

Report No.: JYTSZ-R12-2200059

FCC RF Test Report

Applicant:	Sky Phone LLC
Address of Applicant:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Equipment Under Test (I	EUT)
Product Name:	Smart phone
Model No.:	Sky PrestigeX1
Trade mark:	SKY DEVICES
FCC ID:	2ABOSSKYPRESTGX1
Applicable standards:	FCC CFR Title 47 Part 15C (§15.247)
Date of sample receipt:	12 Jan., 2022
Date of Test:	13 Jan., to 02 Mar., 2022
Date of report issued:	03 Mar., 2022
Test Result:	PASS

Tested by:	Test Engineer	Date:	03 Mar., 2022
Reviewed by:	Project Engineer	Date:	03 Mar., 2022
Approved by:	Manager	Date:	03 Mar., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Mar., 2022	Original

3 Contents

		Page
1 (COVER PAGE	1
2	VERSION	2
3 (CONTENTS	
	GENERAL INFORMATION	
4.1	CLIENT INFORMATION	4
4.2	GENERAL DESCRIPTION OF E.U.T.	4
4.3	TEST MODE AND TEST ENVIRONMENT	5
4.4	DESCRIPTION OF SUPPORT UNITS	5
4.5		-
4.6	,,	
4.7		
4.8		
4.9	TEST INSTRUMENTS LIST	6
5 I	MEASUREMENT SETUP AND PROCEDURE	8
5.1	TEST CHANNEL	8
5.2	TEST SETUP	8
5.3	TEST PROCEDURE	10
6	TEST RESULTS	11
6.1	SUMMARY	
6	6.1.1 Clause and data summary	
6	6.1.2 Test Limit	
6.2		
6.3		
6.4		
6.5	SPURIOUS EMISSION (RADIATED METHOD)	

4 General Information

4.1 Client Information

Applicant:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

4.2 General Description of E.U.T.

Product Name:	Smart phone
Model No.:	Sky PrestigeX1
Operation Frequency:	2402 MHz - 2480 MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation technology:	GFSK
Data speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 1M PHY)
	125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2)
Antenna Type:	Internal Antenna
Antenna gain:	0.5dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2500mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

4.3 Test Mode and Test Environment

Test mode:				
Transmitting mode Keep the EUT in continuous transmitting with modulation				
Remark: For AC power line condu	cted emission and radiated spurious emission (below 1GHz), pre-scan all data speed,			
found 1 Mbps (LE 1M PHY) was w	orse case mode. The report only reflects the test data of worst mode.			
Operating Environment:				
Temperature: 1	5℃ ~ 35℃			
Humidity: 20 % ~ 75 % RH				
Atmospheric Pressure: 1010 mbar				

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))		
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB		
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB		
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB		
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB		
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB		
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	±4.32 dB		

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions from the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://jyt.lets.com</u>

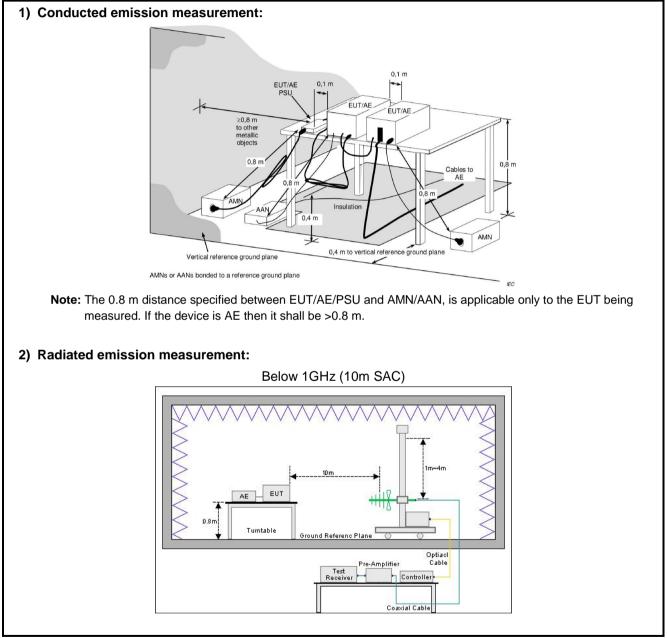
4.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024
BiCanil an Antonna	Schwarzbeck	VULB9163	WXJ002	03-03-2021	03-02-2022
BiConiLog Antenna	Schwarzbeck	VULD9103	VVAJUUZ	02-17-2022	02-16-2023
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-03-2021	03-02-2022
nom Antenna	Schwarzbeck	DDHA9120D	VV AJUUZ-2	02-17-2022	02-16-2023
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022
Pre-amplifier	Schwarzbeck	BBV9743B	WXG001-7	03-07-2021	03-06-2022
(30MHz ~ 1GHz)	Schwarzbeck	DD V 97 43D	VVXG001-7	02-17-2022	02-16-2023
Pre-amplifier	SKET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022
(1GHz ~ 18GHz)	JKE I	LINFA_0116G-50	WAG001-3	02-17-2022	02-16-2023
Pre-amplifier	RF System	RF System TRLA-180400G45B	WXG001-9	03-07-2021	03-06-2022
(18GHz ~ 40GHz)	KF System	TKLA-100400045B	WAG001-9	02-17-2022	02-16-2023
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022
	Runue & Schwarz	ESKF7	VVX3003-1	02-17-2022	02-16-2023
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2022	10-26-2022
Coaxial Cable	JYT	JYT3M-1G-NN-8M	WXG001-4	03-07-2021	03-06-2022
(30MHz ~ 1GHz)	JTI		WAG001-4	02-17-2022	02-16-2023
Coaxial Cable	JYT	JYT3M-18G-NN-8M	WXG001-5	03-07-2021	03-06-2022
(1GHz ~ 18GHz)	JTT	3113W-10G-WN-0W	WAG001-5	02-17-2022	02-16-2023
Coaxial Cable	IVT IVT3M-40G-SS-8M V/XG001-7	IVT3M-40G-SS PM	WXC001.7	03-07-2021	03-06-2022
(18GHz ~ 40GHz)		WAG001-7	02-17-2022	02-16-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A	
Test Software	Tonscend	TS+	Version: 3.0.0.1		

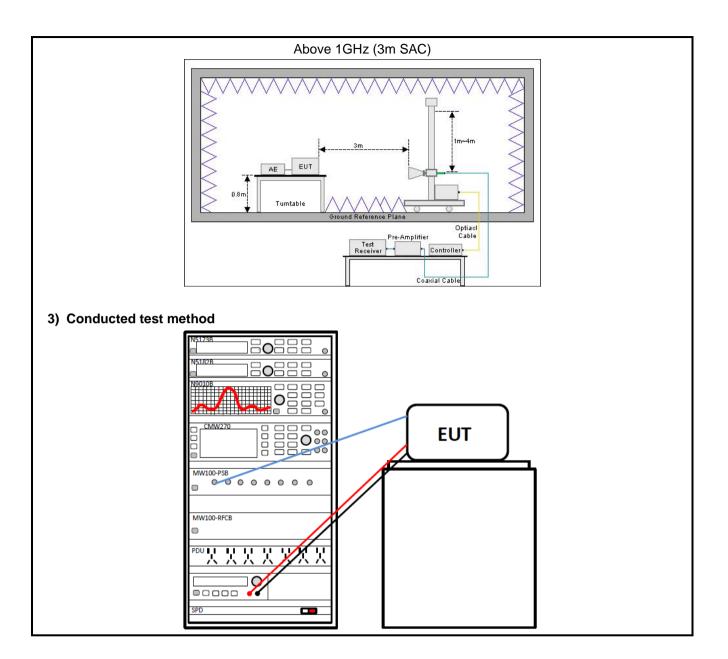
Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	WXG002-3	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	WXG002-4	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN- 10M	XG002-7	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN- 10M	XG002-8	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	Version: 10.50.40			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date	Cal. Due date	
	Manulacturer		Manage No.	(mm-dd-yy)	(mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	03-03-2021	03-02-2022	
EIVII Test Receiver	Runue & Schwarz	E3013	WAJ003	02-17-2022	02-16-2023	
DE Switch	RF Switch TOP PRECISION RSU0301 WXG003		03-03-2021	03-02-2022		
RF Switch		RS00301	WXG003	02-17-2022	02-16-2023	
	Cohuranahaali		001001 12	03-18-2021	03-17-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022	
LISN Coaxial Cable	IVT07			03-03-2021	03-02-2022	
(9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023	
Test Software	AUDIX	E3	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022	
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022	
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022	
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	HONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2022	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		


5 Measurement setup and procedure

5.1 Test channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowe	Lowest channel		le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
0	2402	20	2442	39	2480	

5.2 Test setup

5.3 Test procedure

Test method	To at atom
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
	 The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	 For below 1GHz: 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	 the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	 The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test Items	FCC Part Section(s)	Test Data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – LE 1M PHY Appendix B – LE 2M PHY Appendix C – LE Coded PHY, S=2 Appendix D – LE Coded PHY, S=8	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – LE 1M PHY Appendix B – LE 2M PHY Appendix C – LE Coded PHY, S=2 Appendix D – LE Coded PHY, S=8	Pass
Power Spectral Density	15.247 (e)	Appendix A – LE 1M PHY Appendix B – LE 2M PHY Appendix C – LE Coded PHY, S=2 Appendix D – LE Coded PHY,S=8	Pass
Band Edge (Conducted Method)	15.247 (d)	Appendix A – LE 1M PHY Appendix B – LE 2M PHY Appendix C – LE Coded PHY, S=2 Appendix D – LE Coded PHY, S=8	Pass
Band Edge (Radiated Method)	15.205 15.209	See Section 6.4	Pass
Spurious Emission (Conducted Method)	15.247(d)	Appendix A – LE 1M PHY Appendix B – LE 2M PHY Appendix C – LE Coded PHY, S=2 Appendix D – LE Coded PHY, S=8	Pass
Spurious Emission (Radiated Method)	15.205 15.209	See Section 6.5	Pass

Remark:

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

 The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Noth	od
	Neth

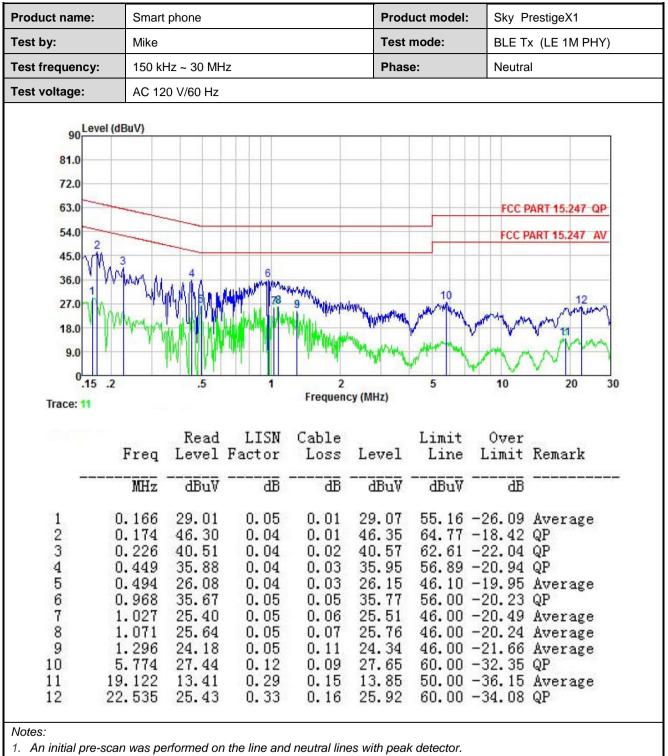
ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Items					
	F	Frequency range (MHz)	Limit	(dBuV)	7
			Quasi-peak	Average	
AC Power Line Conducted		0.15-0.5	66 to 56*	56 to 46*	_
Emission		0.5-5 5-30	<u>56</u> 60	46 50	_
	*	Decreases with the logar		50	
Conducted Peak Output Power		stems using digital moo 25-5850 MHz bands: <i>*</i>		8 MHz, 2400-2483.5	MHz,
6dB Emission Bandwidth	The mi	nimum 6 dB bandwidtl	n shall be at least 500	kHz.	
Power Spectral Density	intentic	itally modulated system onal radiator to the ante uring any time interval	enna shall not be grea	ter than 8 dBm in any	
Conducted Band Edge and Conducted Spurious Emission	spectru frequer dB belo highes radiate the pea power permitt this pa limits s which f	100 kHz bandwidth ou um or digitally modulate ncy power that is produ- ow that in the 100 kHz t level of the desired po- d measurement, provid ak conducted power lin limits based on the use red under paragraph (b ragraph shall be 30 dB pecified in §15.209(a) fall in the restricted bar e radiated emission lin	ed intentional radiator uced by the intentional bandwidth within the ower, based on either ded the transmitter de nits. If the transmitter e of RMS averaging o b)(3) of this section, th b instead of 20 dB. Atto is not required. In ado nds, as defined in §15	is operating, the radia I radiator shall be at le band that contains the an RF conducted or monstrates compliant complies with the con- ver a time interval, as e attenuation required enuation below the ge lition, radiated emissi .205(a), must also co	o east 20 e a ce with ducted d under eneral ons mply
		Frequency	Limit (dBuV/m @3m)	Remark	
Radiated Band Edge			54.0	Average Value	
Radiatod Dana Eugo		Above 1GHz	74.0	Peak Value	
	Below	1GHz (Measurement	distance for 10 m):		
		Frequency	Limit (dBuV/m @3m)	Remark	
		30MHz-88MHz	30.0	Quasi-peak Value	
		88MHz-216MHz	33.5	Quasi-peak Value	
Padiated Spurious		216MHz-960MHz	36.0	Quasi-peak Value	
Radiated Spurious Emission		960MHz-1GHz	44.0	Quasi-peak Value	
	Above	1GHz (Measurement	distance for 3 m):		
		Frequency	Limit (dBuV/m @3m)	Remark	
		Above 1GHz	54.0	Average Value	
			74.0	Peak Value	

6.2 Antenna requirement

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an Interr antenna is 0.5 dBi. See produ	al antenna which cannot replace by end-user, the best case gain of the uct internal photos for details.



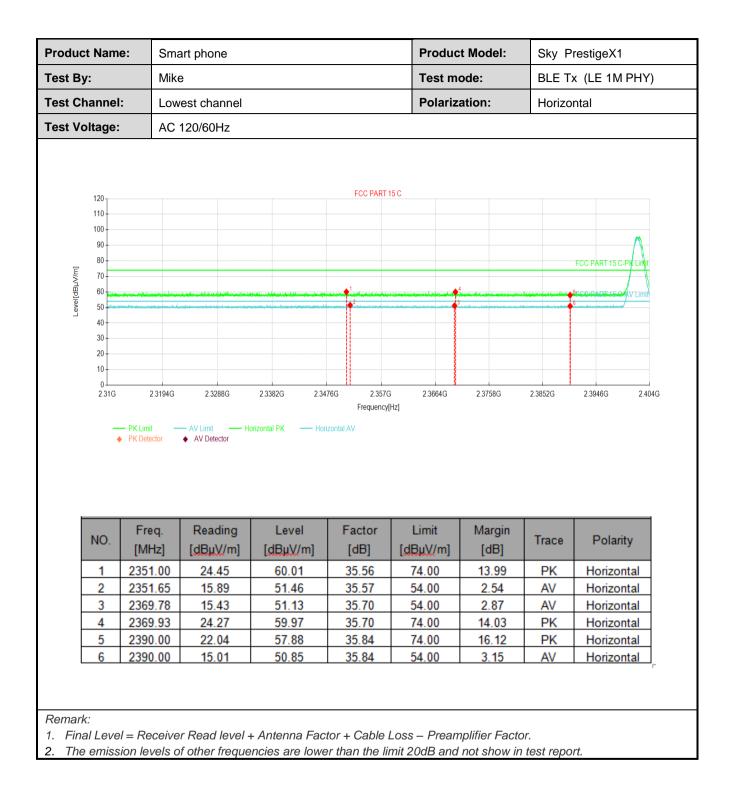
6.3 Conducted Emission

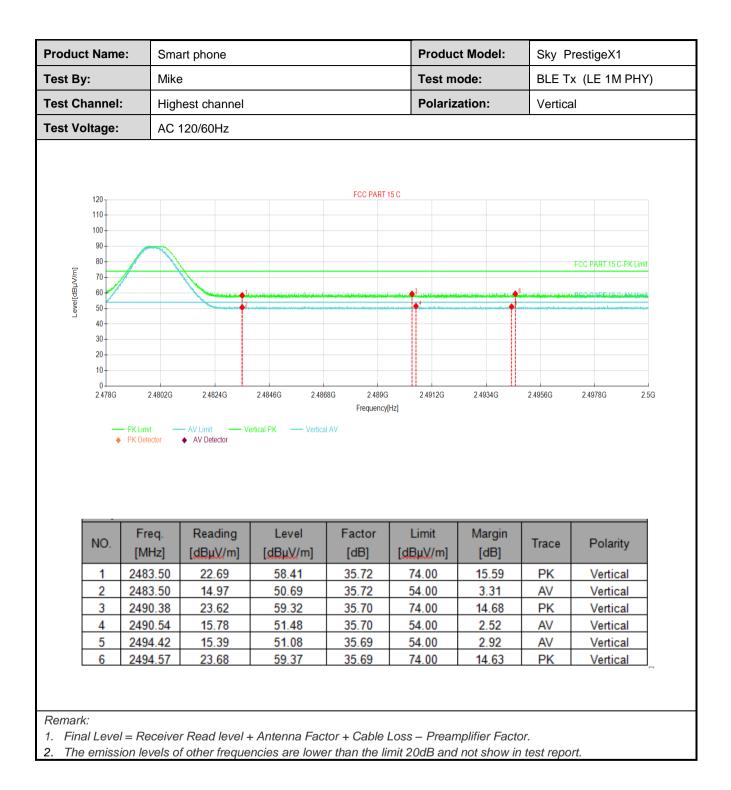
roduct name:	Smart phone			Produ	Product model:		Sky PrestigeX1		
est by:	Mike	Mike			Test	Test mode:		BLE Tx (LE 1M PHY)	
est frequency:	150 kH	Hz ~ 30 MH	łz		Phase	e:	Line		
est voltage:	AC 12	0 V/60 Hz			•				
90 Level (d	BuV)							1	
81.0									
72.0									
-									
63.0							FCC	PART 15.247 Q	
54.0 2							FCC F	PART 15.247 A	
45.0 1.3									
36.0	Aran	6	9						
	MINIM	AALA.	1. Muhlun	Al Juda	10				
			A MAR STAT	WILLIAM AL	all and little	under Altre		Mushow	
27.0	ALL YEAL			A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PROVING DISTURBLE	Made Made	145 - 14 - Loud	a /	
18.0	MANA	AME	L. M. Malling	mail Mi Mi M	the last of the state of the st	V	a. Manual	LANN .	
18.0	MM		MARCHINA	WWWWWWWWWWW	In the first of the second sec	V	. Maren	WWW	
	MAN		MARCHINA	WWWWWWWWWWWWW	WANHWAY .	m	where where	www	
18.0	MAN	.5		2	11-11-11-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5	10	20	
18.0 9.0		.5	1	2 Frequence	cy (MHz)	5	10	20	
18.0 9.0 0.15 .2	MAN			Frequence	cy (MHz)			20	
18.0 9.0 0.15 .2 Trace: 9		Read	LISN	Frequence		Limit	Over		
18.0 9.0 0.15 .2 Trace: 9	Freq	Read		Frequence	cy (MHz)		Over	20 Remark	
18.0 9.0 0.15 .2 Trace: 9	Freq	Read	LISN	Frequence		Limit	Over		
18.0 9.0 0.15 .2 Trace: 9	MHz	Read Level dBuV	LISN Factor dB	Frequence Cable Loss dB	Level dBuV	Limit Line dBuV	Over Limit dB	Remark	
18.0 9.0 0.15 .2 Trace: 9		Read Level	LISN Factor	Frequence Cable Loss	Level 	Limit Line dBuV 54.94	Over Limit dB	Remark 	
18.0 9.0 0.15 .2 Trace: 9	MHz .170 .170 .211	Read Level dBuV 30.36 47.91 43.91	LISN Factor dB 0.04 0.04 0.04	Frequence Cable Loss dB 0.01 0.01 0.03	Level dBuV 30.41 47.96 43.98	Limit Line dBuV 54.94 64.94 63.18	Over Limit dB -24.53 -16.98 -19.20	Remark Average QP QP	
18.0 9.0 0.15 .2 Trace: 9	MHz . 170 . 170 . 211 . 222	Read Level dBuV 30.36 47.91 43.91 27.14	LISN Factor dB 0.04 0.04 0.04 0.04 0.04	Frequence Cable Loss dB 0.01 0.01 0.03 0.03 0.03	Level dBuV 30.41 47.96 43.98 27.21	Limit Line dBuV 54.94 64.94 63.18 52.74	Over Limit dB -24.53 -16.98 -19.20 -25.53	Remark Average QP QP Average	
18.0 9.0 0.15 .2 Trace: 9	MHz . 170 . 170 . 211 . 222 . 415	Read Level dBuV 30.36 47.91 43.91 27.14 23.93	LISN Factor dB 0.04 0.04 0.04 0.04 0.04 0.04	Frequence Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.04	Level dBuV 30.41 47.96 43.98 27.21 24.01	Limit Line dBuV 54.94 64.94 63.18 52.74 47.55	Over Limit -24.53 -16.98 -19.20 -25.53 -23.54	Remark Average QP QP Average Average	
18.0 9.0 0.15 .2 Trace: 9	MHz . 170 . 211 . 222 . 415 . 449	Read Level dBuV 30.36 47.91 43.91 27.14 23.93 38.25	LISN Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	Frequence Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.04 0.03	Level dBuV 30.41 47.96 43.98 27.21 24.01 38.32	Limit Line dBuV 54.94 64.94 63.18 52.74 47.55 56.89	Over Limit 	Remark Average QP Average Average QP	
18.0 9.0 0.15 .2 Trace: 9 1 0 2 0 3 0 4 0 5 0 6 0 7 0	MHz . 170 . 211 . 222 . 415 . 449 . 502	Read Level dBuV 30.36 47.91 43.91 27.14 23.93 38.25 25.43	LISN Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	Frequence Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03	Level dBuV 30.41 47.96 43.98 27.21 24.01 38.32 25.50	Limit Line dBuV 54.94 64.94 63.18 52.74 47.55 56.89 46.00	Over Limit -24.53 -16.98 -19.20 -25.53 -23.54 -18.57 -20.50	Remark Average QP Average Average QP Average QP	
18.0 9.0 0.15 .2 Trace: 9 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0	MHz . 170 . 211 . 222 . 415 . 449 . 502 . 876	Read Level dBuV 30.36 47.91 43.91 27.14 23.93 38.25 25.43 19.15	LISN Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	Frequence Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Level dBuV 30.41 47.96 43.98 27.21 24.01 38.32 25.50 19.24	Limit Line dBuV 54.94 64.94 63.18 52.74 47.55 56.89 46.00 46.00	Over Limit dB -24.53 -16.98 -19.20 -25.53 -23.54 -18.57 -20.50 -26.76	Remark Average QP QP Average Average QP Average Average	
18.0 9.0 0.15 .2 Trace: 9 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0	MHz . 170 . 211 . 222 . 415 . 449 . 502 . 876 . 968	Read Level dBuV 30.36 47.91 43.91 27.14 23.93 38.25 25.43 19.15 34.56	LISN Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	Frequence Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Level dBuV 30.41 47.96 43.98 27.21 24.01 38.32 25.50 19.24 34.66	Limit Line dBuV 54.94 64.94 63.18 52.74 47.55 56.89 46.00 46.00 56.00	Over Limit dB -24.53 -16.98 -19.20 -25.53 -23.54 -18.57 -20.50 -26.76 -21.34	Remark Average QP QP Average Average QP Average QP	
18.0 9.0 0.15 .2 Trace: 9 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 3	MHz . 170 . 211 . 222 . 415 . 449 . 502 . 876	Read Level dBuV 30.36 47.91 43.91 27.14 23.93 38.25 25.43 19.15	LISN Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	Frequence Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Level dBuV 30.41 47.96 43.98 27.21 24.01 38.32 25.50 19.24	Limit Line dBuV 54.94 64.94 63.18 52.74 47.55 56.89 46.00 46.00 56.00 56.00	Over Limit dB -24.53 -16.98 -19.20 -25.53 -23.54 -18.57 -20.50 -26.76	Remark Average QP QP Average Average QP Average QP Average QP QP	

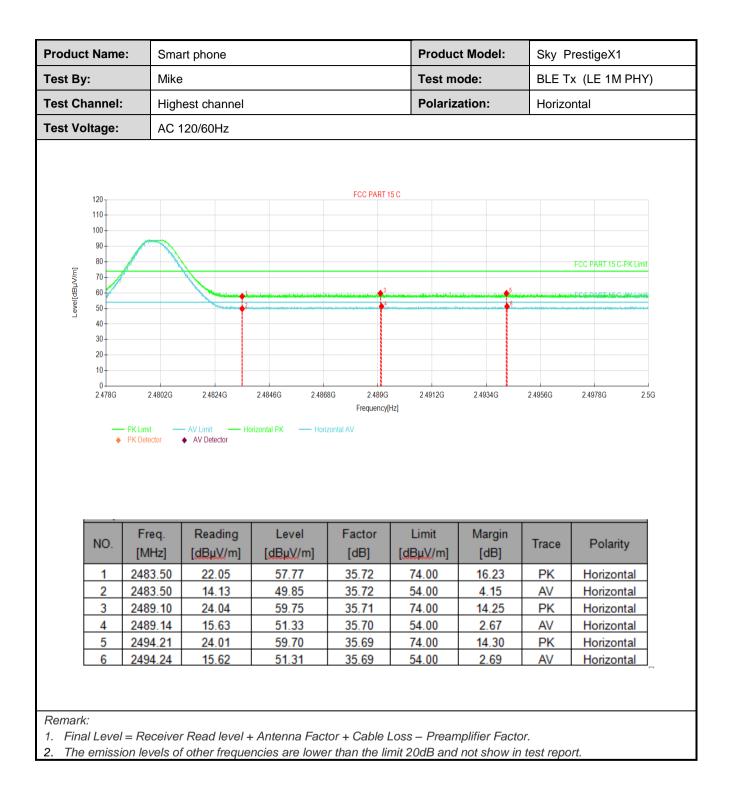
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

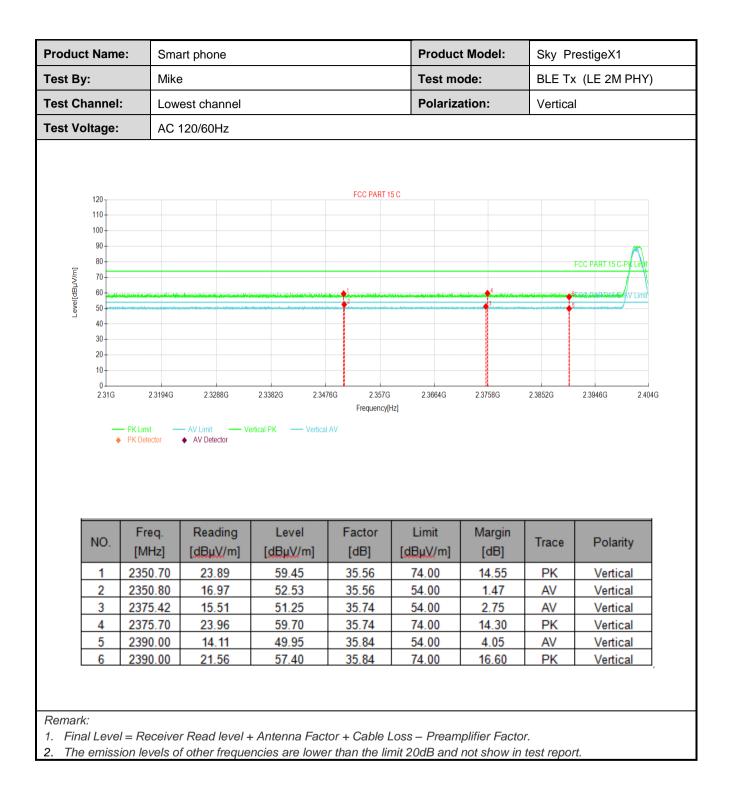


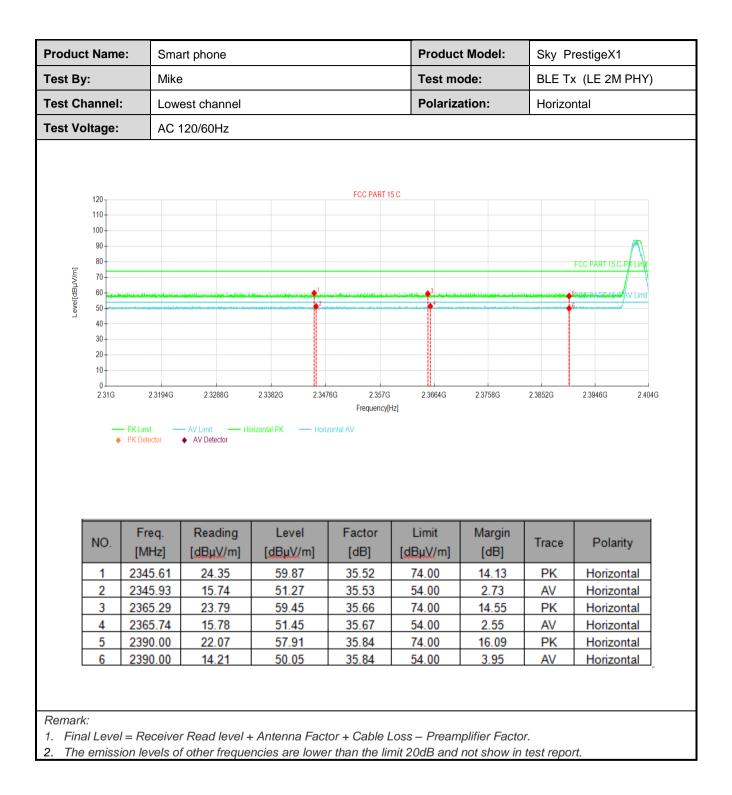
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

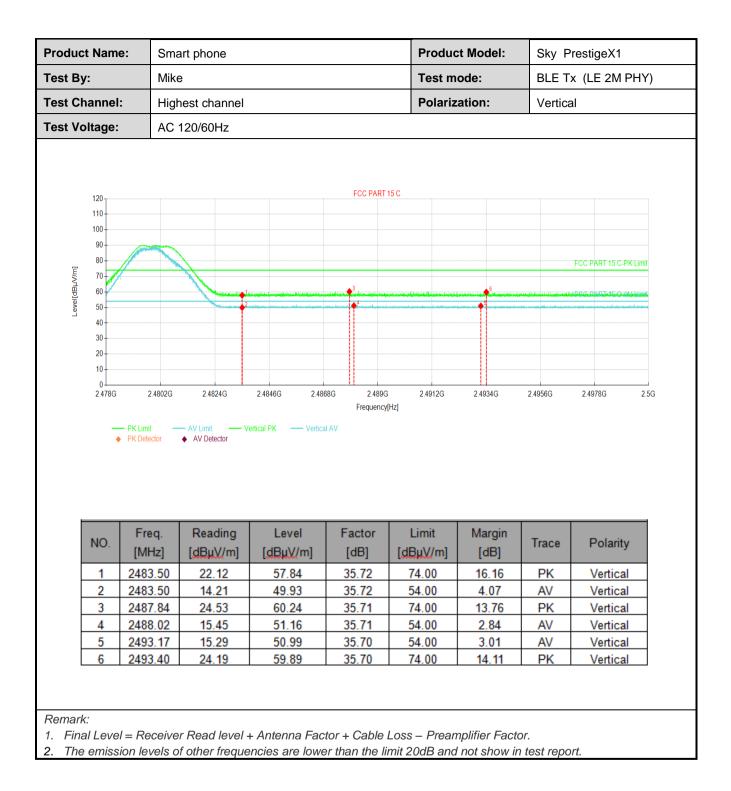

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

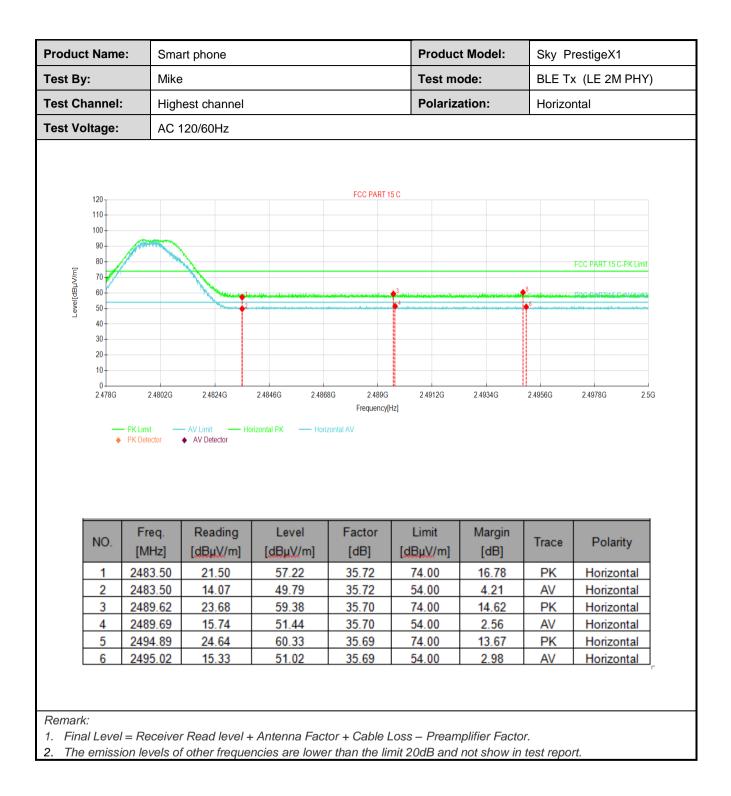

6.4 Band Edge (Radiated Method)

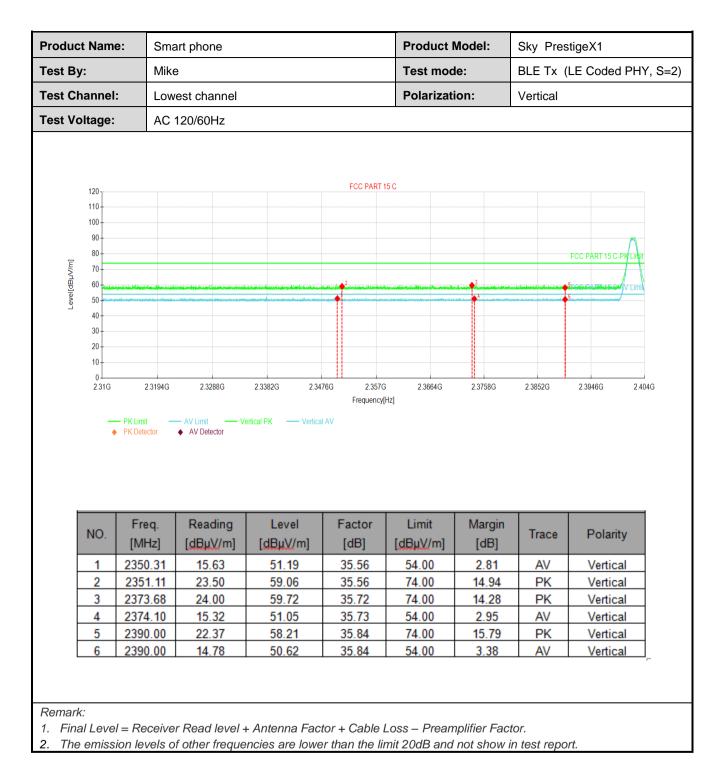


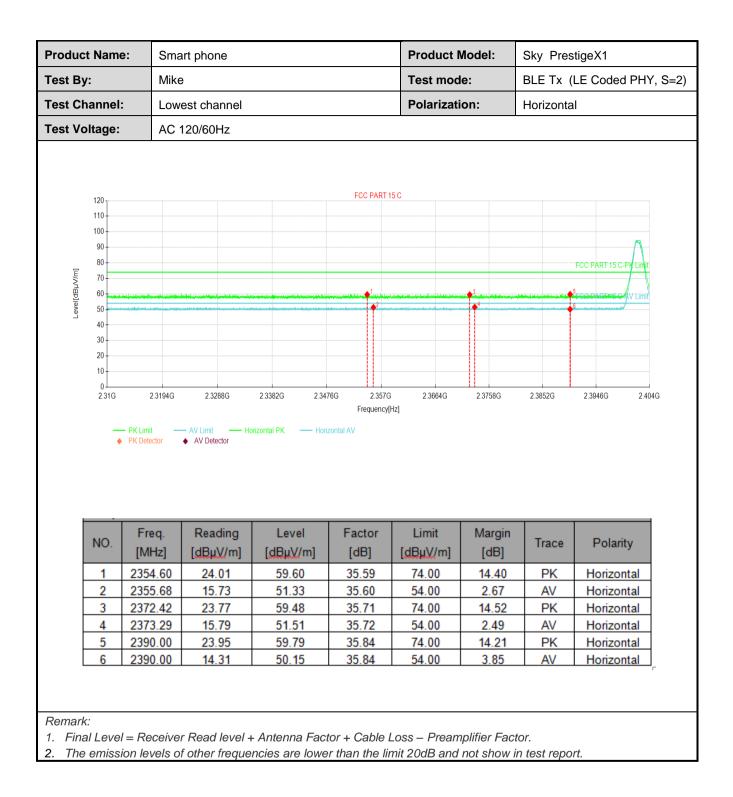


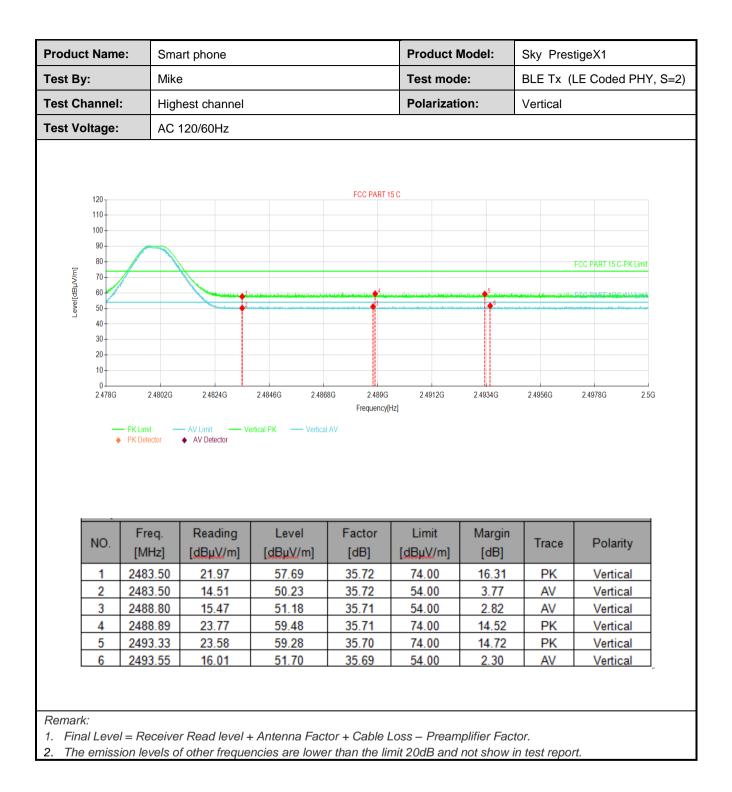


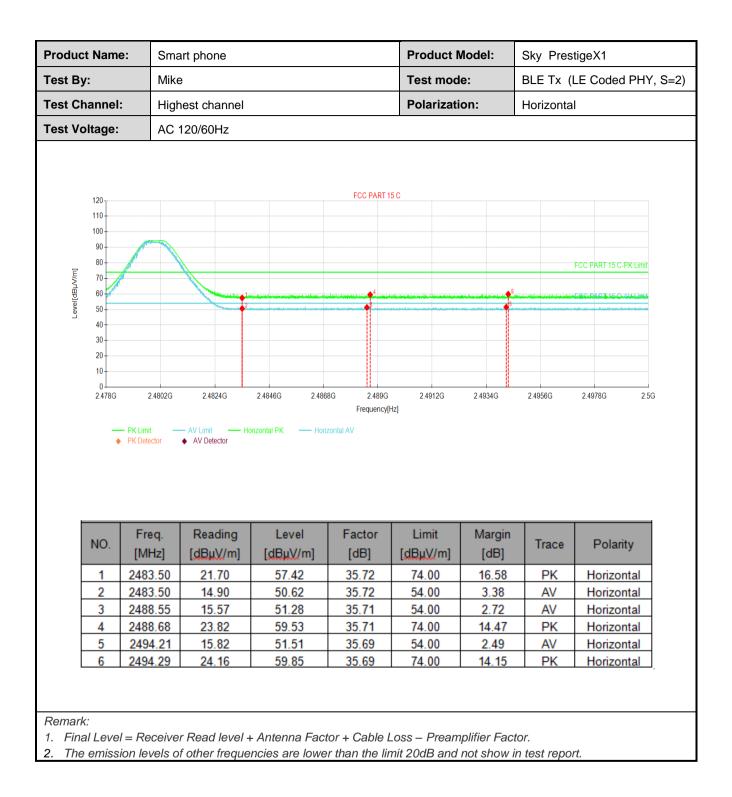


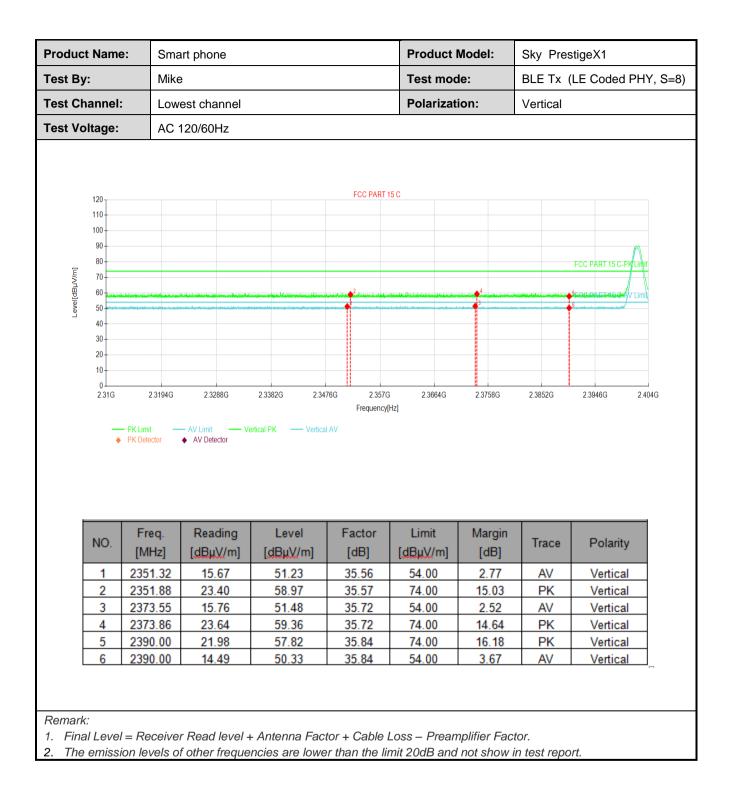


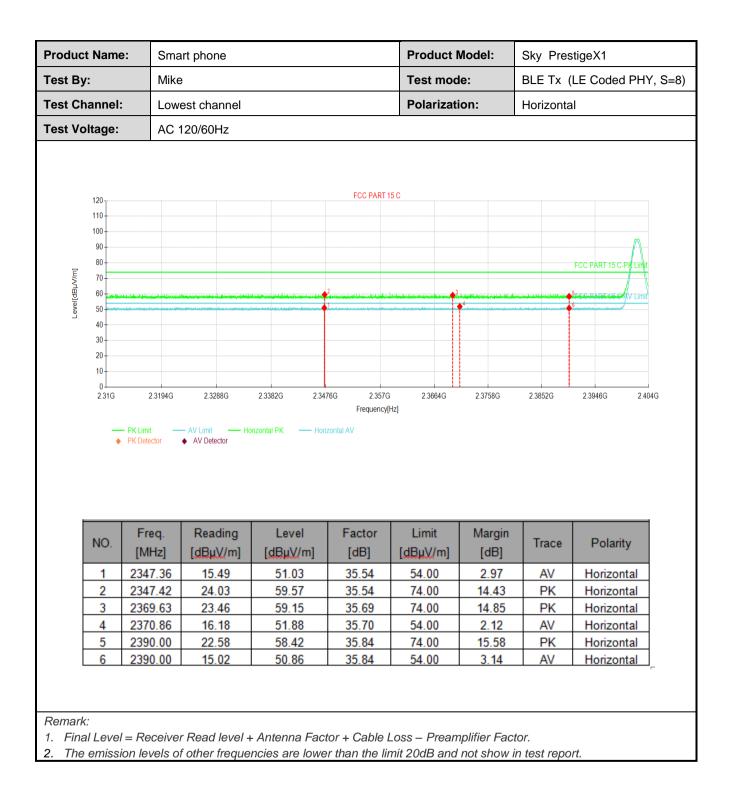


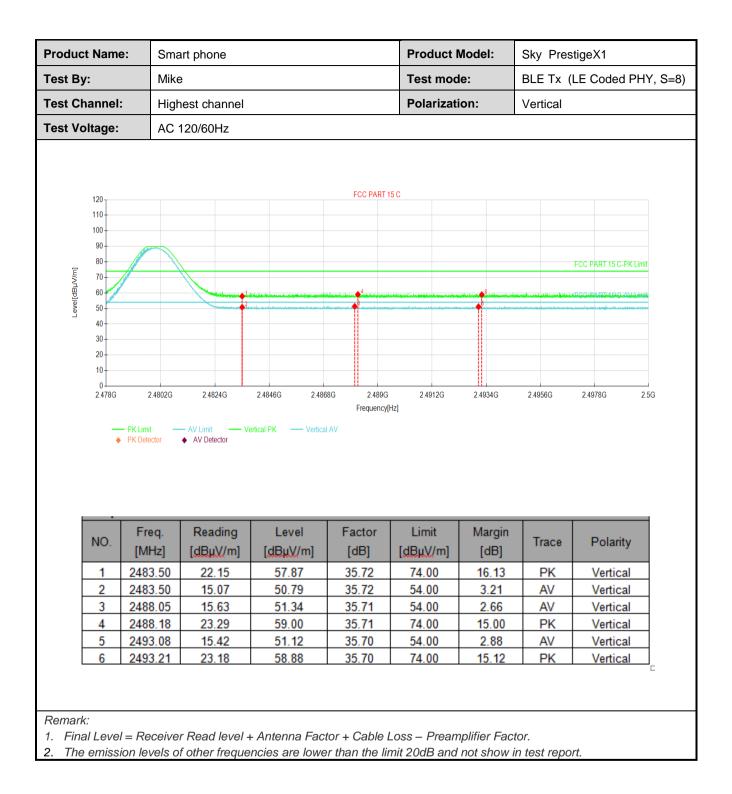


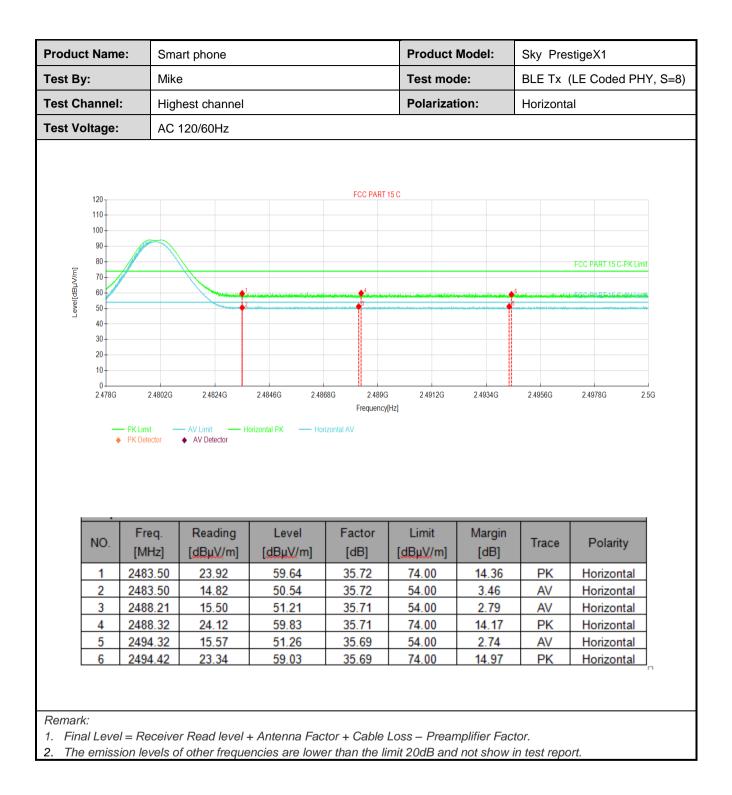












6.5 Spurious Emission (Radiated Method)

Below 1GHz:

				Product Model: Test mode:			Sky PrestigeX1 BLE Tx				
est By:	Ν	/like	Те			BL					
est Frequency	y: 3	60 MHz ~ 1 C	GHz		Po	olarization:		Ve	Vertical & Horizonta		
est Voltage:	A	C 120/60Hz									
				Full Spec	trum						
80	Т										
70											
,0											
60											
≥ 50											
20 ≥0 20 ×0 20 ×0 20 ×0	+						FCC	PAR	T 15	.247	10m
₽ 40 .⊑											
~ 30											
6 30											*
_			1 1 1								
20								*	nen het		فلاطنانهون
				*		*	ang la Pitaki Ngang la Pitaki	* Fr	nen hett Am Land		
20 10			Mr. M. Marian Carles	*	Harrison Harrison Harrison	**************************************	n an	* Fr			
10 0	A Care and	and the second se			n na sangaran karakaran Karakaran karakaran	and the surger of the second					
10 0	A CALL NO.	** 50 60	80 100	M	200	and the surger of the second		*•••••••••••••••••••••••••••••••••••••		80	0 1
10	A Care and	and the second se	80 100	M	n na sense de la companya de la comp Na sense de la companya de la company Na sense de la companya de la company	and the surger of the second					0 1
10 0 3	0M	and the second se	Limit	M	200	and the surger of the second	00 50			80	0 1
10 0 3 Frequ (Mi 56	iency Hz) 5.093000	50 60 MaxPeak (dB µ V/m) 8.54	Limit (dBµV/m) 30.00	M Freque Margin (dB) 21.46	200 ency in Hz Height (cm) 100.0	300 40	00 50	muth leg) 214.0		80	orr. 3/m) -16
10 0 3 Frequ (Mi 56 117	iency Hz) 5.093000 7.882000	50 60 MaxPeak (dB µ V/m) 8.54 13.54	Limit (dB	M Freque Margin (dB) 21.46 19.96	400 ency in Hz Height (cm) 100.0	300 40	00 50	muth leg) 214.0 238.0		80	orr. 3/m) -16 -17
10 0 3 Frequ (Mi 56 117 553	iency Hz) 5.093000	50 60 MaxPeak (dB µ V/m) 8.54	Limit (dB µ V/m) 30.00 33.50 36.00	M Freque Margin (dB) 21.46	200 ency in Hz Height (cm) 100.0	300 40	00 50	muth leg) 214.0		80	orr. 3/m) -16
10 0 3/ Frequ (MI 56 117 55; 5; 29;	iency Hz) 5.093000 7.882000 3.218000	50 60 50 60 (dB µ V/m) 8.54 13.54 18.98	Limit (dB	M Freque Margin (dB) 21.46 19.96 17.02	Height (cm) 100.0 100.0 100.0	300 40 Pol H H V V V	00 50	muth leg) 214.(238.(43.(80	orr. 3/m) -16 -17 -7

Above 1GHz

		В	LE Tx (LE 1M PH	Y)		
		Test	channel: Lowest ch	hannel		
		C	etector: Peak Valu	ue	1	1
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1 0141124101
4804.00	56.28	-9.60	46.68	74.00	27.32	Vertical
4804.00	56.08	-9.60	46.48	74.00	27.52	Horizontal
		De	tector: Average Va	alue		
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Folarization
4804.00	48.88	-9.60	39.28	54.00	14.72	Vertical
4804.00	49.92	-9.60	40.32	54.00	13.68	Horizontal
			channel: Middle ch			
		C	etector: Peak Valu			T
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4884.00	56.34	-9.04	47.30	74.00	26.70	Vertical
4884.00	56.46	-9.04	47.42	74.00	26.58	Horizontal
		De	tector: Average Va	alue	1	1
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1 01811281101
4884.00	49.03	-9.04	39.99	54.00	14.01	Vertical
4884.00	50.24	-9.04	41.20	54.00	12.80	Horizontal
		Test o	hannel: Highest c	hannel		
		D	etector: Peak Valu	ue		
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarizatior
4960.00	56.77	-8.45	48.32	74.00	25.68	Vertical
	56.35	-8.45	47.90	74.00	26.10	Horizontal
4960.00			tector: Average Va			
4960.00				Limit	Margin	
	Read Level	Factor	Level			
Frequency	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)		-	Polarization
	Read Level (dBµV) 48.61	Factor (dB) -8.45	(dBµV/m) 40.16	(dBµV/m) 54.00	(dB)	Polarizatior Vertical

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

el Factor (dB) -9.60 -9.60 el Factor (dB) -9.60 -9.60 -9.60 -9.60 -9.60 -9.60 -9.04	channel: Lowest c Detector: Peak Val (dBµV/m) 46.25 46.81 etector: Average V Level (dBµV/m) 38.64 39.76 channel: Middle c Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V Level	ue Limit (dBµV/m) 74.00 74.00 alue Limit (dBµV/m) 54.00 54.00 bannel ue Limit (dBµV/m) 74.00 74.00 74.00 alue	Margin (dB) 27.75 27.19 Margin (dB) 15.36 14.24 Margin (dB) 27.13 26.29	Polarization Vertical Horizontal Polarization Vertical Horizontal Polarization Vertical Horizontal Vertical Horizontal
el Factor (dB) -9.60 -9.60 el Factor (dB) -9.60 -9.60 -9.60 -9.60 -9.60 -9.60 -9.04 -9.04 el Factor (dB) -9.04 -9.04 -9.04	Level (dBµV/m) 46.25 46.81 etector: Average V Level (dBµV/m) 38.64 39.76 channel: Middle c Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	Limit (dBµV/m) 74.00 74.00 alue Limit (dBµV/m) 54.00 54.00 54.00 hannel ue Limit (dBµV/m) 74.00 74.00 alue	(dB) 27.75 27.19 Margin (dB) 15.36 14.24 Margin (dB) 27.13 26.29	Vertical Horizontal Polarization Vertical Horizontal
(dB) -9.60 -9.60 el Factor (dB) -9.60 -9.60 -9.60 Test el Factor (dB) -9.04 -9.04 -9.04 -9.04 Data	(dBµV/m) 46.25 46.81 etector: Average V Level (dBµV/m) 38.64 39.76 Channel: Middle c Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	(dBμV/m) 74.00 74.00 alue Limit (dBμV/m) 54.00 54.00 54.00 Limit (dBμV/m) 54.00 74.00 74.00 74.00 74.00	(dB) 27.75 27.19 Margin (dB) 15.36 14.24 Margin (dB) 27.13 26.29	Vertical Horizontal Polarization Vertical Horizontal
el Factor (dB) -9.60 -9.60 -9.60 -9.60 -9.60 -9.60 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04	46.81 etector: Average V Level (dBµV/m) 38.64 39.76 channel: Middle c Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	74.00 alue Limit (dBμV/m) 54.00 54.00 hannel ue Limit (dBμV/m) 74.00 74.00 alue	27.19 Margin (dB) 15.36 14.24 Margin (dB) 27.13 26.29	Horizontal Polarization Vertical Horizontal Polarization Vertical
el Factor (dB) -9.60 -9.60 -9.60 -9.60 -9.60 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04	etector: Average V Level (dBµV/m) 38.64 39.76 channel: Middle cl Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	alue Limit (dBµV/m) 54.00 54.00 hannel ue Limit (dBµV/m) 74.00 74.00 alue	Margin (dB) 15.36 14.24 Margin (dB) 27.13 26.29	Polarization Vertical Horizontal Polarization Vertical
el Factor (dB) -9.60 -9.60 -9.60 -9.60 Test el Factor (dB) -9.04 -9.04 -9.04 -9.04 -9.04 -9.04	Level (dBµV/m) 38.64 39.76 channel: Middle cl Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	Limit (dBµV/m) 54.00 54.00 hannel ue Limit (dBµV/m) 74.00 74.00 alue	(dB) 15.36 14.24 Margin (dB) 27.13 26.29	Vertical Horizontal Polarization Vertical
(dB) -9.60 -9.60 Test el Factor (dB) -9.04 -9.04 -9.04 Du el Factor (dB)	(dBµV/m) 38.64 39.76 channel: Middle c Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	(dBµV/m) 54.00 54.00 hannel ue Limit (dBµV/m) 74.00 74.00 alue	(dB) 15.36 14.24 Margin (dB) 27.13 26.29	Vertical Horizontal Polarization Vertical
el Factor (dB) -9.04 -9.04 -9.04 -9.04 -9.04 -9.04 -9.04	39.76 channel: Middle cl Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	54.00 hannel ue Limit (dBµV/m) 74.00 74.00 alue	14.24 Margin (dB) 27.13 26.29	Horizontal Polarization Vertical
el Factor (dB) -9.04 -9.04 el Factor (dB)	channel: Middle ch Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	hannel ue (dBµV/m) 74.00 74.00 alue	Margin (dB) 27.13 26.29	Polarization
el Factor (dB) -9.04 -9.04 el Factor (dB)	Detector: Peak Val Level (dBµV/m) 46.87 47.71 etector: Average V	ue Limit (dBµV/m) 74.00 74.00 alue	(dB) 27.13 26.29	Vertical
el Factor (dB) -9.04 -9.04 el Factor (dB)	Level (dBµV/m) 46.87 47.71 etector: Average V	Limit (dBµV/m) 74.00 74.00 alue	(dB) 27.13 26.29	Vertical
(dB) -9.04 -9.04 el Factor (dB)	(dBµV/m) 46.87 47.71 etector: Average V	(dBµV/m) 74.00 74.00 alue	(dB) 27.13 26.29	Vertical
-9.04 -9.04 el Factor (dB)	46.87 47.71 etector: Average V	74.00 74.00 alue	27.13 26.29	Vertical
el Factor (dB)	47.71 etector: Average V	74.00 alue	26.29	
el Factor (dB)	etector: Average V	alue	I	Horizontal
el Factor (dB)		1	· •• ·	
(dB)	Level	Lingt		
-0 0/	(dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
-3.04	39.27	54.00	14.73	Vertical
-9.04	40.72	54.00	13.28	Horizontal
el Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
-8.45	47.40	74.00	26.60	Vertical
-8.45	48.48	74.00	25.52	Horizontal
	etector: Average V	alue	I	
el Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
-8.45	39.36	54.00	14.64	Vertical
-8.45	41.66	54.00	12.34	Horizontal
	el Factor (dB) -8.45 -8.45 el Factor (dB) -8.45	Detector: Peak Val el Factor Level (dB) (dBµV/m) -8.45 47.40 -8.45 48.48 Detector: Average V el Factor (dB) (dBµV/m) -8.45 39.36 -8.45 41.66	(dB) (dBμV/m) (dBμV/m) -8.45 47.40 74.00 -8.45 48.48 74.00 Detector: Average Value el Factor Level Limit (dB) (dBμV/m) (dBμV/m) (dBμV/m) -8.45 39.36 54.00 -8.45 41.66 54.00	Detector: Peak Value el Factor Level Limit Margin (dB) (dB) (dBµV/m) (dBµV/m) (dB) -8.45 47.40 74.00 26.60 -8.45 48.48 74.00 25.52 Detector: Average Value el Factor Level Limit Margin (dB) (dB) (dBµV/m) (dB) (dB) -8.45 39.36 54.00 14.64 -8.45 41.66 54.00 12.34

			x (LE Coded PH)	-		
			channel: Lowest ch			
	1		etector: Peak Valu	 [
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	56.04	-9.60	46.44	74.00	27.56	Vertical
4804.00	56.30	-9.60	46.70	74.00	27.30	Horizontal
		De	tector: Average Va	alue		
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4804.00	48.82	-9.60	39.22	54.00	14.78	Vertical
4804.00	49.00	-9.60	39.40	54.00	14.60	Horizontal
		Test	channel: Middle ch	nannel		
		D	etector: Peak Valu	ue		
Frequency	Read Level	Factor	Level	Limit	Margin	Delevization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4884.00	56.01	-9.04	46.97	74.00	27.03	Vertical
4884.00	55.88	-9.04	46.84	74.00	27.16	Horizontal
		De	tector: Average Va	alue		
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4884.00	48.93	-9.04	39.89	54.00	14.11	Vertical
4884.00	48.86	-9.04	39.82	54.00	14.18	Horizontal
		Test o	hannel: Highest c	hannel		
			etector: Peak Valu			
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4960.00	56.50	-8.45	48.05	74.00	25.95	Vertical
4960.00	55.47	-8.45	47.02	74.00	26.98	Horizontal
			tector: Average Va			
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
· /	49.24	-8.45	40.79	54.00	13.21	Vertical
4960.00						

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			x (LE Coded PH)			
		Test	channel: Lowest ch	hannel		
	1 1	D	etector: Peak Valu		Γ	T
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	55.51	-9.60	45.91	74.00	28.09	Vertical
4804.00	56.52	-9.60	46.92	74.00	27.08	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	48.50	-9.60	38.90	54.00	15.10	Vertical
4804.00	49.23	-9.60	39.63	54.00	14.37	Horizontal
		Test	channel: Middle ch	nannel		
		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	55.27	-9.04	46.23	74.00	27.77	Vertical
4884.00	56.52	-9.04	47.48	74.00	26.52	Horizontal
	·	De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	48.57	-9.04	39.53	54.00	14.47	Vertical
4884.00	49.36	-9.04	40.32	54.00	13.68	Horizontal
		Test o	hannel: Highest c	hannel		
			etector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	55.17	-8.45	46.72	74.00	27.28	Vertical
4960.00	56.63	-8.45	48.18	74.00	25.82	Horizontal
	· ·	De	tector: Average Va	alue		•
	Read Level	Factor	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
Frequency (MHz)	(dBµV)	(dB)	(αυμν/π)			1 · · · · · · · · · · · · · · · · · · ·
Frequency (MHz) 4960.00	(dBµV) 48.33	(dB) -8.45	39.88	54.00	14.12	Vertical

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

-----End of report-----