

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2202386

FCC RF Test Report

(Bluetooth)

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL33139

Equipment Under Test (EUT)

Product Name: SMART PHONE

Model No.: Elite N55Max, Premier5Max

Trade Mark: SKY DEVICES

FCC ID: 2ABOSSYUN55X

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 01 Dec., 2022

Date of Test: 02 Dec., to 29 Dec., 2022

Date of Report Issued: 30 Dec., 2022

Test Result: PASS

Tested by: Date: 30 Dec., 2022

Reviewed by: Date: 30 Dec., 2022

Approved by: _____ Date: ____ 30 Dec., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: JYTSZ-R12-2202386

1 Version

Version No.	Date	Description
00	30 Dec., 2022	Original

2 Contents

			Page
С	over Pa	ge	1
1	Vers	sion	2
2	Con	tents	3
3		eral Information	
	3.1	Client Information	4
	3.2	General Description of E.U.T.	
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	
	3.5	Measurement Uncertainty	
	3.6	Additions to, Deviations, or Exclusions From the Method	
	3.7	Laboratory Facility	
	3.8	Laboratory Location	
	3.9	Test Instruments List	
4	Mea	surement Setup and Procedure	8
	4.1	Test Channel	
	4.2	Test Setup	8
	4.3	Test Procedure	
5	Test	Results	11
	5.1	Summary	11
	5.1.1	•	
	5.1.2	·	
	5.2	Antenna Requirement	13
	5.3	AC Power Line Conducted Emission	
	5.4	Emissions in Restricted Frequency Bands	16
	5.5	Emissions in Non-restricted Frequency Bands	28

3 General Information

3.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL33139

3.2 General Description of E.U.T.

3.2 General Descript	
Product Name:	SMART PHONE
Model No.:	Elite N55Max, Premier5Max
Operation Frequency:	2402 MHz – 2480 MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	-0.61 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh
AC Adapter:	Model: ZHY-QU050100S
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000Ma
Remark:	Model No.: Elite N55Max, Premier5Max were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2202386

3.3 Test Mode and Test Environment

Test Modes:					
Non-hopping mode:	Keep the EUT in continuous transmitting mode.				
Hopping mode:	Keep the EUT in hopping mode.				
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π/4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:					
Temperature:	15℃ ~ 35℃				
Humidity:	20 % ~ 75 % RH				
Atmospheric Pressure:	1008 mbar				

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	3.7 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions From the Method

Nο

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments List

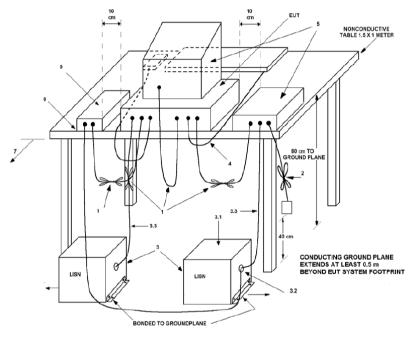
Radiated Emission(3m S	Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	. DE SVETAM		WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	04-01-2022	03-31-2023	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-31-2022	03-30-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	03-30-2022	03-29-2023	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-20-2022	01-19-2023	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-20-2022	01-19-2023	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-20-2022	01-19-2023	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-20-2022	01-19-2023	
Test Software	R&S	EMC32	Version: 10.50.40			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A	
Test Software	AUDIX	E3	V	Version: 6.110919b		

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0		

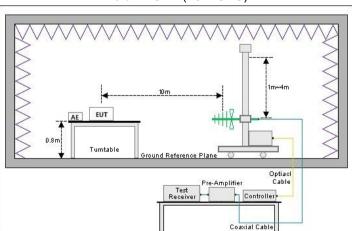
4 Measurement Setup and Procedure

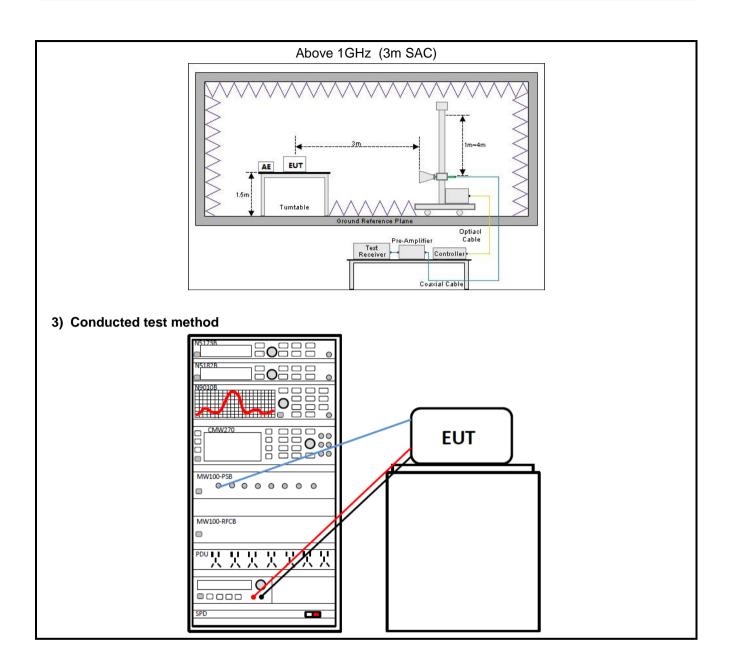

4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

4.2 Test Setup


1) Conducted emission measurement:


Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:

Below 1GHz (10m SAC)

4.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
Conducted emission	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	The peripheral devices are also connected to the main power through a LISN
	that provides a 500hm/50uH coupling impedance with 500hm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a
	10 m semi anechoic chamber. The measurement distance from the EUT to
	the receiving antenna is 10 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
Conducted test method	The Bluetooth antenna port of EUT was connected to the test port of the test
	system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all
	modulation modes.
	3. Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(1)	Appendix – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix – BT	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BT	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} N/A: Not Applicable.

^{3.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

5.1.2 Test Limit

Test items		Lim	it				
	Frequency	Frequency Limit (dBµV)					
	(MHz)	Quas	i-Peak	Average			
AC Power Line Conducted	0.15 – 0.5	66 to 5	6 Note 1	56 to 46 Note 1			
Emission	0.5 – 5		6	46			
	5 – 30		0	50			
	Note 1: The limit level in dBμV Note 2: The more stringent lim			n of frequency.			
Conducted Output Power	For frequency hopping systems frequency hopping systems	overlapping h	opping chanr	nels: 1 watt. For all other			
20dB Occupied Bandwidth	Within authorization band						
Carrier Frequencies	a) 0.025MHz or the 20dB to	oandwidth (wh	nichever is gr	eater).			
Separation	b) 0.025MHz or two-thirds	of the 20dB b	andwidth (wh	nichever is greater).			
Hopping Channel Number	At least 15 channels.						
Dwell Time	Not be greater than 0.4 sec	conds.					
Band-edge Emission Conduction Spurious Emission	spectrum or digitally modul frequency power that is produced below that in the 100 kH highest level of the desired radiated measurement, prothe peak conducted power power limits based on the upermitted under paragraph this paragraph shall be 30 kH limits specified in §15.209(which fall in the restricted by with the radiated emission	oduced by the Hz bandwidth power, based vided the translements. If the truse of RMS as (b)(3) of this dB instead of a) is not requipands, as defined.	intentional rawithin the bald on either arasmitter demonstrate converaging oversection, the algorithm additioned in §15.20	adiator shall be at least 2 and that contains the at RF conducted or a constrates compliance wite mplies with the conducter a time interval, as attenuation required under under the conducter of the conducter at ime interval, as attenuation required under the conducter at ime interval, as attenuation required under the conducter at the conducter at the conducter at least 100 and 1			
	Frequency	Limit (di	BμV/m)	Detector			
	(MHz)	@ 3m	@ 10m	Detector			
	30 – 88	40.0	30.0	Quasi-peak			
Emissions in Restricted	88 – 216	43.5	33.5	Quasi-peak			
Frequency Bands	216 – 960	46.0	36.0	Quasi-peak			
	960 – 1000 54.0 44.0 Quasi-peak						
Emissions in Non-restricted	d Note: The more stringent limit applies at transition frequencies. Limit (dBµV/m) @ 3m						
Frequency Bands	Frequency	Aver	<u>` </u>	Peake			
	Above 1 GHz			74.0			
	Note: The measurement handy	Above 1 GHz 54.0 74.0 Note: The measurement bandwidth shall be 1 MHz or greater.					

Report No.: JYTSZ-R12-2202386

5.2 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

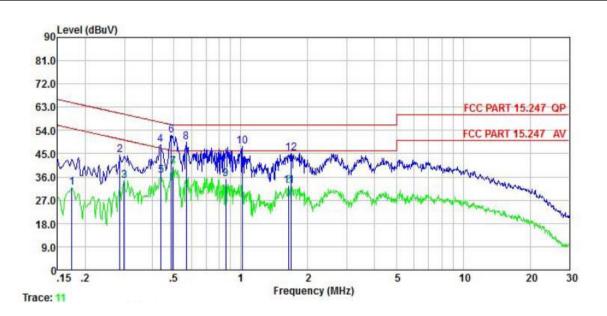
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

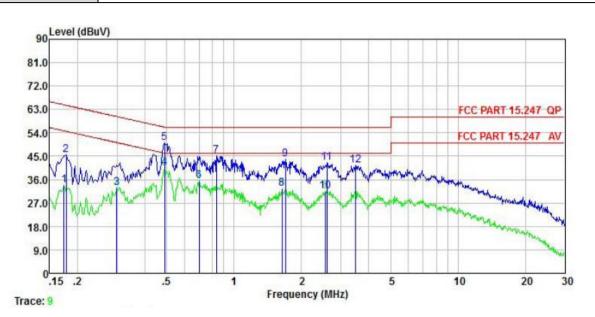
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is -0.61 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

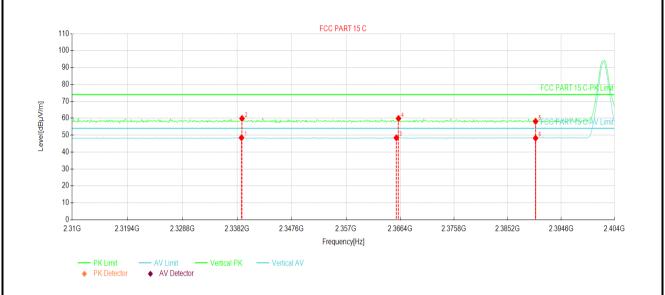
Product name:	Product name: SMART PHONE		Elite N55Max
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level		Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
()	MHz	dBu∜	<u>dB</u>	−−−−dB	<u>dB</u>	dBu∛	dBu₹	<u>dB</u>	
1	0.174	21.40	0.05	10.50	0.01	31.96	54.77	-22.81	Average
2	0.286	33.76	0.06	10.50	0.03	44.35	60.63	-16.28	QP
3	0.299	24.00	0.06	10.50	0.03	34.59	50.28	-15.69	Average
4	0.435	37.98	0.05	10.50	0.03	48.56	57.15	-8.59	QP
5	0.437	25.79	0.05	10.50	0.03	36.37	47.11		Average
1 2 3 4 5 6	0.486	41.56	0.05		0.03	52.14	56.23		
7	0.497	29.14	0.05	10.50	0.03	39.72	46.05	-6.33	Average
8	0.570	38.98	0.06		0.02	49.56	56.00		00000000000000000000000000000000000000
8	0.857	24.47	0.07	10.50	0.04	35.08			Average
10	1.016	37.18	0.07	10.50	0.05	47.80	56.00	-8.20	
11	1.645	21.96	0.08	10.50	0.16	32.70		-13.30	
12	1.680	34.47	0.08	10.50	0.17	45.22		-10.78	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

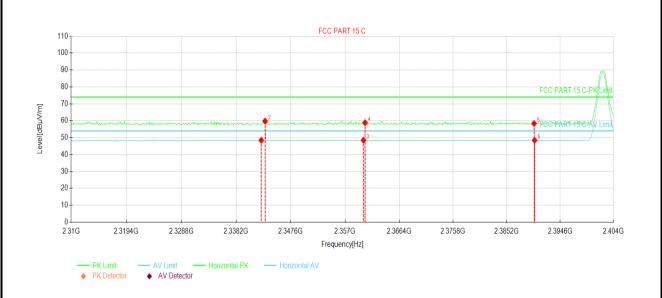
Product name:	SMART PHONE	Product model:	Elite N55Max
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	d₿	dBu₹	dBu∜	<u>dB</u>	
1	0.174	23.36	0.05	10.50	0.01	33.92	54.77	-20.85	Average
2	0.178	35.09	0.05	10.50	0.01	45.65	64.59	-18.94	QP
3	0.299	22.44	0.05	10.50	0.03	33.02	50.28	-17.26	Average
4	0.489	29.85	0.04	10.50	0.03	40.42	46.19		Average
23456789	0.489	39.50	0.04	10.50	0.03	50.07	56.19		
6	0.697	24.90	0.06	10.50	0.03	35.49	46.00		Average
7	0.835	34.43	0.06	10.50	0.03	45.02		-10.98	
8	1.636	21.77	0.07	10.50	0.16	32.50			Average
9	1.698	32.99	0.07	10.50	0.17	43.73		-12.27	
10	2.567	21.01	0.08	10.50	0.12	31.71			Average
11	2.594	31.79	0.08	10.50	0.12	42.49		-13.51	
12	3.472	30.84	0.10	10.50	0.08	41.52		-14.48	100 TO 10

1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

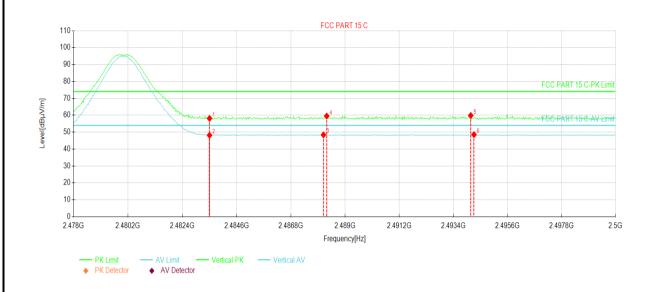
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		


Suspe	Suspected Data List										
NO	Freq.	Reading	Factor	Level	Limit	Margin	Т	Delevier			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polarity			
1	2338.95	13.28	35.21	48.49	54.00	5.51	AV	Vertical			
2	2339.04	24.69	35.21	59.90	74.00	14.10	PK	Vertical			
3	2365.74	13.02	35.41	48.43	54.00	5.57	AV	Vertical			
4	2366.11	24.46	35.42	59.88	74.00	14.12	PK	Vertical			
5	2390.08	22.55	35.60	58.15	74.00	15.85	PK	Vertical			
6	2390.08	12.65	35.60	48.25	54.00	5.75	AV	Vertical			

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

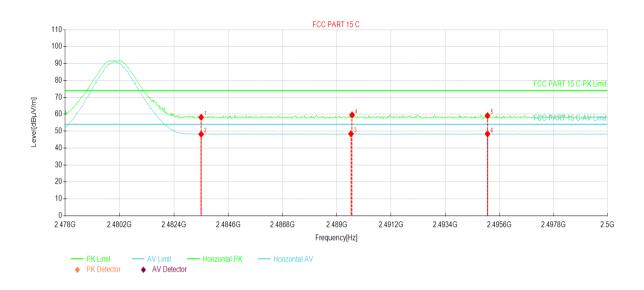
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		



Suspe	Suspected Data List										
NO	Freq.	Reading	Factor	Level	Limit	Margin	T	Delector			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polarity			
1	2342.52	13.23	35.24	48.47	54.00	5.53	AV	Horizontal			
2	2343.18	24.61	35.24	59.85	74.00	14.15	PK	Horizontal			
3	2360.19	13.10	35.37	48.47	54.00	5.53	AV	Horizontal			
4	2360.47	23.52	35.37	58.89	74.00	15.11	PK	Horizontal			
5	2390.00	22.77	35.60	58.37	74.00	15.63	PK	Horizontal			
6	2390.08	12.84	35.60	48.44	54.00	5.56	AV	Horizontal			

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

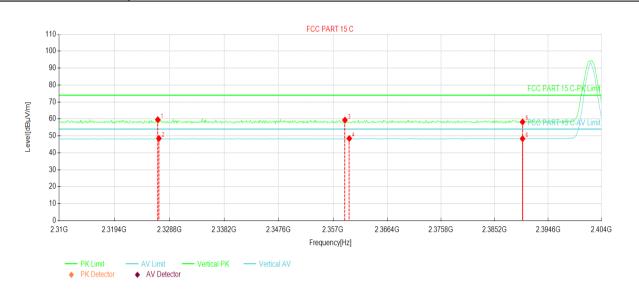
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		



Susp	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity				
1	2483.50	22.65	35.51	58.16	74.00	15.84	PK	Vertical				
2	2483.50	12.67	35.51	48.18	54.00	5.82	AV	Vertical				
3	2488.12	12.93	35.50	48.43	54.00	5.57	AV	Vertical				
4	2488.25	24.04	35.50	59.54	74.00	14.46	PK	Vertical				
5	2494.10	24.38	35.49	59.87	74.00	14.13	PK	Vertical				
6	2494.23	13.06	35.49	48.55	54.00	5.45	AV	Vertical				

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

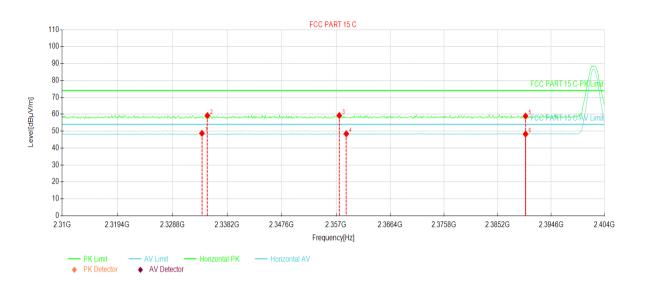
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		


Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2483.50	22.70	35.51	58.21	74.00	15.79	PK	Horizontal	
2	2483.50	12.68	35.51	48.19	54.00	5.81	AV	Horizontal	
3	2489.57	12.93	35.50	48.43	54.00	5.57	AV	Horizontal	
4	2489.61	24.12	35.50	59.62	74.00	14.38	PK	Horizontal	
5	2495.11	23.66	35.49	59.15	74.00	14.85	PK	Horizontal	
6	2495.11	12.91	35.49	48.40	54.00	5.60	AV	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

π/4-DQPSK mode

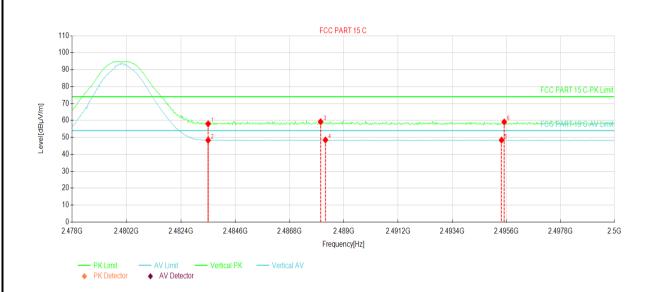
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		


Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2326.82	24.44	35.12	59.56	74.00	14.44	PK	Vertical	
2	2327.01	13.37	35.12	48.49	54.00	5.51	AV	Vertical	
3	2359.06	23.97	35.36	59.33	74.00	14.67	PK	Vertical	
4	2359.82	13.09	35.37	48.46	54.00	5.54	AV	Vertical	
5	2390.08	22.64	35.60	58.24	74.00	15.76	PK	Vertical	
6	2390.08	12.75	35.60	48.35	54.00	5.65	AV	Vertical	

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

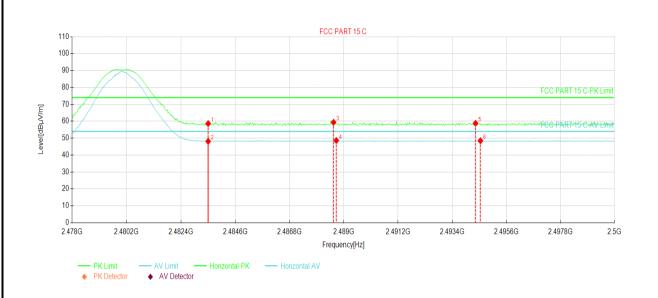
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3 7V		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Factor	Level	Limit	Margin	т	Delegitor	
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polarity	
1	2333.87	13.54	35.17	48.71	54.00	5.29	AV	Horizontal	
2	2334.81	24.04	35.18	59.22	74.00	14.78	PK	Horizontal	
3	2357.56	23.92	35.35	59.27	74.00	14.73	PK	Horizontal	
4	2358.78	13.09	35.36	48.45	54.00	5.55	AV	Horizontal	
5	2390.08	23.32	35.60	58.92	74.00	15.08	PK	Horizontal	
6	2390.08	12.69	35.60	48.29	54.00	5.71	AV	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

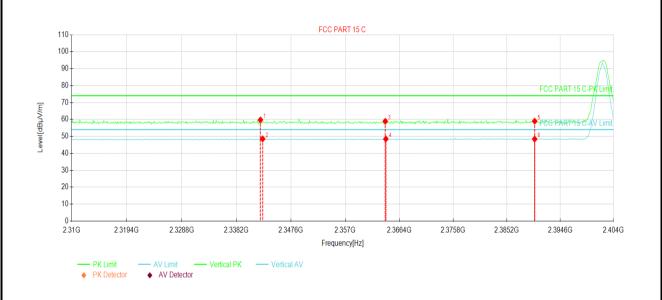
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Polarity	
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Hacc	1 Olamy	
1	2483.50	22.48	35.51	57.99	74.00	16.01	PK	Vertical	
2	2483.50	12.82	35.51	48.33	54.00	5.67	AV	Vertical	
3	2488.05	23.75	35.50	59.25	74.00	14.75	PK	Vertical	
4	2488.25	12.97	35.50	48.47	54.00	5.53	AV	Vertical	
5	2495.40	12.90	35.49	48.39	54.00	5.61	AV	Vertical	
6	2495.51	23.60	35.49	59.09	74.00	14.91	PK	Vertical	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

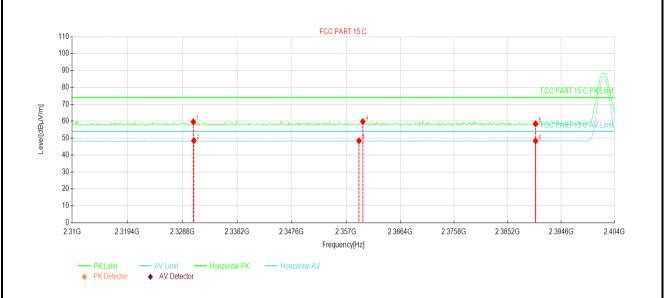
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		


Suspected Data List								
NO.	Freq.	Reading	Factor	Level	Limit	Margin	т	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	
1	2483.50	23.12	35.51	58.63	74.00	15.37	PK	Horizontal
2	2483.50	12.65	35.51	48.16	54.00	5.84	AV	Horizontal
3	2488.58	23.89	35.50	59.39	74.00	14.61	PK	Horizontal
4	2488.69	13.12	35.50	48.62	54.00	5.38	AV	Horizontal
5	2494.34	23.30	35.49	58.79	74.00	15.21	PK	Horizontal
6	2494.54	12.99	35.49	48.48	54.00	5.52	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

8DPSK mode

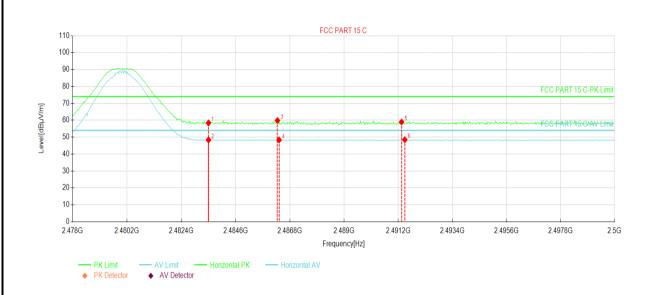
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		


Susp	Suspected Data List								
NO.	Freq.	Reading	Factor	Level	Limit	Margin	т	Polarity	
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace		
1	2342.33	24.49	35.24	59.73	74.00	14.27	PK	Vertical	
2	2342.71	13.32	35.24	48.56	54.00	5.44	AV	Vertical	
3	2363.95	23.52	35.40	58.92	74.00	15.08	PK	Vertical	
4	2364.05	13.10	35.40	48.50	54.00	5.50	AV	Vertical	
5	2390.08	23.40	35.60	59.00	74.00	15.00	PK	Vertical	
6	2390.08	12.83	35.60	48.43	54.00	5.57	AV	Vertical	

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

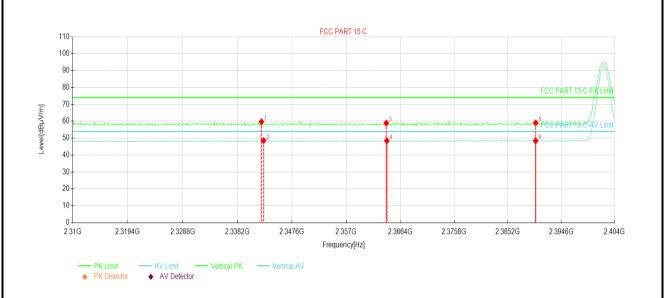
Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		



Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2330.68	24.53	35.15	59.68	74.00	14.32	PK	Horizontal	
2	2330.77	13.39	35.15	48.54	54.00	5.46	AV	Horizontal	
3	2359.25	13.11	35.36	48.47	54.00	5.53	AV	Horizontal	
4	2359.91	24.44	35.37	59.81	74.00	14.19	PK	Horizontal	
5	2390.08	22.90	35.60	58.50	74.00	15.50	PK	Horizontal	
6	2390.08	12.74	35.60	48.34	54.00	5.66	AV	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		

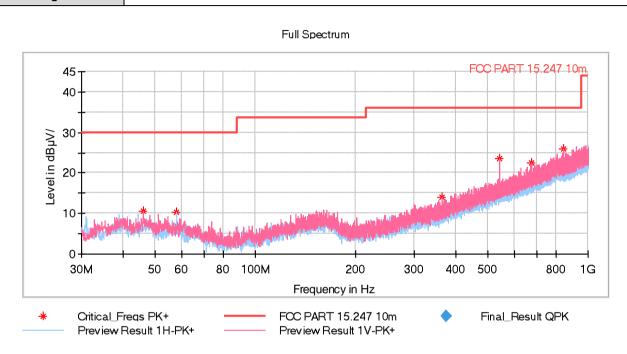


Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
_							DIC		
1	2483.50	22.91	35.51	58.42	74.00	15.58	PK	Horizontal	
2	2483.50	12.87	35.51	48.38	54.00	5.62	ΑV	Horizontal	
3	2486.29	24.34	35.51	59.85	74.00	14.15	PK	Horizontal	
4	2486.36	12.85	35.51	48.36	54.00	5.64	AV	Horizontal	
5	2491.33	23.48	35.50	58.98	74.00	15.02	PK	Horizontal	
6	2491.46	12.98	35.50	48.48	54.00	5.52	AV	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2342.33	24.49	35.24	59.73	74.00	14.27	PK	Vertical	
2	2342.71	13.32	35.24	48.56	54.00	5.44	AV	Vertical	
3	2363.95	23.52	35.40	58.92	74.00	15.08	PK	Vertical	
4	2364.05	13.10	35.40	48.50	54.00	5.50	AV	Vertical	
5	2390.08	23.40	35.60	59.00	74.00	15.00	PK	Vertical	
6	2390.08	12.83	35.60	48.43	54.00	5.57	AV	Vertical	


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	SMART PHONE	Product model:	Elite N55Max
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	DC 3.7V		

Frequency (MHz)	MaxPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
45.956500	10.58	30.00	19.42	100.0	V	242.0	-16.0
57.887500	10.19	30.00	19.81	100.0	Н	244.0	-16.9
364.456000	13.94	36.00	22.06	100.0	V	108.0	-13.2
539.977500	23.54	36.00	12.46	100.0	V	233.0	-8.3
676.068500	22.52	36.00	13.48	100.0	V	114.0	-5.4
843.151000	25.99	36.00	10.01	100.0	V	0.0	-2.3

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization		
4804.00	55.39	-9.08	46.31	74.00	27.69	Vertical		
4804.00	54.75	-9.08	45.67	74.00	28.33	Horizontal		
		Det	ector: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization		
4804.00	49.05	-9.08	39.97	54.00	14.03	Vertical		
4804.00	49.19	-9.08	40.11	54.00	13.89	Horizontal		
	Test channel: Middle channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization		
4882.00	55.14	-8.59	46.55	74.00	27.45	Vertical		
4882.00	54.29	-8.59	45.70	74.00	28.30	Horizontal		
		Det	ector: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization		
4882.00	48.87	-8.59	40.28	54.00	13.72	Vertical		
4882.00	49.59	-8.59	41.00	54.00	13.00	Horizontal		
	Test channel: Highest channel							
		D	etector: Peak Val	ue				
Frequency	Read Level	Factor(dB)	Level	Limit	Margin	Polarization		

	Test channel: Highest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization			
4960.00	55.25	-8.03	47.22	74.00	26.78	Vertical			
4960.00	55.14	-8.03	47.11	74.00	26.89	Horizontal			
		Det	tector: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization			
4960.00	49.01	-8.03	40.98	54.00	13.02	Vertical			
4960.00	49.13	-8.03	41.10	54.00	12.90	Horizontal			

Remark:

-----End of report-----

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

^{1.} Level = Reading + Factor.

Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.