.08	79.45	74.00	-5.45	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.20	52.56	74.00	21.44	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	75.86	79.23	54.00	-25.23	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.55	40.91	54.00	13.09	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		/

Test Graph

♠ PK Detector

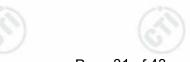
AV Detector

		A	PK Detector	* AV Dete	ector						
ı	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.9499	32.37	13.39	-42.39	74.92	78.29	54.00	-24.29	Pass	Vertical
	2	2483.0000	32.38	13.38	-42.40	37.82	41.18	54.00	12.82	Pass	Vertical

Page 30 of 43

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00104501 Page 31 of 43

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-		300
6)	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-	0	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
(0,)	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

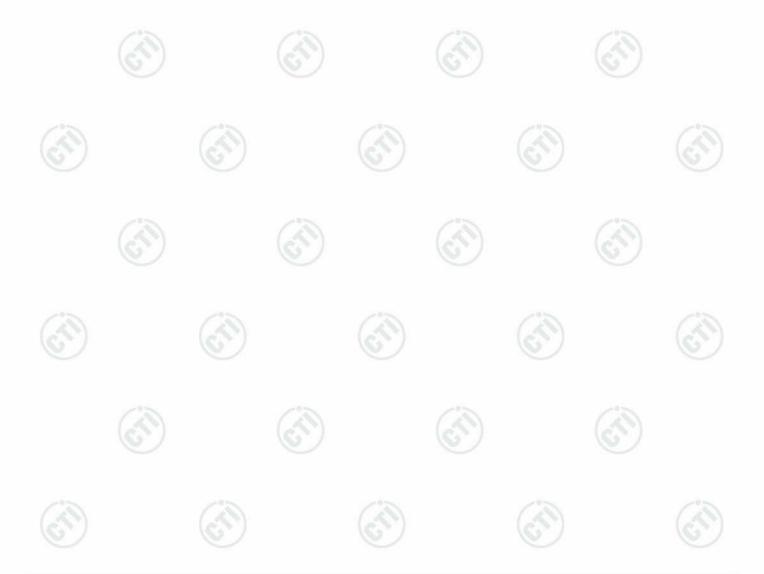
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 22°C Humid.: 57% Press.: 101kPa

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

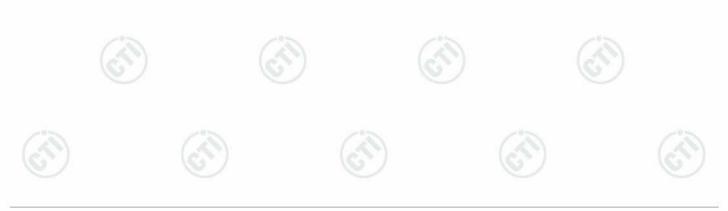
Mod	le:		BLE GFS	K Transm	itting		Channel:		2402		
NO	NO Freq. Ant Factor [dB]		Cable loss [dB]	Pream gain [dBµV]		Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
1	55.1255	12.38	0.84	-32.08	32.46	13.60	40.00	26.40	Pass	Horizontal	
2	120.0250	9.20	1.30	-32.07	39.90	18.33	43.50	25.17	Pass	Horizontal	
3	208.8859	11.13	1.71	-31.94	37.20	18.10	43.50	25.40	Pass	Horizontal	
4	325.0065	13.75	2.14	-31.79	39.20	23.30	46.00	22.70	Pass	Horizontal	
5	687.5318	19.70	3.14	-32.06	36.13	26.91	46.00	19.09	Pass	Horizontal	
6	844.9785	21.44	3.50	-31.82	35.21	28.33	46.00	17.67	Pass	Horizontal	
7	36.8877	11.30	0.68	-32.11	36.92	16.79	40.00	23.21	Pass	Vertical	
8	54.4464	12.49	0.84	-32.09	37.40	18.64	40.00	21.36	Pass	Vertical	
9	94.9965	10.20	1.12	-32.08	37.36	16.60	43.50	26.90	Pass	Vertical	
10	208.8859	11.13	1.71	-31.94	46.10	27.00	43.50	16.50	Pass	Vertical	
11	325.0065	13.75	2.14	-31.79	38.93	23.03	46.00	22.97	Pass	Vertical	
12	649.9890	19.40	3.10	-32.07	37.60	28.03	46.00	17.97	Pass	Vertical	

Mode	e:		BLE GFS	K Transm	itting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
1	47.9468	13.20	0.78	-32.12	30.29	12.15	40.00	27.85	Pass	Horizontal	
2	71.1321	8.78	0.96	-32.04	34.71	12.41	40.00	27.59	Pass	Horizontal	
3	120.0250	9.20	1.30	-32.07	40.13	18.56	43.50	24.94	Pass	Horizontal	
4	208.8859	11.13	1.71	-31.94	37.49	18.39	43.50	25.11	Pass	Horizontal	
5	325.0065	13.75	2.14	-31.79	38.90	23.00	46.00	23.00	Pass	Horizontal	
6	832.6583	21.29	3.48	-31.95	37.71	30.53	46.00	15.47	Pass	Horizontal	
7	56.2896	12.19	0.86	-32.07	37.34	18.32	40.00	21.68	Pass	Vertical	
8	94.9965	10.20	1.12	-32.08	38.96	18.20	43.50	25.30	Pass	Vertical	
9	120.0250	9.20	1.30	-32.07	39.10	17.53	43.50	25.97	Pass	Vertical	
10	208.8859	11.13	1.71	-31.94	46.16	27.06	43.50	16.44	Pass	Vertical	
11	325.0065	13.75	2.14	-31.79	37.37	21.47	46.00	24.53	Pass	Vertical	
12	649.9890	19.40	3.10	-32.07	38.36	28.79	46.00	17.21	Pass	Vertical	


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page	33	of	43

	Mode	e:		BLE GFSI	K Transm	itting		Channel:		2480		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
10	1	91.9892	9.72	1.11	-32.09	33.98	12.72	43.50	30.78	Pass	Horizontal	
5	2	120.0250	9.20	1.30	-32.07	39.31	17.74	43.50	25.76	Pass	Horizontal	
2	3	208.8859	11.13	1.71	-31.94	37.13	18.03	43.50	25.47	Pass	Horizontal	
	4	325.0065	13.75	2.14	-31.79	36.44	20.54	46.00	25.46	Pass	Horizontal	
	5	600.0290	19.00	2.96	-31.99	36.71	26.68	46.00	19.32	Pass	Horizontal	
	6	948.9729	22.39	3.72	-31.15	33.06	28.02	46.00	17.98	Pass	Horizontal	
	7	55.0285	12.40	0.84	-32.08	37.84	19.00	40.00	21.00	Pass	Vertical	
	8	120.0250	9.20	1.30	-32.07	38.96	17.39	43.50	26.11	Pass	Vertical	
	9	208.8859	11.13	1.71	-31.94	46.18	27.08	43.50	16.42	Pass	Vertical	
	10	289.9860	13.00	2.03	-31.88	36.64	19.79	46.00	26.21	Pass	Vertical	
Ž	11	625.0575	19.20	2.97	-31.98	35.94	26.13	46.00	19.87	Pass	Vertical	
3	12	897.9458	22.08	3.60	-31.60	39.21	33.29	46.00	12.71	Pass	Vertical	



Transmitter Emission above 1GHz

Mode:			BLE G	SK Trans	smitting		Channel: 2402				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1299.0299	28.20	2.75	-42.79	51.70	39.86	74.00	34.14	Pass	Н	PK
2	2402.1402	32.26	3.92	-42.43	51.71	45.46	74.00	28.54	Pass	Н	PK
3	4805.8204	34.50	4.56	-40.66	49.81	48.21	74.00	25.79	Pass	Н	PK
4	7187.5792	36.29	5.79	-41.04	47.17	48.21	74.00	25.79	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	44.59	48.10	74.00	25.90	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	44.51	50.21	74.00	23.79	Pass	Н	PK
7	1410.6411	28.31	2.91	-42.68	51.16	39.70	74.00	34.30	Pass	V	PK
8	2401.7402	32.26	3.92	-42.43	51.77	45.52	74.00	28.48	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	45.81	44.60	74.00	29.40	Pass	V	PK
10	7434.5956	36.53	5.85	-40.82	47.58	49.14	74.00	24.86	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	43.17	47.25	74.00	26.75	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	44.66	50.94	74.00	23.06	Pass	V	PK

Mode:			BLE G	SK Trans	smitting		Channel:	2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1684.0684	29.61	3.18	-42.69	50.79	40.89	74.00	33.11	Pass	Н	PK
2	2709.5710	32.74	4.13	-42.29	50.77	45.35	74.00	28.65	Pass	Н	PK
3	4881.8755	34.50	4.81	-40.60	49.67	48.38	74.00	25.62	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	43.82	45.17	74.00	28.83	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	42.45	46.26	74.00	27.74	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.17	44.93	50.85	74.00	23.15	Pass	Н	PK
7	1423.0423	28.32	2.92	-42.67	51.73	40.30	74.00	33.70	Pass	V	PK
8	2378.5379	32.23	3.89	-42.44	50.96	44.64	74.00	29.36	Pass	V	PK
9	4881.8755	34.50	4.81	-40.60	50.49	49.20	74.00	24.80	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	44.16	45.51	74.00	28.49	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	42.72	46.53	74.00	27.47	Pass	V	PK
12	12200.0000	39.42	7.67	-41.17	44.14	50.06	74.00	23.94	Pass	V	PK

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00104501 Page 35 of 43

Mode	: :		BLE GI	SK Trans	smitting		Channel:	2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1932.0932	31.25	3.42	-42.64	51.02	43.05	74.00	30.95	Pass	Н	PK
2	2677.5678	32.68	4.11	-42.29	51.35	45.85	74.00	28.15	Pass	Н	PK
3	4957.9305	34.50	4.82	-40.53	51.37	50.16	74.00	23.84	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	44.34	45.91	74.00	28.09	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	43.78	47.86	74.00	26.14	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	44.57	50.85	74.00	23.15	Pass	Н	PK
7	1725.0725	29.89	3.22	-42.68	51.16	41.59	74.00	32.41	Pass	V	PK
8	2788.3788	32.86	4.22	-42.23	50.78	45.63	74.00	28.37	Pass	V	PK
9	4957.2805	34.50	4.82	-40.54	49.63	48.41	74.00	25.59	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	43.90	45.47	74.00	28.53	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	43.58	47.66	74.00	26.34	Pass	V	PK
12	12392.4762	39.54	7.83	-41.13	47.04	53.28	74.00	20.72	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

