

FCC PART 22/24 TEST REPORT FCC Part 22 /Part 24 Report Reference No.....: MWR1403002801 FCC ID.....: : 2ABOSSKYTV Compiled by Marcin File administrators Martin Ao (position+printed name+signature) ..: Supervised by Test Engineer Martin Ao (position+printed name+signature) ...: Approved by Manager Dixon Hao (position+printed name+signature) ..: Date of issue..... Mar 24, 2014 Representative Laboratory Name .: Maxwell International Co., Ltd. Room 509, Hongfa center building, Baoan District, Shenzhen, Address..... Guangdong, China Testing Laboratory Name **DTT Services Co.,Ltd** 1F,2 Block, Jiaguan Building, Guanlan High-tech Park, Bao'an Address.....: District, Shenzhen, Guangdong, China. 518110 Applicant's name..... **SKY PHONE LLC** 1348 Washington Av. Suite 350 Address..... Test specification FCC Part 22: PUBLIC MOBILE SERVICES Standard FCC Part 24: PERSONAL COMMUNICATIONS SERVICES DTT Services Co.,Ltd TRF Originator..... Master TRF..... Dated 2011-05 DTT Services Co., Ltd All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the DTT Services Co., Ltd as copyright owner and source of the material. DTT Services Co., Ltd takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test item description SKY Pocket TV Trade Mark Manufacturer..... **SKY PHONE LLC** Model/Type reference.....: MC906

Trade MarkSKY PHONE LLCModel/Type referenceMC906Listed ModelsM906xy(x:0-9,y:A-Z), PRO90600xy(x:0-9,y:A-Z)RatingsDC 3.70VModulationGMSK for GSM/GPRSGPRSSupportedHardware versionA19_V1.3Software versionV1.3FrequencyGSM 850MHz; PCS 1900MHz;

Result..... PASS

TEST REPORT

Test Report No. :		MWR1403002801	Mar 24, 2014 Date of issue
Equipment under Test	:	SKY Pocket TV	Date of 1350e
Model /Type	:	MC906	
Listed Models	:	M906xy(x:0-9,y:A-Z), PF	RO90600xy(x:0-9,y:A-Z)
Applicant	:	SKY PHONE LLC	
Address	:	1348 Washington Av. Suite 350	
Manufacturer	:	SKY PHONE LLC	
Address	:	1348 Washington Av. Suite 350	

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

SUMMARY	5
General Remarks	5
Product Description	5
Equipment under Test	5
Short description of the Equipment under Test (EUT)	5
Internal Identification of AE used during the test	6
Normal Accessory setting	6
EUT configuration	6
Related Submittal(s) / Grant (s)	6
Modifications	6
Note	6
TEST ENVIRONMENT	7
Address of the test laboratory	7
Test Facility	7
Environmental conditions	7
Statement of the measurement uncertainty	7
Test Description	8
Equipments Used during the Test	8
TEST CONDITIONS AND RESULTS	10
Conducted Emissions Test	10
OUTPUT POWER	15
Radiated Spurious Emssion	19
OCCUPIED BANDWIDTH	23
EMISSION BANDWIDTH	31
BAND EDGE COMPLIANCE	39
Spurious Emssion on Antenna Port	45
Frequency Stability Test	68
TEST SETUP PHOTOS OF THE EUT	70

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT
--

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Part 22 (10-1-12 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-12 Edition): PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 D June 2010</u>: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

ANSI C63.4:2009: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Mar 10, 2014
Testing commenced on	•••	Mar 10, 2014
Testing concluded on	:	Mar 24, 2014

2.2. Product Description

The **SKY PHONE LLC**'s Model: MC906 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	SKY Pocket TV
Model Number	MC906/M906xy(x:0-9,y:A-Z), PRO90600xy(x:0-9,y:A-Z),
FCC ID	2ABOSSKYTV
Modilation Type	GMSK for GSM/GPRS
Antenna Type	External
GSM/EDGE/GPRS	Supported GPRS
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)
GSM Operation Frequency Band	GSM 850MHz/ PCS 1900MHz
GSM Release Version	R99
GPRS operation mode	Class B
GPRS Multislot Class	12
EGPRS Multislot Class	Not Supported

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	•	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 3.70V

Test frequency list

Modulation Type	Test Channel	Channel Number	Test Frequency
	Low	128	824.20 MHz
GSM850	Middle	188	836.60 MHz
	High	251	848.80 MHz
	Low	512	1850.20 MHz
PCS1900	Middle	661	1880.00 MHz
	High	810	1909.80 MHz

2.4. Short description of the Equipment under Test (EUT)

The Equipment Under Test (EUT) is a model of Sky Pocket TV with GSM/GPRS,WiFi and Bluetooth

function and integrated antenna. Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the Client.

2.5. Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery
AE2	Charger

AE1

Model: MC906 Manufacturer: SKY PHONE LLC Capacitance:800mAh Nominal Voltage:3.70V

AE2:

Model: MC906 Manufacturer: SKY PHONE LLC

*AE ID: is used to identify the test sample in the lab internally.

2.6. Normal Accessory setting

Fully charged battery was used during the test.

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\ensuremath{\bigcirc}$ supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer :	/
		Model No. :	/

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2ABOSSKYTV** filing to comply with FCC Part 22 and Part 24 Rules

2.9. Modifications

No modifications were implemented to meet testing criteria.

2.10. Note

1. The EUT is a Sky Pocket TV with GSM/GPRS,WiFi and Bluetooth fuction,The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS	FCC Part 22/FCC Part 24	MWR1403002801
Bluetooth	FCC Part 15 C 15.247	MWR1403002802
WiFi	FCC Part 15 C 15.247	MWR1403002803
USB Port	FCC Part 15 B	MWR1403002804
SAR	FCC Part 2 §2.1093	MWR1403002805

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

DTT Services Co.,Ltd

1F,2 Block, Jiaquan Building, Guanlan High-tech Park, Bao'an District, Shenzhen, Guangdong, China. 518110

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9783A

The 3m alternate test site of DTT Services Co.,Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Aug, 2011.

FCC-Registration No.: 214666

DTT Services Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 214666, Sep 19, 2011

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the DTT Services Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for DTT Services Co.,Ltd laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.5. Test Description

Test Items	Clause in FCC rules	Verdict
Conducted Emission	15.107/15.207	PASS
Output Power	22.913(a)/24.232(c)	PASS
Radiated Spurious Emission	2.1051/22.917/24.238	PASS
Frequency Stability	2.1055/24.235	PASS
Occupied Bandwidth	2.1049(h)(i)	PASS
Emission Bandwidth	22.917(b)/24.238(b)	PASS
Band Edge Compliance	22.917(b)/24.238(b)	PASS
Conducted Spurious Emission	2.1057/22.917/24.238	PASS

Remark:

1. The measurement uncertainty is not included in the test result.

3.6. Equipments Used during the Test

AC Po	C Power Conducted Emission									
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.					
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2013/10/26					
2	EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	2013/10/26					
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2013/10/26					
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A					
5	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26					

Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance & Conducted Spurious Emission										
No.	Equipment Manufacturer Model No. Serial No. Last Cal.									
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26					
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/25					
3	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/25					

Frequency Stability

i icque									
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26				
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/25				
3	Climate Chamber	ESPEC	EL-10KA	05107008	2013/10/14				
4	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/25				

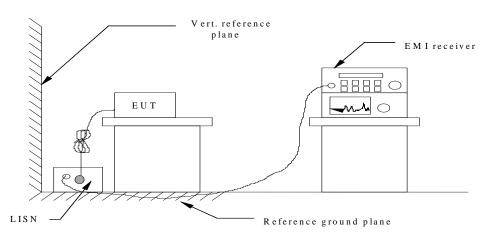
Output Power (Radiated) & Radiated Spurious Emission										
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.					
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26					
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/25					
3	HORN ANTENNA	ShwarzBeck	9120D	1012	2013/10/27					
4	HORN ANTENNA	ShwarzBeck	9120D	1011	2013/10/27					
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2013/10/27					
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2013/10/27					
7	TURNTABLE	MATURO	TT2.0		N/A					
8	ANTENNA MAST	MATURO	TAM-4.0-P		N/A					
9	EMI Test Software	Audix	E3	N/A	N/A					
10	EMI Test Receiver	Rohde&Schwarz	ESIB 26	100009	2013/10/25					
11	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A					
12	High pass filter	Compliance Direction systems	BSU-6	34202	2013/10/25					
13	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/25					
14	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2013/10/27					
15	Horn Antenna	SCHWARZBECK	BBHA9170	25842	2013/10/27					

Page 9 of 78

Report No.: MWR1403002801

16	Preamplifier	ShwarzBeck	BBV 9718	BBV 9718	2013/10/25
17	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2013/10/25
18	Signal Generator		SMF100A	101932	2013/10/26
19	Amplifer	Compliance Direction systems	PAP1-4060	120	2013/10/26

The calibration interval was one year.


4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST APPLICABLE

The EUT was tested according to ANSI C63.4 - 2009. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4 - 2009. Cables and peripherals were moved to find the maximum emission levels for each frequency.

TEST CONFIGURATION

TEST PROCEDURE

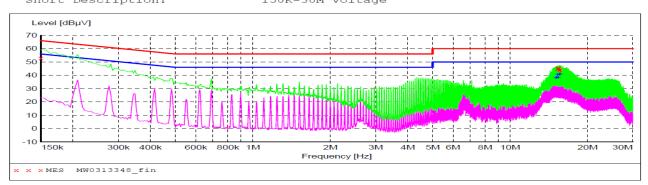
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following :

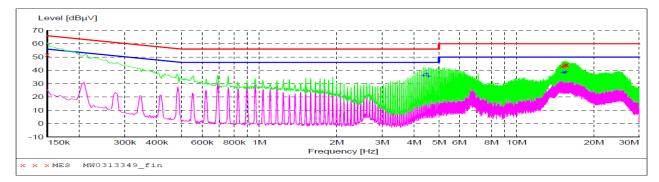
Frequency	Maximum RF Line Voltage (dBµV)							
Frequency (MHz)	CLA	SS A	CLA	SS B				
	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency


For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

TEST RESULTS

GSM850MHz-AE2


MEASUREMENT RESULT: "MW0313348_fin"

3/13/2014 8:0 Frequency MHz	08PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	52.80	10.1	66	13.2	QP	L1	GND
15.306000	44.80	10.6	60	15.2	QP	L1	GND
15.373500	45.30	10.7	60	14.7	QP	L1	GND
15.508500	45.20	10.7	60	14.8	QP	L1	GND
15.585000	43.90	10.7	60	16.1	QP	L1	GND
15.643500	44.10	10.7	60	15.9	QP	L1	GND

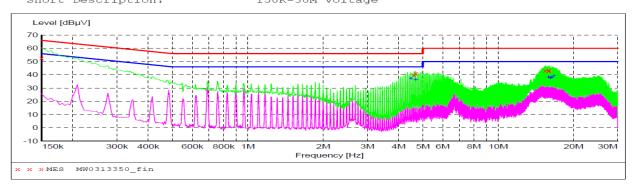
MEASUREMENT RESULT: "MW0313348_fin2"

				-			
3/13/2014 8:0 Frequency MHz	8PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
15.094500 15.171000 15.306000 15.378000 15.580500 15.648000	38.10 38.20 40.30 38.30 40.80 40.70	10.6 10.6 10.7 10.7	50 50 50 50 50	11.9 11.8 9.7 11.7 9.2 9.3	AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "MW0313349_fin"

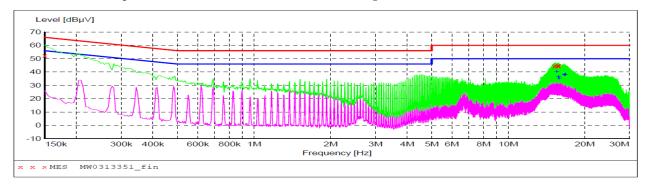
3/13/2014 8:1 Frequency MHz	l2PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 15.090000 15.369000 15.571500 15.643500 15.711000	51.70 43.10 43.50 44.10 44.00 44.10	10.1 10.6 10.7 10.7 10.7 10.7	66 60 60 60 60	14.3 16.9 16.5 15.9 16.0 15.9	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND


MEASUREMENT RESULT: "MW0313349_fin2"

3/13/2014 8: Frequency MHz	12PM Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
4 244000	25.00	10.0	4.6	10.1			
4.344000	35.90	10.2	46		AV	N	GND
4.479000	37.10	10.2	46	8.9	AV	N	GND
4.551000	35.60	10.2	46	10.4	AV	N	GND
15.162000	38.30	10.6	50	11.7	AV	N	GND
15.364500	38.10	10.7	50	11.9	AV	N	GND
15.571500	38.60	10.7	50	11.4	AV	N	GND

PCS1900MHz-AE2

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "MW0313350_fin"

3/13/2014 8: Frequency MHz	17PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	52.60	10.1	66	13.4	QP	N	GND
4.618500	39.90	10.2	56	16.1	QP	N	GND
4.686000	40.90	10.2	56	15.1	QP	N	GND
15.436500	43.10	10.7	60	16.9	QP	N	GND
15.918000	42.90	10.7	60	17.1	QP	N	GND
15.985500	43.40	10.7	60	16.6	QP	N	GND

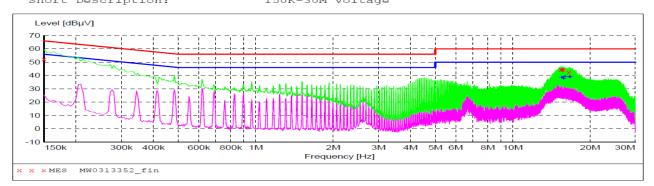
MEASUREMENT RESULT: "MW0313350_fin2"

3/13/2014 8:1 Frequency MHz	7PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
4.479000 4.686000 15.918000 16.188000 16.395000 16.674000	37.10 36.50 38.20 37.60 38.20 38.90	10.2 10.2 10.7 10.7 10.7 10.7	46 46 50 50 50 50	8.9 9.5 11.8 12.4 11.8 11.1	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "MW0313351_fin"

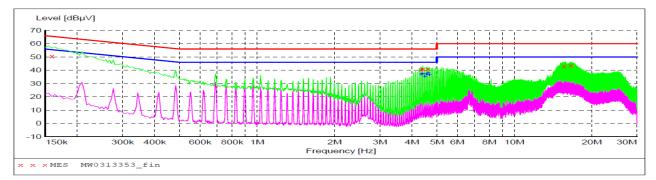
3/13/2014 8	3:20PM						
Frequency		Transd	Limit	Margin	Detector	Line	PE
MH	z dBµV	dB	dBµV	dB			
0.150000	52.20	10.1	66	13.8	QP	L1	GND
15.225000	9 44.10	10.6	60	15.9	QP	L1	GND
15.360000	44.80	10.6	60	15.2	QP	L1	GND
15.706500	44.60	10.7	60	15.4	QP	L1	GND
15.774000	44.60	10.7	60	15.4	QP	L1	GND
15.841500	44.50	10.7	60	15.5	QP	L1	GND


MEASUREMENT RESULT: "MW0313351_fin2"

3/13/2014 8:20 Frequency MHz	0PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
$\begin{array}{c} 15.499500\\ 15.769500\\ 15.850500\\ 16.597500\\ 16.741500\\ 16.80000\end{array}$	40.10 36.40 35.10 37.80 38.00 38.20	10.7 10.7 10.7 10.7 10.7	50 50 50 50 50	9.9 13.6 14.9 12.2 12.0 11.8	AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

CAMERA-AE2

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "MW0313352_fin"

				-			
3/13/2014 8:2	27pm						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.150000	52.20	10.1	66	13.8	QP	L1	GND
15.423000	44.50	10.7	60	15.5	QP	L1	GND
15.490500	44.40	10.7	60	15.6	QP	L1	GND
15.702000	44.40	10.7	60	15.6	QP	L1	GND
15.769500	44.50	10.7	60	15.5	QP	L1	GND
16.588500	42.30	10.7	60	17.7	QP	L1	GND

MEASUREMENT RESULT: "MW0313352_fin2"

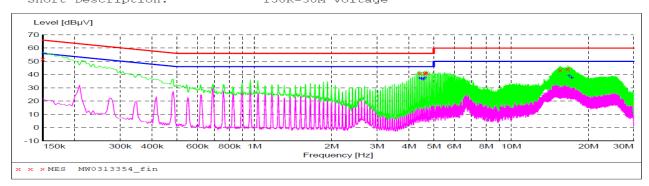
3/13/2014 8:2 Frequency MHz	7PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
15.490500 15.697500 15.765000 15.976500 16.665000 16.732500	38.40 38.70 37.50 39.10 39.00 38.80	10.7 10.7 10.7 10.7 10.7	50 50 50 50 50	11.6 11.3 12.5 10.9 11.0 11.2	AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "MW0313353_fin"

3/13/2014 8:: Frequency MHz	29PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
$\begin{array}{c} 0.159000\\ 4.339500\\ 4.407000\\ 4.614000\\ 15.634500\\ 16.660500\end{array}$	50.70 40.60 41.10 40.90 42.90 43.70	10.1 10.2 10.2 10.2 10.7 10.7	66 566 566 60 60	14.8 15.4 14.9 15.1 17.1 16.3	QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

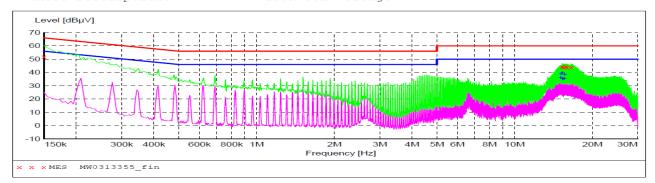
MEASUREMENT RESULT: "MW0313353_fin2"


3/13/2014 8:	29PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
4.339500	36.90	10.2	46	9.1	AV	N	GND
4.407000	37.20	10.2	46	8.8	AV	N	GND
4.479000	35.20	10.2	46	10.8	AV	N	GND
4.546500	37.00	10.2	46	9.0	AV	N	GND
4.614000	37.70	10.2	46	8.3	AV	N	GND
4.681500	36.30	10.2	46	9.7	AV	N	GND

MP3-AE2

3

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "MW0313354_fin"

8/13/2014 8:3 Frequency MHz	4PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
$\begin{array}{c} 0.150000\\ 4.407000\\ 4.614000\\ 4.681500\\ 15.562500\\ 16.660500\end{array}$	51.80 41.00 40.90 41.20 43.20 44.10	10.1 10.2 10.2 10.2 10.7 10.7	66 56 56 60 60	14.2 15.0 15.1 14.8 16.8 15.9	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "MW0313354_fin2"

3/13/2014 8: Frequency MHz	34PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
4.407000	37.20	10.2	46	8.8	AV	N	GND
4.474500	37.00	10.2	46	9.0	AV	N	GND
4.546500	36.40	10.2	46	9.6	AV	N	GND
4.614000	37.40	10.2	46	8.6	AV	N	GND
16.800000	38.90	10.7	50	11.1	AV	N	GND
17.214000	37.50	10.7	50	12.5	AV	N	GND

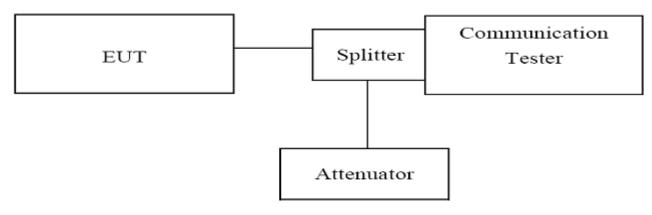
SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "MW0313355_fin"

					-			
3/13/2014	8:371	PM						
Freque	ncy	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBµV	dB	dBµV	dB			
0.150	000	51.80	10.1	66	14.2	QP	L1	GND
15.279	000	44.10	10.6	60	15.9	QP	L1	GND
15.486	000	44.30	10.7	60	15.7	QP	L1	GND
15.832	500	44.40	10.7	60	15.6	QP	L1	GND
15.972	000	44.00	10.7	60	16.0	QP	L1	GND
16.588	500	43.90	10.7	60	16.1	QP	L1	GND

MEASUREMENT RESULT: "MW0313355_fin2"

3/13/2014 8:	37PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
15.072000	35.90	10.6	50	14.1	AV	T.1	GND
15.144000	38.70	10.6	50	11.3	AV	L1	GND
15.283500	39.50	10.6	50	10.5	AV	L1	GND
15.346500	34.90	10.6	50	15.1	AV	L1	GND
15.553500	35.20	10.7	50	14.8	AV	L1	GND
15.625500	38.30	10.7	50	11.7	AV	L1	GND


4.2. OUTPUT POWER

TEST APPLICABLE

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.2.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation.
- 2. The power was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak)
- 3. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (bottom, middle and top of operational frequency range).

TEST CONDITION

RBW	VBW	Sweep Time	Span
1MHz	3MHz	300ms	10MHz

GSM850							
Function Power step Nominal Peak output power (dBm) Power & Multislot class Operation class							
GSM	5	33dBm(2W)	4	/			
GPRS	3	33dBm(2W)	12	В			

PCS1900							
Function Power step Nominal Peak output power (dBm) Power & Multislot class Operation class							
GSM	0	30dBm(1W)	1	/			
GPRS	3	30dBm(1W)	12	В			

TEST RESULTS

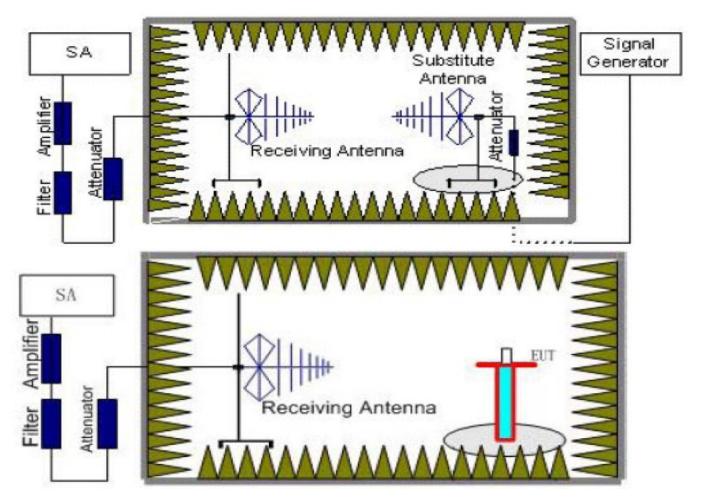
GSM850(GMSK)						
Frequency (MHz) Power Step Output Power (dBm)						
824.20	5	32.61				
836.60	5	32.33				
848.80	5	32.47				

Report No.: MWR1403002801

GPRS850(GMSK,1Slot)						
Frequency (MHz) Power Step Output Power (dBm)						
824.20	3	32.59				
836.60	3	32.24				
848.80	3	32.41				

PCS1900(GMSK)						
Frequency (MHz)	Power Step	Output Power (dBm)				
1850.20	0	29.38				
1880.00	0	29.29				
1909.80	0	29.32				

GPRS1900(GMSK,1Slot)						
Frequency (MHz)	Power Step	Output Power (dBm)				
1850.20	3	29.37				
1880.00	3	29.25				
1909.80	3	29.28				


4.2.2. Radiated Output Power

TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

 $Power(EIRP)=P_{Mea}-P_{Ag}-P_{cl}+G_{a}$

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)= P_{Mea} - P_{cl} + G_a

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST LIMIT

According to 22.913(a) and 24.232(c), the ERP should be not exceed following table limits:

GSM850(GPRS850,EDGE850)						
Function	Power Step	Burst Peak ERP (dBm)				
GSM	5	≤38.45dBm (7W)				
GPRS	3	≤38.45dBm (7W)				
EGPRS	3	≤38.45dBm (7W)				

PCS1900(GPRS1900,EDGE1900)						
Function	Power Step	Burst Peak EIRP (dBm)				
GSM	0	≤33dBm (2W)				
GPRS	3	≤33dBm (2W)				
EGPRS	3	≤33dBm (2W)				

TEST RESULTS

			GSM850			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	Correction (dB)	ERP (dBm)	Polarization
824.20	27.98	1.56	8.45	2.15	32.72	Н
836.60	28.36	1.50	8.45	2.15	33.16	Н
848.80	27.76	1.67	8.39	2.15	32.33	Н
824.20	28.15	1.56	8.45	2.15	32.89	V
836.60	28.67	1.50	8.45	2.15	33.47	V
848.80	28.08	1.67	8.39	2.15	32.65	V

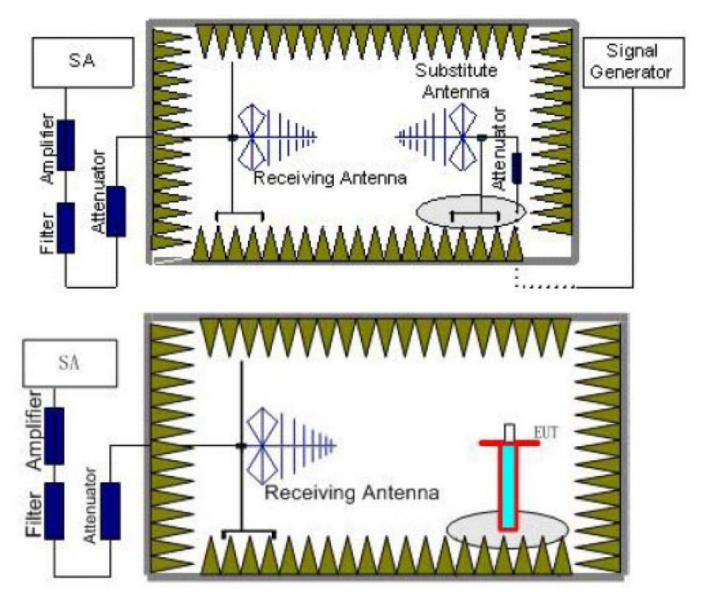
Page 18 of 78

Report No.: MWR1403002801

	GPRS850						
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	Correction (dB)	ERP (dBm)	Polarization	
824.20	27.94	1.56	8.45	2.15	32.68	Н	
836.60	28.30	1.50	8.45	2.15	33.10	Н	
848.80	27.72	1.67	8.39	2.15	32.29	Н	
824.20	27.99	1.56	8.45	2.15	32.73	V	
836.60	28.62	1.50	8.45	2.15	33.42	V	
848.80	28.02	1.67	8.39	2.15	32.59	V	

	PCS1900						
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	Correction (dB)	EIRP (dBm)	Polarization	
1850.20	26.40	3.52	8.35	2.15	31.23	Н	
1880.00	26.78	3.61	8.29	2.15	31.46	Н	
1909.80	26.34	3.67	8.37	2.15	31.04	Н	
1850.20	26.59	3.52	8.35	2.15	31.42	V	
1880.00	27.01	3.61	8.29	2.15	31.69	V	
1909.80	26.48	3.67	8.37	2.15	31.18	V	

	GPRS1900							
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	Correction (dB)	EIRP (dBm)	Polarization		
1850.20	26.34	3.52	8.35	2.15	31.17	Н		
1880.00	26.73	3.61	8.29	2.15	31.41	Н		
1909.80	26.30	3.67	8.37	2.15	31.00	Н		
1850.20	26.52	3.52	8.35	2.15	31.35	V		
1880.00	26.95	3.61	8.29	2.15	31.63	V		
1909.80	26.44	3.67	8.37	2.15	31.14	V		



4.3. Radiated Spurious Emssion

TEST APPLICABLE

According to the TIA/EIA 603D:2010 test method, The Receiver or Spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below:
- Power(EIRP)=P_{Mea}- P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
850MHz	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1900MHz	5~8	1 MHz	3 MHz	3
1900IVINZ	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

According to 24.238 and 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	30MHz-10GHz	PASS
GSM850	Middle	30MHz-10GHz	PASS
	High	30MHz-10GHz	PASS
	Low	30MHz-20GHz	PASS
GSM1900	Middle	30MHz-20GHz	PASS
	High	30MHz-20GHz	PASS

Page 21 of 78

Report No.: MWR1403002801

	GSM850							
	Channel Nu	umber: 128		-	Test Frequend	y: 824.20 MI	Ηz	
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction Peak Limit (dB) ERP(dBm) (dBm) Polarizat				
2472.57	-26.36	4.32	6.77	2.15	-26.06	-13.00	Н	
3294.35	-34.69	4.55	12.25	2.15	-29.14	-13.00	Н	
4942.65	-38.29	4.70	12.92	2.15	-32.22	-13.00	Н	
2472.57	-23.15	4.32	6.77	2.15	-22.85	-13.00	V	
3294.35	-30.34	4.55	12.25	2.15	-24.79	-13.00	V	
4115.67	-36.08	4.59	12.76	2.15	-30.06	-13.00	V	

	GSM850							
	Channel Nu	umber: 190			Test Frequend	cy: 836.60 MI	Hz	
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization	
3342.00	-28.88	4.55	12.25	2.15	-23.33	-13.00	Н	
4182.70	-27.69	4.59	12.76	2.15	-21.67	-13.00	Н	
5014.14	-34.11	4.78	12.88	2.15	-28.16	-13.00	Н	
3342.00	-25.84	4.55	12.25	2.15	-20.29	-13.00	V	
4182.70	-23.24	4.59	12.76	2.15	-17.22	-13.00	V	
5014.14	-36.25	4.78	12.88	2.15	-30.30	-13.00	V	

	GSM850						
	Channel Nu	umber: 251			Test Frequend	cy: 848.80 Mł	Ηz
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization
2547.01	-20.50	4.29	6.83	2.15	-20.11	-13.00	Н
3390.34	-29.14	4.58	12.59	2.15	-23.28	-13.00	Н
4232.20	-32.99	4.59	12.76	2.15	-26.97	-13.00	Н
2547.01	-18.85	4.29	6.83	2.15	-18.46	-13.00	V
3390.34	-24.94	4.58	12.59	2.15	-19.08	-13.00	V
4232.20	-30.15	4.59	12.76	2.15	-24.13	-13.00	V

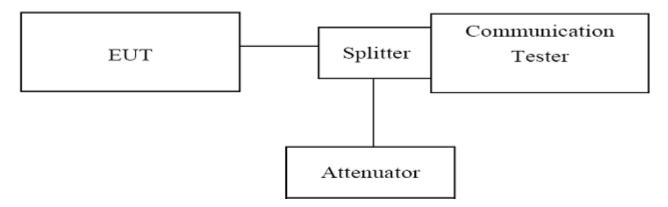
	PCS1900							
	Channel Nu	umber: 512		Т	est Frequenc	y: 1850.20 M	Hz	
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization	
3701.26	-31.50	4.55	12.34	2.15	-25.86	-13.00	Н	
5550.08	-29.30	5.05	13.53	2.15	-22.97	-13.00	Н	
7402.15	-33.96	4.64	11.60	2.15	-29.15	-13.00	Н	
3701.26	-28.09	4.55	12.34	2.15	-22.45	-13.00	V	
5550.08	-26.04	5.05	13.53	2.15	-19.71	-13.00	V	
7402.15	-32.48	4.64	11.60	2.15	-27.67	-13.00	V	

	PCS1900						
	Channel Nu	umber: 661		Т	est Frequenc	y: 1880.00 M	Hz
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization
3761.51	-32.77	4.55	12.40	2.15	-27.07	-13.00	Н
5642.28	-31.14	4.96	13.60	2.15	-24.65	-13.00	Н
7521.96	-37.32	4.71	11.89	2.15	-32.29	-13.00	Н
3761.51	-29.04	4.55	12.40	2.15	-23.34	-13.00	V
5642.28	-26.68	4.96	13.60	2.15	-20.19	-13.00	V
7521.96	-33.31	4.71	11.89	2.15	-28.28	-13.00	V

Page 22 of 78

	PCS1900						
	Channel Nu	umber: 810		Т	est Frequenc	y: 1909.80 M	Hz
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization
3820.18	-31.28	4.51	12.43	2.15	-25.51	-13.00	Н
5731.56	-28.66	4.90	13.61	2.15	-22.10	-13.00	Н
7638.25	-35.05	4.78	12.00	2.15	-29.98	-13.00	Н
3820.18	-28.23	4.51	12.43	2.15	-22.46	-13.00	V
5731.56	-26.38	4.90	13.61	2.15	-19.82	-13.00	V
7638.25	-31.81	4.78	12.00	2.15	-26.74	-13.00	V

Note: 1. In general, the worse case attenuation requirement shown above was applied. 3. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.



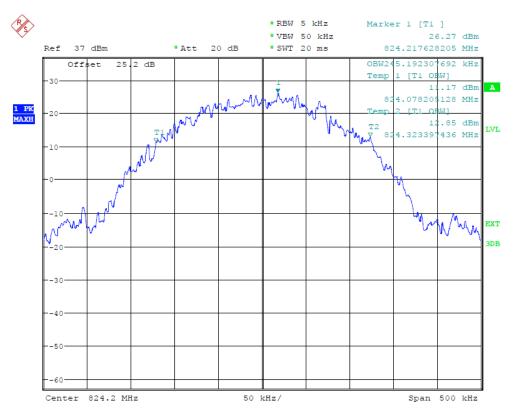
4.4. OCCUPIED BANDWIDTH

TEST APPLICABLE

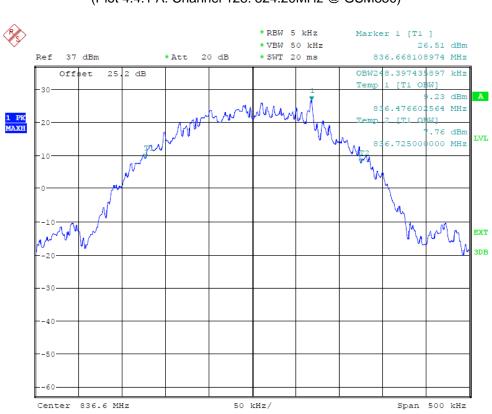
Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. The table below lists the measured 99% BW.

TEST CONFIGURATION

TEST PROCEDURE

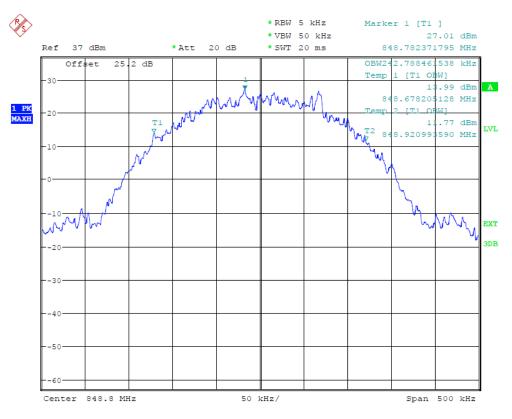

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The Occupied bandwidth was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak);
- 3. Set RBW=5KHz,VBW=50KHz,Span=500KHz,SWT=20ms;
- 4. Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth
- 5. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (bottom, middle and top of operational frequency range).

TEST RESULTS

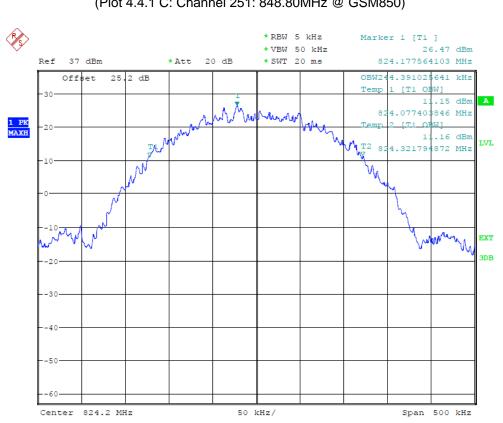

	GSM850							
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Refer to Plot	Verdict				
128	824.20	245.19	Plot 4.4.1 A	PASS				
190	836.60	248.40	Plot 4.4.1 B	PASS				
251	848.80	242.79	Plot 4.4.1 C	PASS				

	GPRS850							
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Refer to Plot	Verdict				
128	824.20	244.39	Plot 4.4.2 A	PASS				
190	836.60	244.39	Plot 4.4.2 B	PASS				
251	848.80	242.79	Plot 4.4.2 C	PASS				

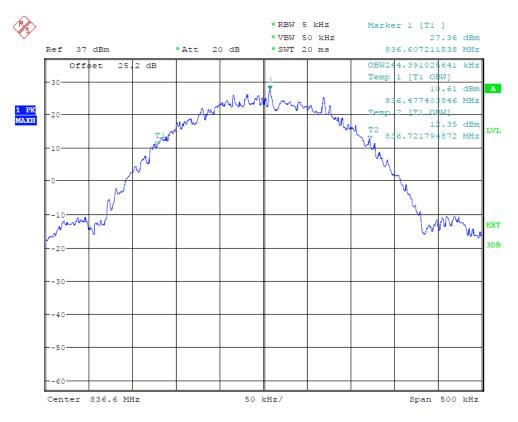
Date: 10.MAR.2014 13:29:46

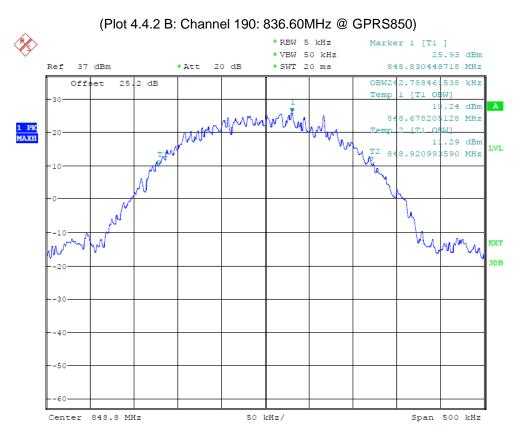


(Plot 4.4.1 A: Channel 128: 824.20MHz @ GSM850)


Date: 10.MAR.2014 13:29:22

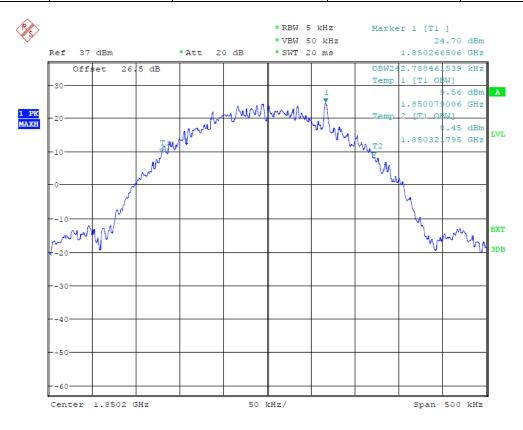
Page 25 of 78


Date: 10.MAR.2014 13:28:27


(Plot 4.4.1 C: Channel 251: 848.80MHz @ GSM850)

Date: 10.MAR.2014 14:00:48

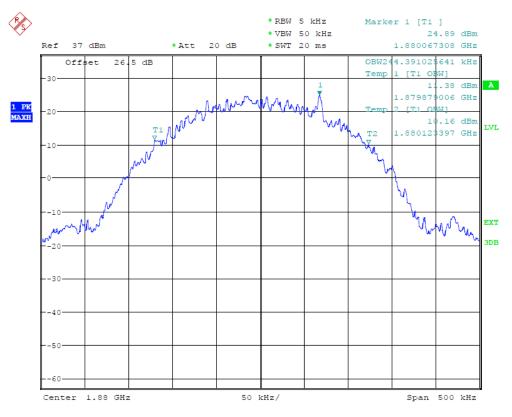
Date: 10.MAR.2014 14:00:10



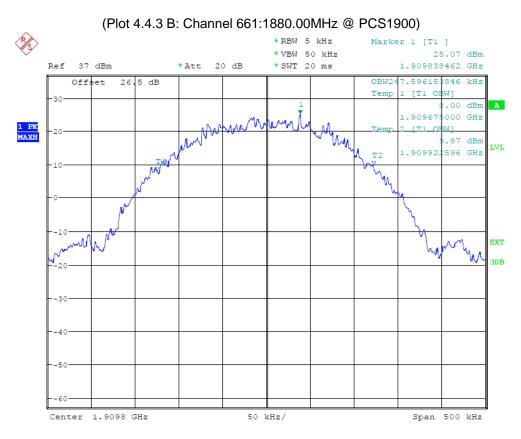
Date: 10.MAR.2014 14:00:30

	GSM1900							
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Refer to Plot	Verdict				
512	1850.20	242.79	Plot 4.4.3 A	PASS				
661	1880.00	244.39	Plot 4.4.3 B	PASS				
810	1909.80	247.60	Plot 4.4.3 C	PASS				

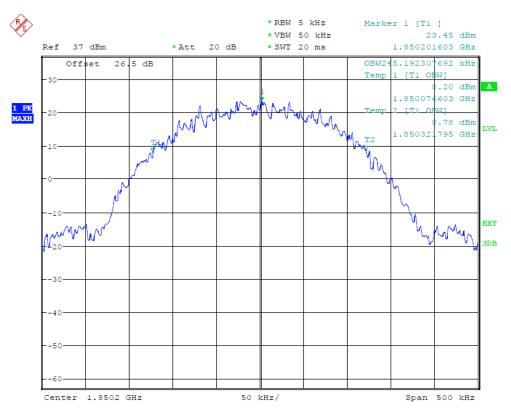
GPRS1900				
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Refer to Plot	Verdict
512	1850.20	245.19	Plot 4.4.4 A	PASS
661	1880.00	245.99	Plot 4.4.4 B	PASS
810	1909.80	244.39	Plot 4.4.4 C	PASS



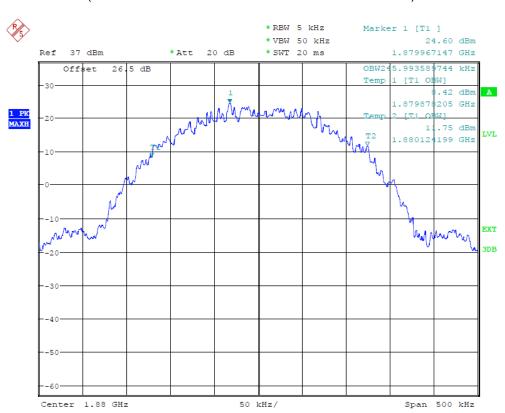
Date: 10.MAR.2014 14:08:51


(Plot 4.4.3 A: Channel 512:1820.20MHz @ PCS1900)

Page 28 of 78

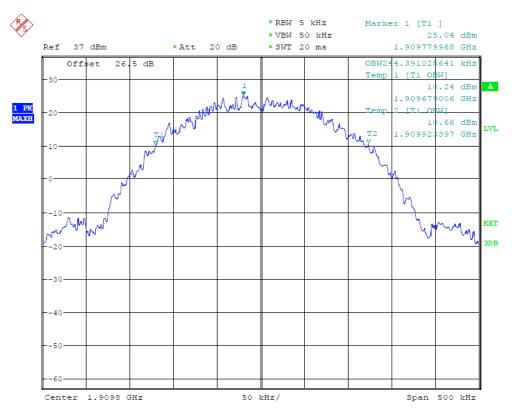


Date: 10.MAR.2014 14:08:29



Date: 10.MAR.2014 14:07:57

Date: 10.MAR.2014 14:29:29



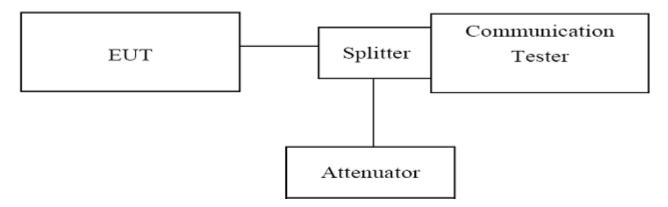
(Plot 4.4.4 A: Channel 512:1820.20MHz @ GPRS1900)

Date: 10.MAR.2014 14:29:07

Page 30 of 78

Date: 10.MAR.2014 14:28:47

(Plot 4.4.4 C: Channel 810:1909.80MHz @ GPRS1900)



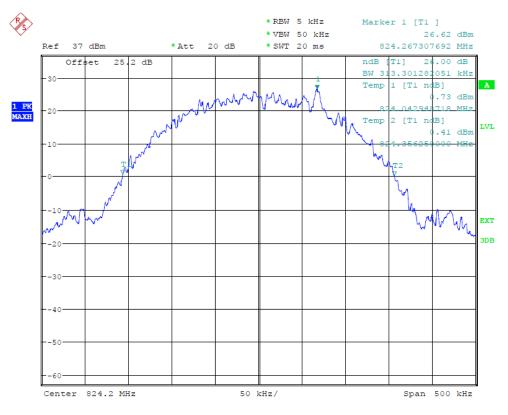
4.5. EMISSION BANDWIDTH

TEST APPLICABLE

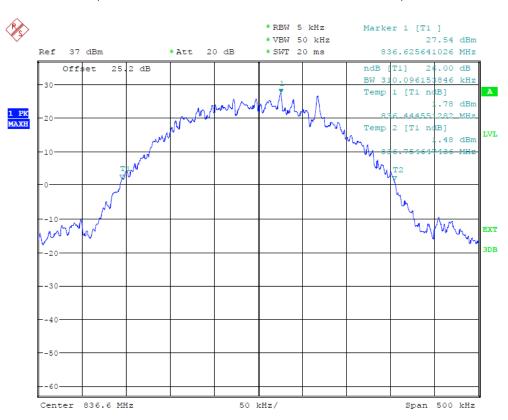
Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. The table below lists the measured -26dBc BW.

TEST CONFIGURATION

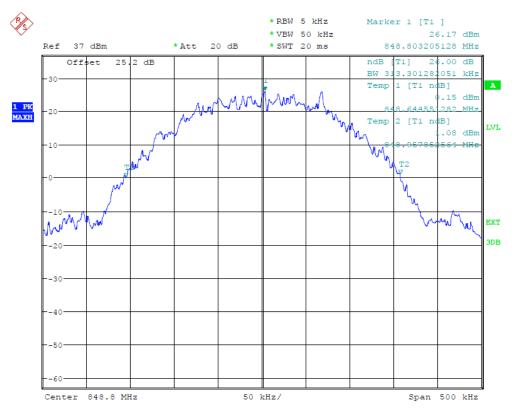
TEST PROCEDURE

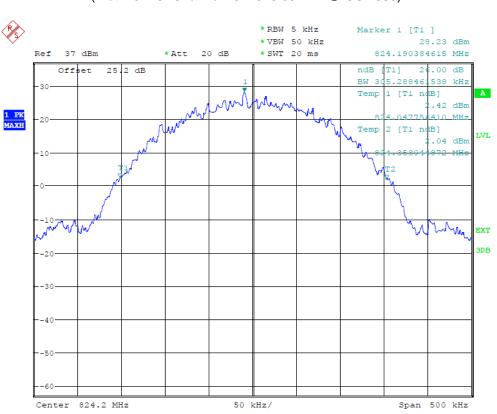

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The Occupied bandwidth was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak);
- 3. Set RBW=5KHz,VBW=50KHz,Span=500KHz,SWT=20ms;
- 4. Set SPA Max hold. Mark peak, Set -26dBc Occupied Bandwidth
- 5. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (bottom, middle and top of operational frequency range).

TEST RESULTS

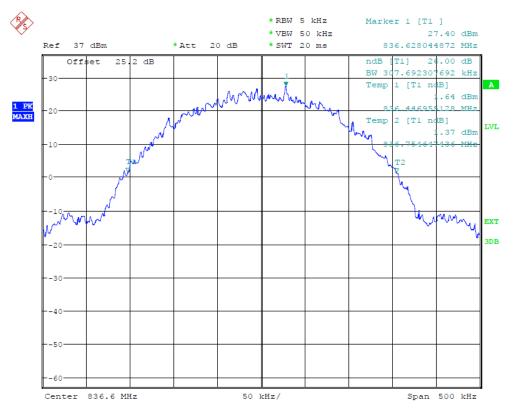

GSM850				
Channel Number	Frequency (MHz)	Occupied Bandwidth (-26dBc BW) (kHz)	Refer to Plot	Verdict
128	824.20	313.30	Plot 4.5.1 A	PASS
190	836.60	310.10	Plot 4.5.1 B	PASS
251	848.80	313.30	Plot 4.5.1 C	PASS

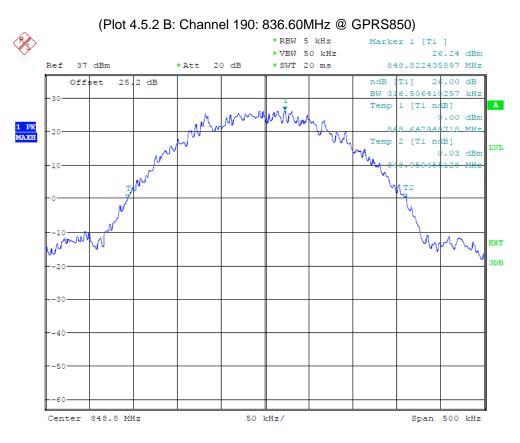
GPRS850				
Channel Number	Frequency (MHz)	Occupied Bandwidth (-26dBc BW) (kHz)	Refer to Plot	Verdict
128	824.20	305.29	Plot 4.5.2 A	PASS
190	836.60	307.70	Plot 4.5.2 B	PASS
251	848.80	316.50	Plot 4.5.2 C	PASS


Date: 10.MAR.2014 13:30:19


(Plot 4.5.1 A: Channel 128: 824.20MHz @ GSM850)

Date: 10.MAR.2014 13:30:52


Date: 10.MAR.2014 13:31:15


(Plot 4.5.1 C: Channel 251: 848.80MHz @ GSM850)

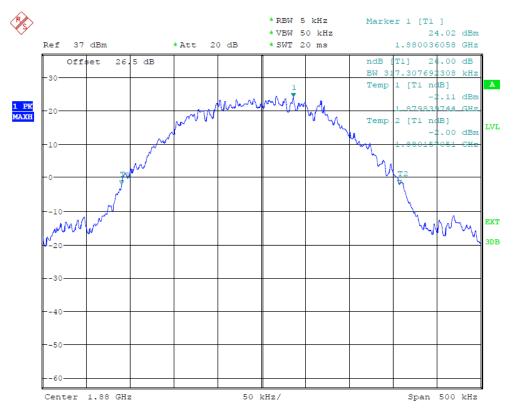
Date: 10.MAR.2014 13:50:18

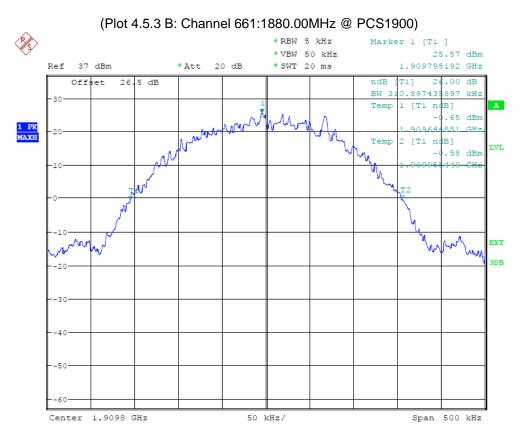
Date: 10.MAR.2014 13:49:08



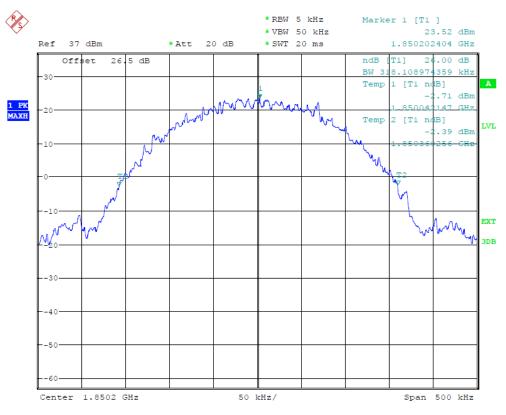
Date: 10.MAR.2014 13:49:43

GSM1900				
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Refer to Plot	Verdict
512	1850.20	314.10	Plot 4.5.3 A	PASS
661	1880.00	317.30	Plot 4.5.3 B	PASS
810	1909.80	310.90	Plot 4.5.3 C	PASS

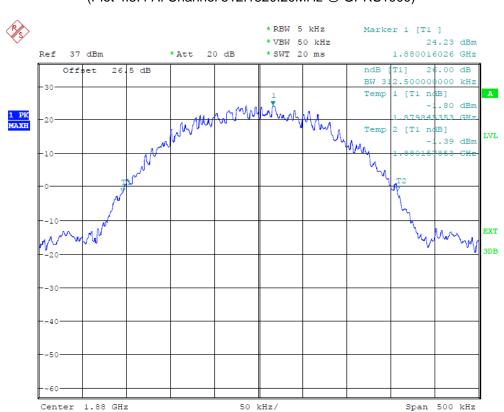

GPRS1900				
Channel Number	Frequency (MHz)	Occupied Bandwidth (-26dBc BW) (kHz)	Refer to Plot	Verdict
512	1850.20	318.11	Plot 4.5.4 A	PASS
661	1880.00	312.50	Plot 4.5.4 B	PASS
810	1909.80	313.30	Plot 4.5.4 C	PASS


Date: 10.MAR.2014 14:09:03

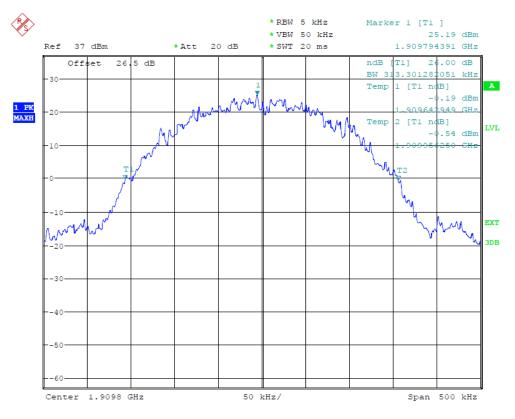
(Plot 4.5.3 A: Channel 512:1820.20MHz @ PCS1900)



Date: 10.MAR.2014 14:09:28



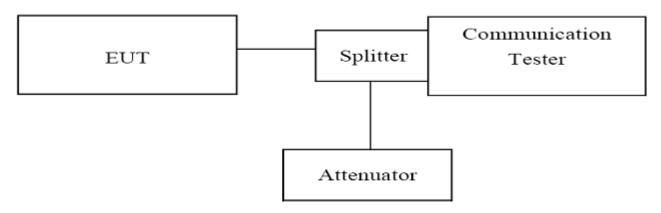
Date: 10.MAR.2014 14:10:13


Date: 10.MAR.2014 14:39:57

Date: 10.MAR.2014 14:39:32

Date: 10.MAR.2014 14:39:13

(Plot 4.5.4 C: Channel 810:1909.80MHz @ GPRS1900)



4.6. BAND EDGE COMPLIANCE

TEST APPLICABLE

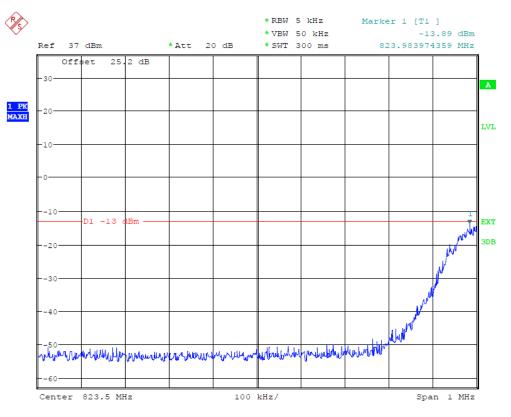
During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

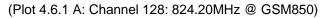
TEST PROCEDURE

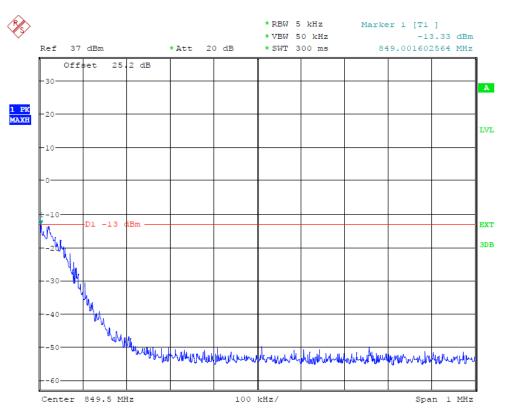
- The EUT was set up for the max output power with pseudo random data modulation;
 The power was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak);
 Set RBW=5KHz,VBW=50KHz,Span=1MHz,SWT=300ms;

- 4. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (bottom, middle and top of operational frequency range).


TEST RESULTS

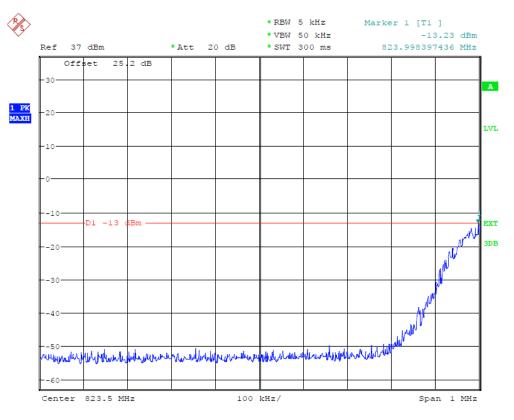
GSM850									
Channel	Frequency	Measureme	Measurement Results						
Channel Number	Frequency (MHz)	Frequency Values (MHz) (dBm)		Limit (dBm)	Refer to Plot	Verdict			
128	824.20	-13.89	-13.77	-13.00	Plot 4.6.1 A	PASS			
251	848.80	-13.33	-13.22	-13.00	Plot 4.6.1 B	PASS			

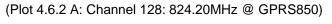

GPRS850								
Channel Fred	Fraguanay	Measurem	ent Results	Limit				
Channel Number	Frequency (MHz)	Frequency Values (MHz) (dBm)		(dBm)	Refer to Plot	Verdict		
128	824.20	824.00	-13.76	-13.00	Plot 4.6.2 A	PASS		
251	848.80	849.00	-13.57	-13.00	Plot 4.6.2 B	PASS		

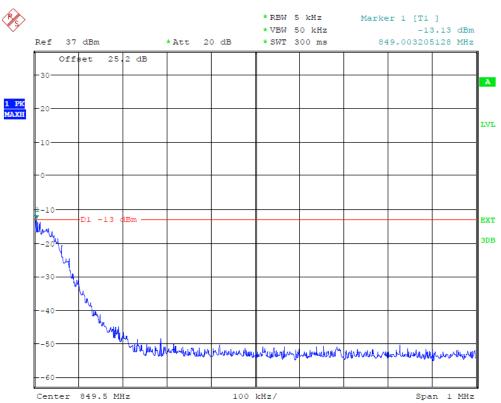


Page 40 of 78

Date: 10.MAR.2014 13:34:51



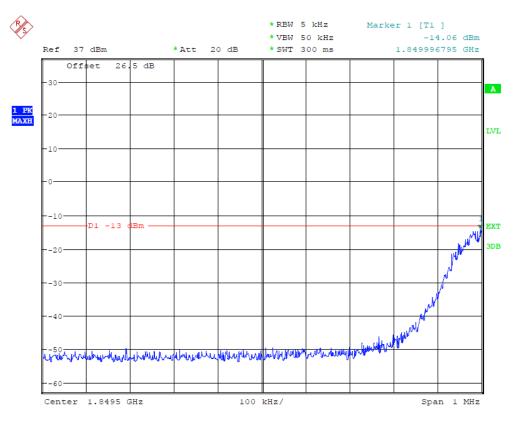

Date: 10.MAR.2014 13:33:11



Page 41 of 78

Date: 10.MAR.2014 13:52:48

Date: 10.MAR.2014 13:53:29

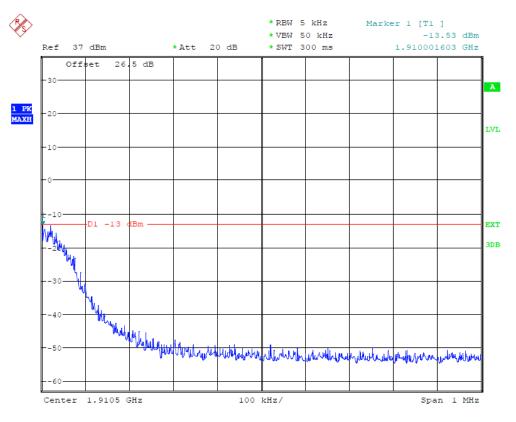


Page 42 of 78

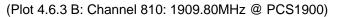
Report No.: MWR1403002801

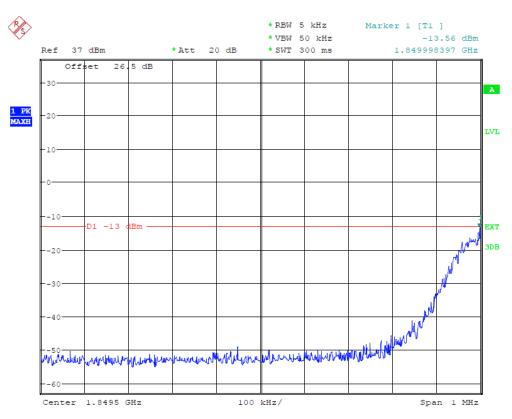
PCS1900								
Channel Frequ	Fraguanay	Measureme	ent Results	Limit				
Number	Frequency (MHz)	Frequency Values (MHz) (dBm)		(dBm)	Refer to Plot	Verdict		
512	1850.20	1850.00	-14.06	-13.00	Plot 4.6.3 A	PASS		
810	1909.80	1910.00	-13.53	-13.00	Plot 4.6.3 B	PASS		

GPRS1900								
Channel	Fraguanay	Measureme	Measurement Results			Verdict		
Channel Number	Frequency (MHz)	Frequency Values (MHz) (dBm)		Limit (dBm)	Refer to Plot			
512	1850.20	1850.00	-13.56	-13.00	Plot 4.6.4 A	PASS		
810	1909.80	1910.00	-13.14	-13.00	Plot 4.6.4 B	PASS		



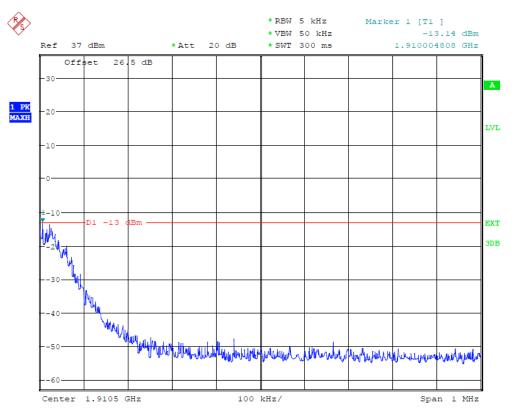
Date: 10.MAR.2014 14:13:27


(Plot 4.6.3 A: Channel 512: 1850.20MHz @ PCS1900)



Page 43 of 78

Date: 10.MAR.2014 14:11:44

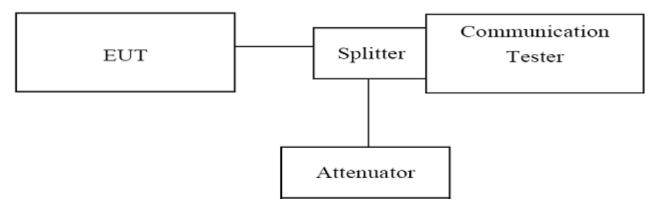


Date: 10.MAR.2014 14:35:15

Page 44 of 78

Date: 10.MAR.2014 14:35:38

(Plot 4.6.4 B: Channel 810: 1909.80MHz @ GPRS1900)


4.7. Spurious Emssion on Antenna Port

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds; Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The power was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak);
- 3. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (bottom, middle and top of operational frequency range).

<u>TEST LIMIT</u>

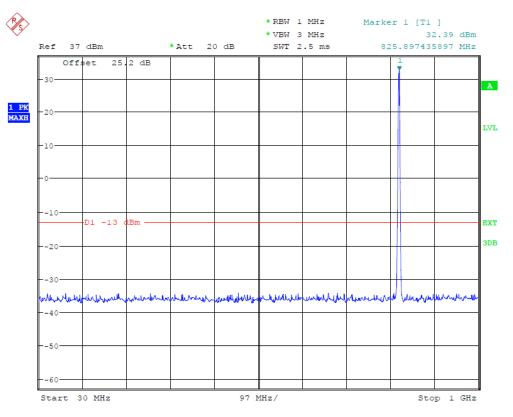
Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

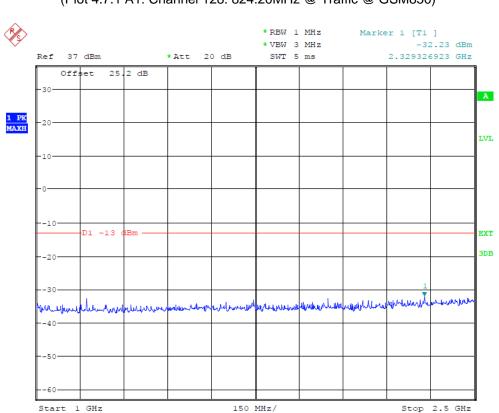
TEST RESULTS

Page 46 of 78

GSM850								
Channel Nu	mber: 128	Test Fre	quency: 824.	.20 MHz	Test Mode	e: Traffic		
Start	Stop	Measuremer	nt Results					
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Values (dBm)	Limit (dBm)	Refer to Plot	Verdict		
			(ubiii)					
30	1000	***	***	-13.00	Plot 4.7.1 A1	PASS		
1000	2500	2329.33	-32.23	-13.00	Plot 4.7.1 A2	PASS		
2500	7500	3108.97	-31.29	-13.00	Plot 4.7.1 A3	PASS		
7500	10000	7640.22	-32.80	-13.00	Plot 4.7.1 A4	PASS		

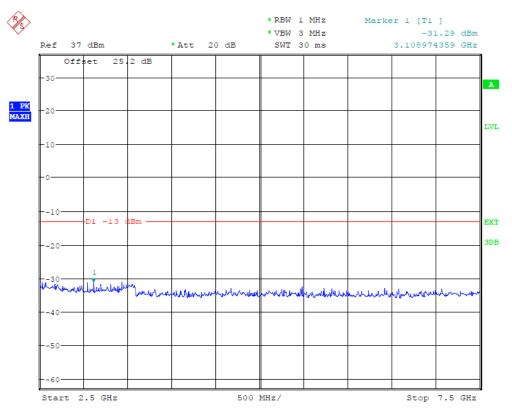

GSM850									
Channel Nu	mber: 190	Test Fre	quency: 836.	60 MHz	Test Mode	e: Traffic			
Start	Stop	Measuremer	nt Results	Limit					
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Refer to Plot	Verdict			
30	1000	***	***	-13.00	Plot 4.7.2 A1	PASS			
1000	2500	12459.13	-32.37	-13.00	Plot 4.7.2 A2	PASS			
2500	7500	2660.26	-31.76	-13.00	Plot 4.7.2 A3	PASS			
7500	10000	8373.40	-33.02	-13.00	Plot 4.7.2 A4	PASS			

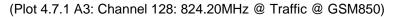
GSM850									
Channel Nu	Channel Number: 251		quency: 848.	80 MHz	Test Mod	e: Traffic			
Start	Stop	Measureme	nt Results	Linsit					
Frequency	Frequency	Frequency	Values	Limit (dBm)	Refer to Plot	Verdict			
(MHz)	(MHz)	(MHz)	(dBm)						
30	1000	***	***	-13.00	Plot 4.7.3 A1	PASS			
1000	2500	2348.56	-32.25	-13.00	Plot 4.7.3 A2	PASS			
2500	7500	3525.64	-31.88	-13.00	Plot 4.7.3 A3	PASS			
7500	10000	7463.14	-32.95	-13.00	Plot 4.7.3 A4	PASS			

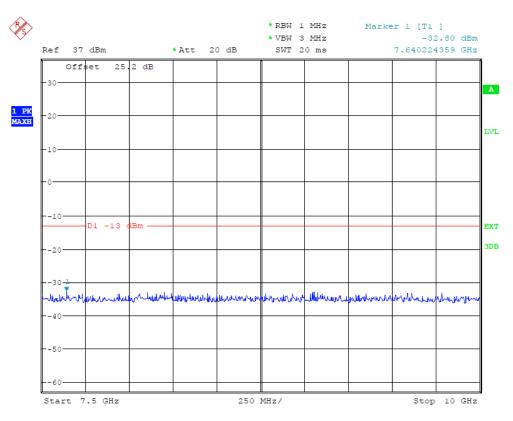

	GSM850								
		Tes	st Mode: Idle						
Start	Stop	Measuremer	nt Results						
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Values (dBm)	Limit (dBm)	Refer to Plot	Verdict			
30	1000	589.62	-34.32	-13.00	Plot 4.7.4 A1	PASS			
1000	2500	2451.92	-32.41	-13.00	Plot 4.7.4 A2	PASS			
2500	7500	3533.65	-32.24	-13.00	Plot 4.7.4 A3	PASS			
7500	10000	9471.15	-32.82	-13.00	Plot 4.7.4 A4	PASS			

Note: 1. In general, the worse case attenuation requirement shown above was applied. 2. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

Date: 10.MAR.2014 13:36:02

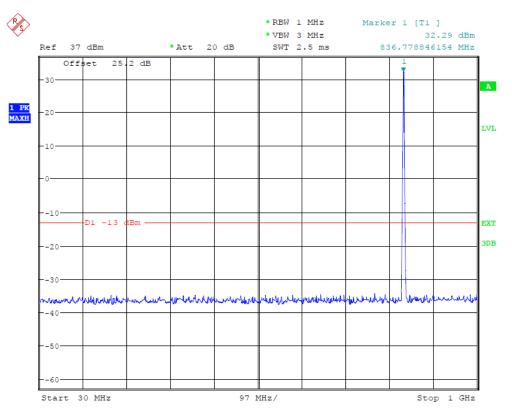


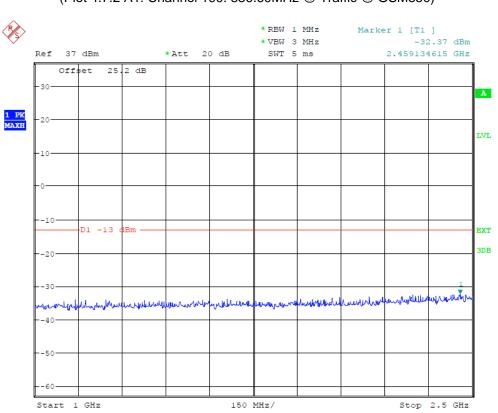

Date: 10.MAR.2014 13:36:19



Page 48 of 78

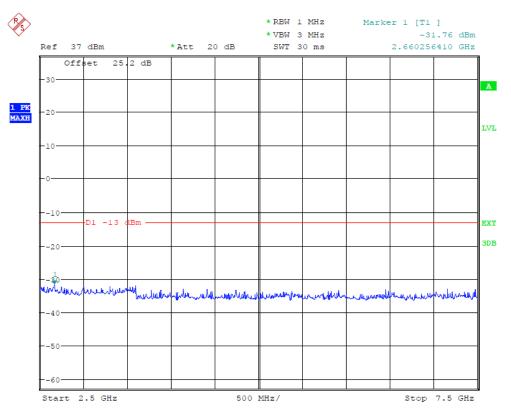
Date: 10.MAR.2014 13:36:50




Date: 10.MAR.2014 13:37:07

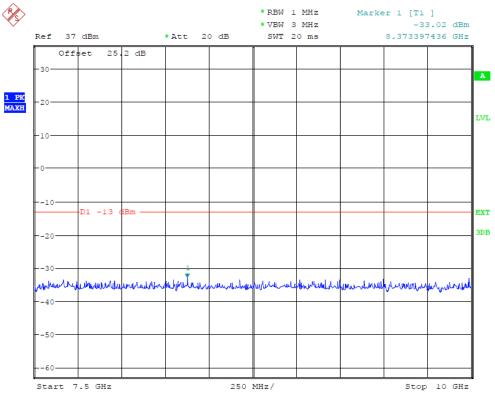
Page 49 of 78


```
Date: 10.MAR.2014 13:37:28
```



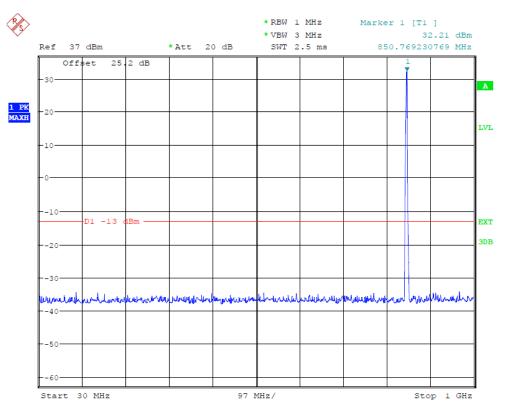
(Plot 4.7.2 A1: Channel 190: 836.60MHz @ Traffic @ GSM850)

Date: 10.MAR.2014 13:37:44



Page 50 of 78

Date: 10.MAR.2014 13:37:57

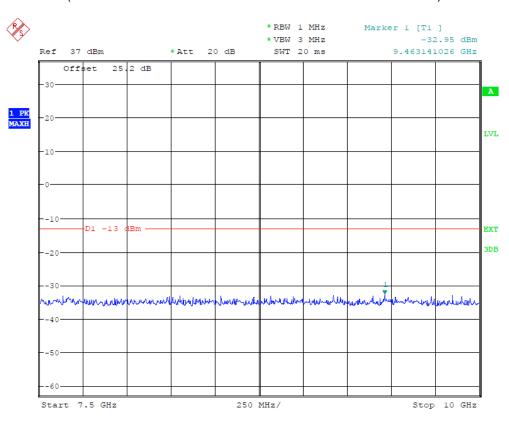


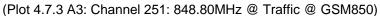
Date: 10.MAR.2014 13:38:08

Page 51 of 78

Date: 10.MAR.2014 13:38:45

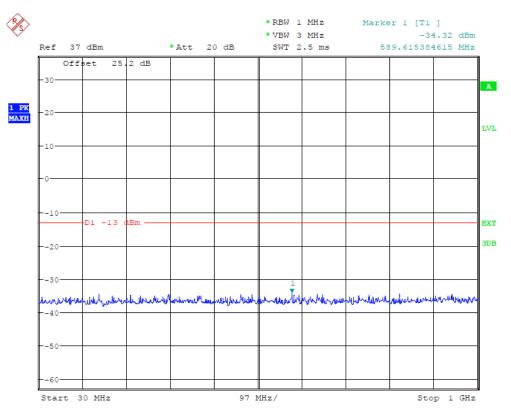
(Plot 4.7.3 A1: Channel 251: 848.80MHz @ Traffic @ GSM850)

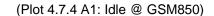

Date: 10.MAR.2014 13:38:59

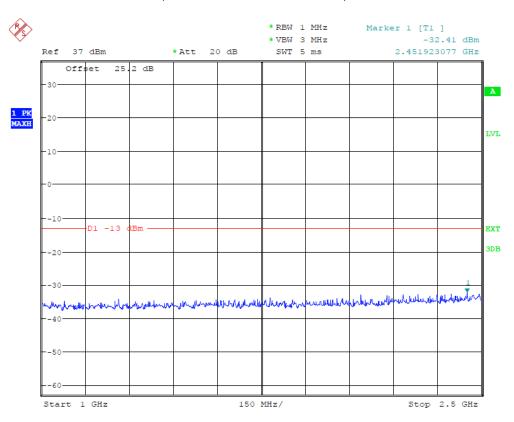


Page 52 of 78

Date: 10.MAR.2014 13:39:10

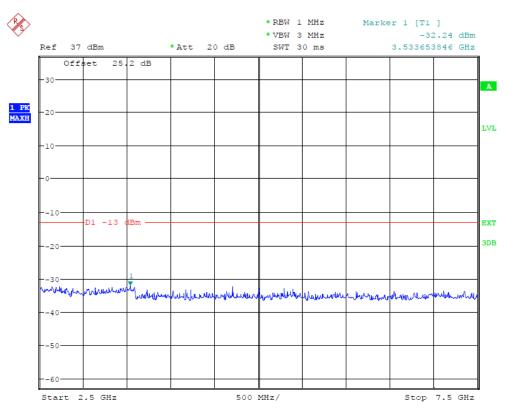


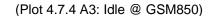

Date: 10.MAR.2014 13:39:26

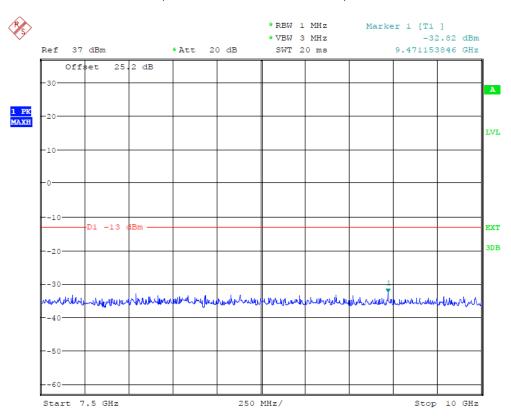


Page 53 of 78

Date: 10.MAR.2014 13:39:48




Date: 10.MAR.2014 13:40:00



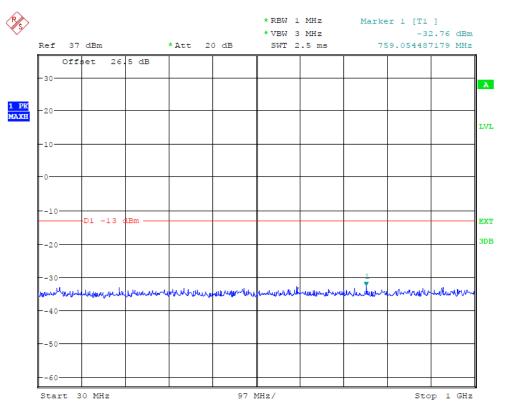
Page 54 of 78

Date: 10.MAR.2014 13:40:11

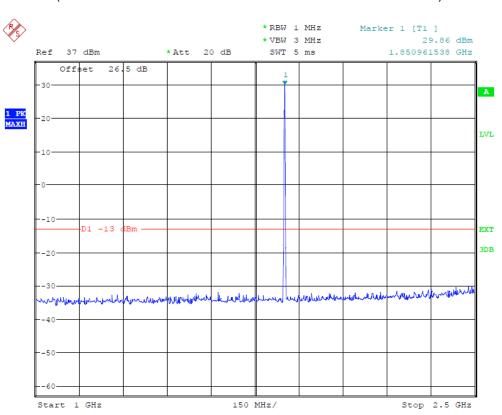
Date: 10.MAR.2014 13:40:20

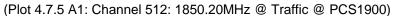
PCS1900									
Channel Nu	mber: 512	Test Free	quency: 1850	.20 MHz	Test Mode	e: Traffic			
Start	Stop	Measuremer	nt Results	Limit					
Frequency	Frequency	Frequency	Values	(dBm)	Refer to Plot	Verdict			
(MHz)	(MHz)	(MHz)	(dBm)	(abiii)					
30	1000	759.05	-32.76	-13.00	Plot 4.7.5 A1	PASS			
1000	2500	***	***	-13.00	Plot 4.7.5 A2	PASS			
2500	7500	3573.72	-30.60	-13.00	Plot 4.7.5 A3	PASS			
7500	10000	7540.06	-31.61	-13.00	Plot 4.7.5 A4	PASS			
10000	15000	10128.20	-31.76	-13.00	Plot 4.7.5 A5	PASS			
15000	20000	17187.50	-31.07	-13.00	Plot 4.7.5 A6	PASS			

	PCS1900									
Channel Nu	mber: 661	Test Free	quency: 1880	.00 MHz	Test Mode	: Traffic				
Start	Stop	Measureme	nt Results	Limit						
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Refer to Plot	Verdict				
30	1000	920.72	-33.26	-13.00	Plot 4.7.6 A1	PASS				
1000	2500	***	***	-13.00	Plot 4.7.6 A2	PASS				
2500	7500	3573.72	-30.37	-13.00	Plot 4.7.6 A3	PASS				
7500	10000	8185.10	-31.43	-13.00	Plot 4.7.6 A4	PASS				
10000	15000	13541.67	-31.43	-13.00	Plot 4.7.6 A5	PASS				
15000	20000	17123.40	-30.69	-13.00	Plot 4.7.6 A6	PASS				


	PCS1900									
Channel Nu	mber: 810	Test Free	quency: 1909	.80 MHz	Test Mode	e: Traffic				
Start	Stop	Measureme	nt Results	Linsit						
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Values (dBm)	Limit (dBm)	Refer to Plot	Verdict				
30	1000	112.39	-32.61	-13.00	Plot 4.7.7 A1	PASS				
1000	2500	***	***	-13.00	Plot 4.7.7 A2	PASS				
2500	7500	3589.74	-30.32	-13.00	Plot 4.7.7 A3	PASS				
7500	10000	8373.88	-31.41	-13.00	Plot 4.7.7 A4	PASS				
10000	15000	11065.71	-30.05	-13.00	Plot 4.7.7 A5	PASS				
15000	20000	17491.99	-30.98	-13.00	Plot 4.7.7 A6	PASS				

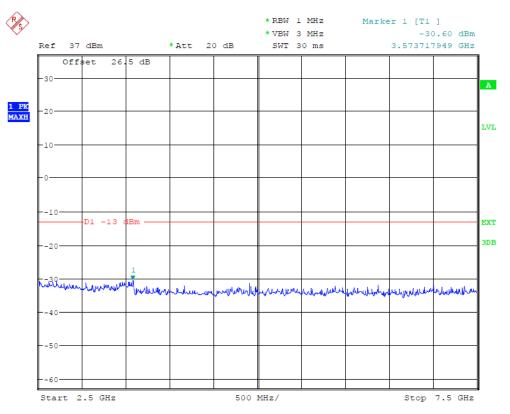
	PCS1900									
	Test Mode: Idle									
Start	Stop	Measuremer	nt Results	Limit						
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Refer to Plot	Verdict				
30	1000	288.04	-33.36	-13.00	Plot 4.7.8 A1	PASS				
1000	2500	2454.33	-30.97	-13.00	Plot 4.7.8 A2	PASS				
2500	7500	3565.71	-30.80	-13.00	Plot 4.7.8 A3	PASS				
7500	10000	8409.46	-31.46	-13.00	Plot 4.7.8 A4	PASS				
10000	15000	10472.76	-31.31	-13.00	Plot 4.7.8 A5	PASS				
15000	20000	17235.58	-30.83	-13.00	Plot 4.7.8 A6	PASS				

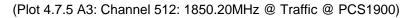

Note: 1. In general, the worse case attenuation requirement shown above was applied. 2. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

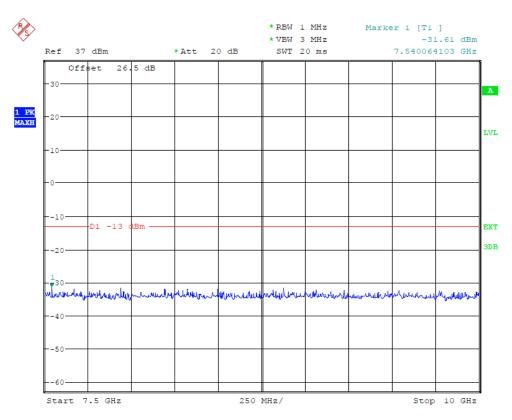


Page 56 of 78


```
Date: 10.MAR.2014 14:14:01
```

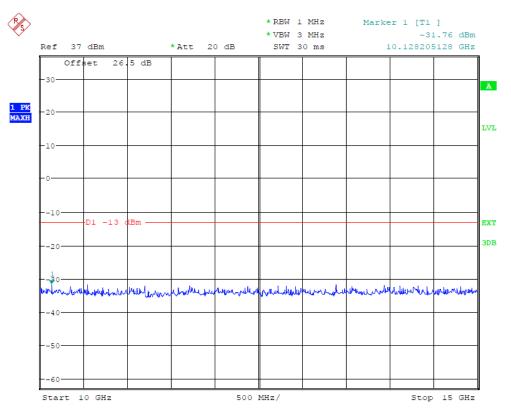


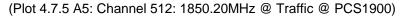

Date: 10.MAR.2014 14:14:22

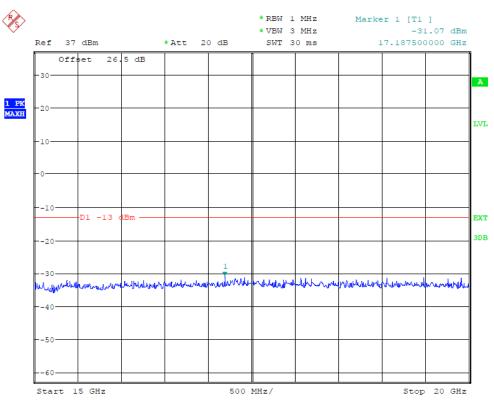


Page 57 of 78


```
Date: 10.MAR.2014 14:14:40
```

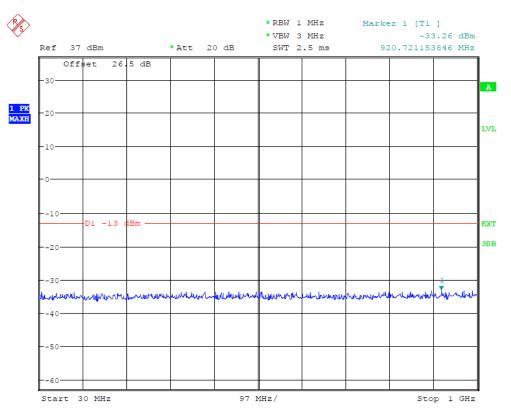



Date: 10.MAR.2014 14:14:53

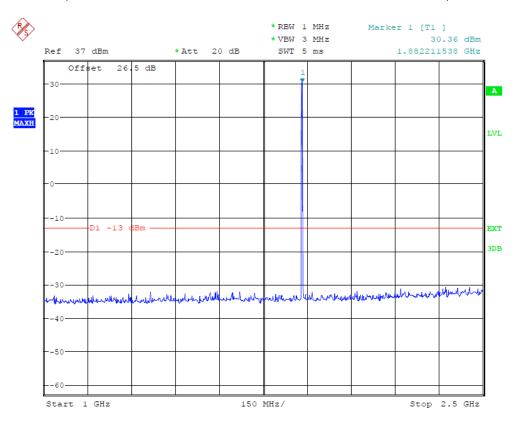


Page 58 of 78

Date: 10.MAR.2014 14:15:07

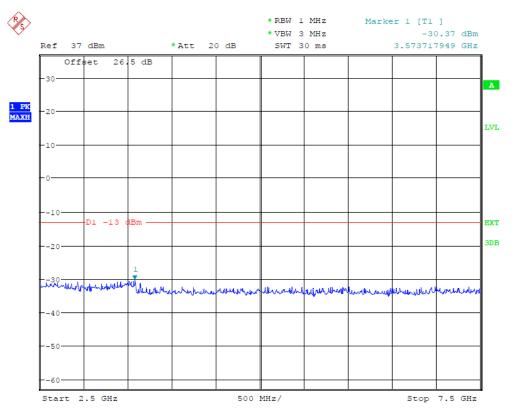


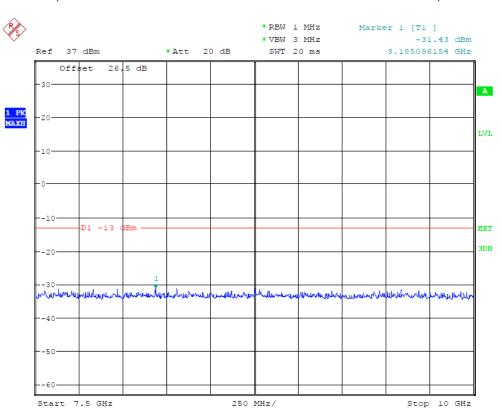

Date: 10.MAR.2014 14:15:18

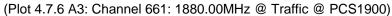


Page 59 of 78

Date: 10.MAR.2014 14:16:26

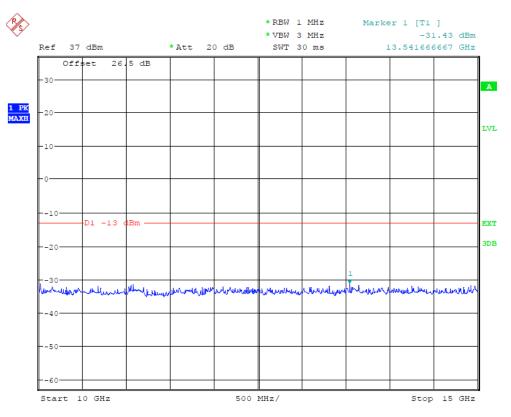


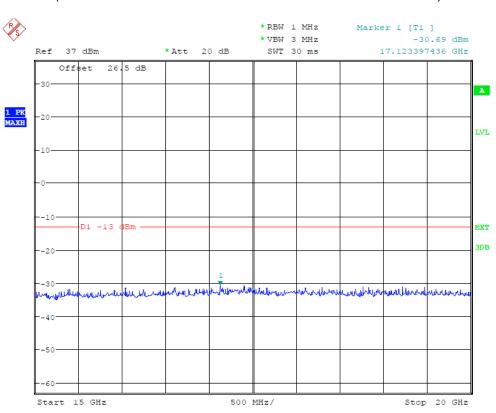

Date: 10.MAR.2014 14:16:55

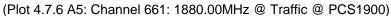


Page 60 of 78

Date: 10.MAR.2014 14:17:17

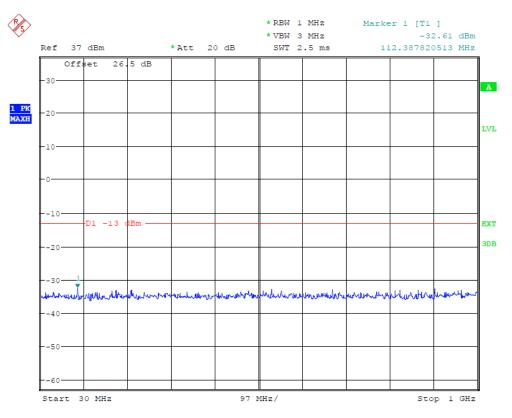


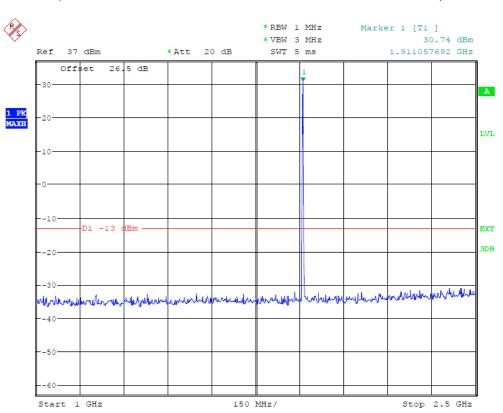

Date: 10.MAR.2014 14:17:49



Page 61 of 78

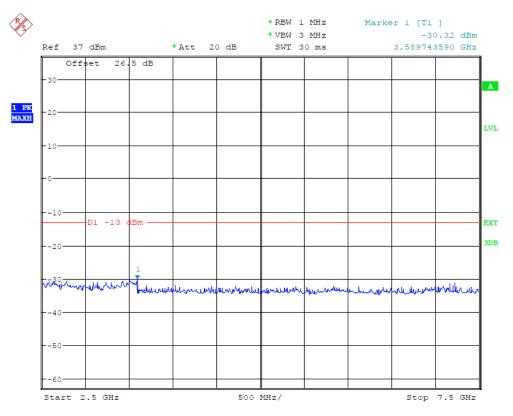

```
Date: 10.MAR.2014 14:18:10
```



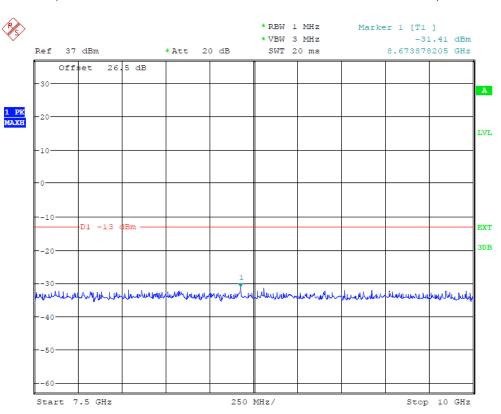

Date: 10.MAR.2014 14:18:27

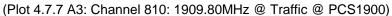
Page 62 of 78


```
Date: 10.MAR.2014 14:18:52
```



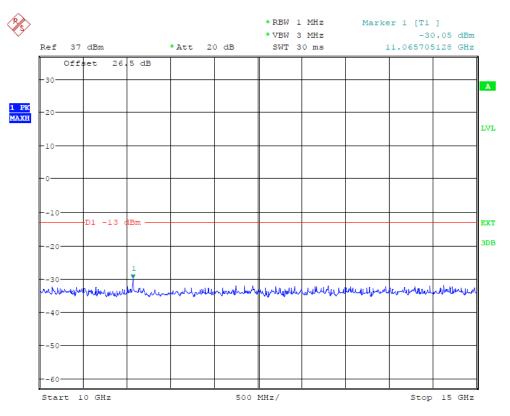
(Plot 4.7.7 A1: Channel 810: 1909.80MHz @ Traffic @ PCS1900)

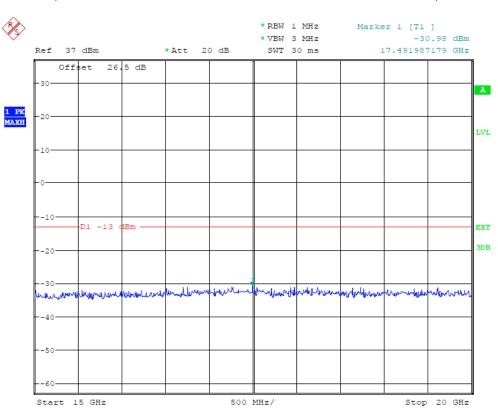

Date: 10.MAR.2014 14:19:01



Page 63 of 78

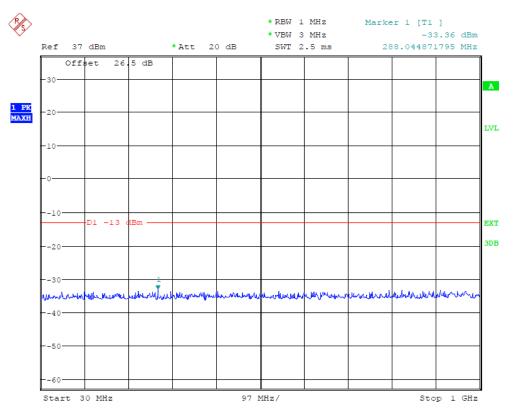
Date: 10.MAR.2014 14:19:25



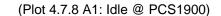

Date: 10.MAR.2014 14:19:36

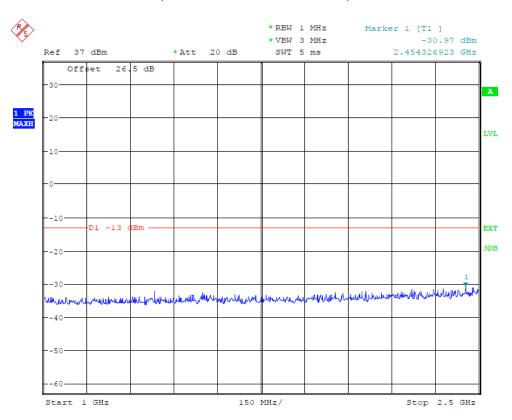
Page 64 of 78

Date: 10.MAR.2014 14:19:49



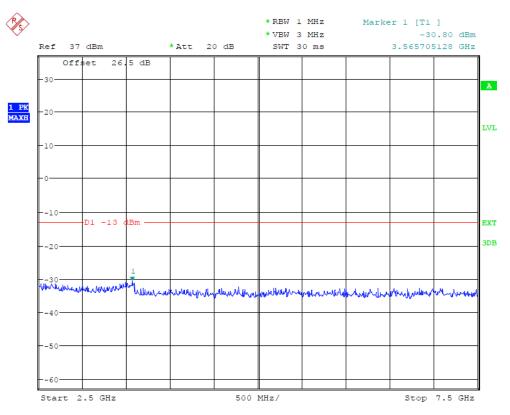
(Plot 4.7.7 A5: Channel 810: 1909.80MHz @ Traffic @ PCS1900)

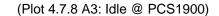

Date: 10.MAR.2014 14:20:03

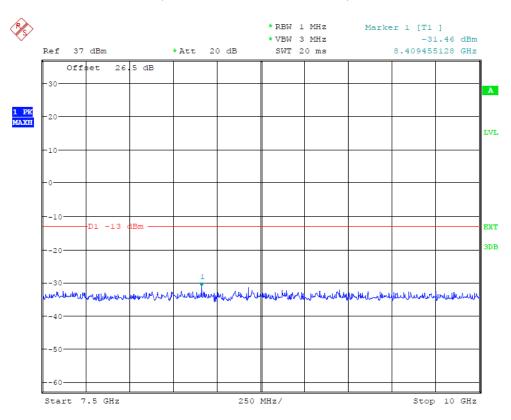


Page 65 of 78

Date: 10.MAR.2014 14:20:27

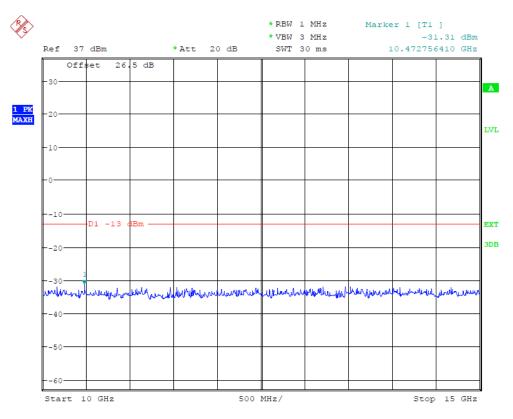



Date: 10.MAR.2014 14:20:37

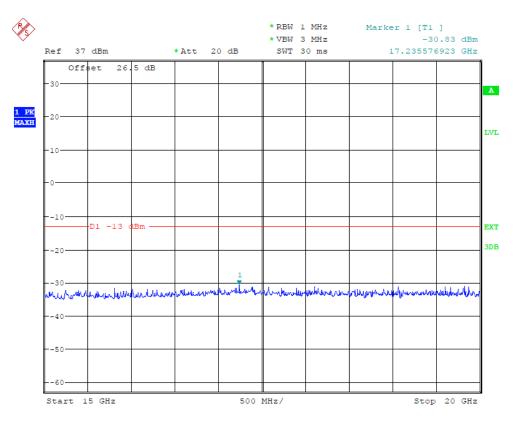


Page 66 of 78

Date: 10.MAR.2014 14:20:48



Date: 10.MAR.2014 14:20:58



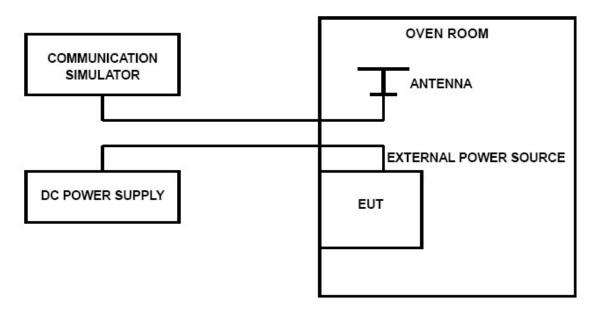
Page 67 of 78

Date: 10.MAR.2014 14:21:11

Date: 10.MAR.2014 14:21:22

4.8. Frequency Stability Test

TEST APPLICABLE


- According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.
- According to FCC Part 2 Section 2.1055 (E) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried voltage equipment and the end voltage point was 3.40V.

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature;
- 2. Subject the EUT to overnight soak at -30°C;
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on middle channel of PCS 1900 and GSM850, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
- 6. Subject the EUT to overnight soak at $+50^{\circ}$ C;
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 8. Repeat the above measurements at 10[°]C increments from +50[°]C to -30[°]C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure;

TEST CONFIGURATION

TEST LIMITS

For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability.

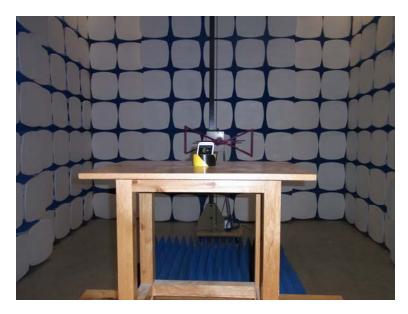
Page 69 of 78

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.40VDC and 4.20VDC, with a nominal voltage of 3.70DC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

TEST RESULTS


Remark: We tested GSM and GPRS mode, recorded worst case at GSM mode.

		GSN	//850		
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	25	33	0.049	0.10	PASS
3.70	25	-29	0.045	0.10	PASS
4.20	25	-23	0.040	0.10	PASS
3.70	-30	-25	0.042	0.10	PASS
3.70	-20	-22	0.032	0.10	PASS
3.70	-10	-18	0.022	0.10	PASS
3.70	0	-18	0.039	0.10	PASS
3.70	10	-23	0.025	0.10	PASS
3.70	20	-29	0.045	0.10	PASS
3.70	30	-26	0.031	0.10	PASS
3.70	40	-22	0.038	0.10	PASS
3.70	50	-18	0.034	0.10	PASS

		PCS	1900		
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-48	0.033	0.10	PASS
3.70	20	-42	0.024	0.10	PASS
4.20	20	-48	0.020	0.10	PASS
3.70	-30	-45	0.018	0.10	PASS
3.70	-20	-41	0.025	0.10	PASS
3.70	-10	-41	0.021	0.10	PASS
3.70	0	-39	0.026	0.10	PASS
3.70	10	-34	0.028	0.10	PASS
3.70	20	-42	0.024	0.10	PASS
3.70	30	-41	0.027	0.10	PASS
3.70	40	-38	0.022	0.10	PASS
3.70	50	-38	0.017	0.10	PASS

5. <u>Test Setup Photos of the EUT</u>

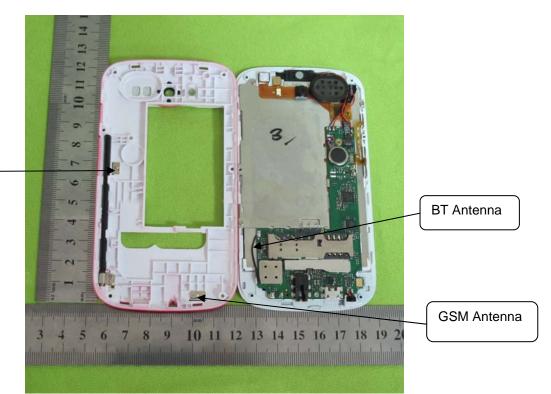
Page 71 of 78

6. External and Internal Photos of the EUT

External photos of the EUT

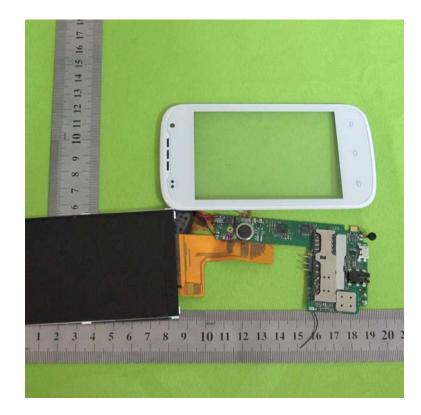
Page 72 of 78

Page 73 of 78



Page 75 of 78

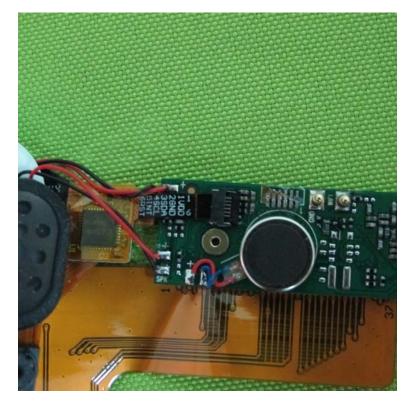
Internal photos of the EUT



WiFi Antenna

Page 76 of 78




Page 77 of 78

Page 78 of 78

End of Report
