

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200704503V01

FCC REPORT

Applicant: Sky Phone LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, Florida, United

States

Equipment Under Test (EUT)

Product Name: 3G SMART PHONE

Model No.: Platinum P4

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYPLATP4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Jul., 2020

Date of Test: 15 Jul., to 17 Aug., 2020

Date of report issued: 31 Aug., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Aug., 2020	Original
01	31 Aug., 2020	Update Model No.

Reviewed by:

Date: 31 Aug., 2020

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	_
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	6
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	
	6.6.1	0	
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	27
7	TES	T SETUP PHOTO	32
0	EUT	CONCEDUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

Test Method:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, Florida, United States
Manufacturer:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, Florida, United States

5.2 General Description of E.U.T.

J.Z General Description	101 2:0:1:
Product Name:	3G SMART PHONE
Model No.:	Platinum P4
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1400mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Peport No: CCISE200704503V01

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

Nο

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
SIII SAC	SAEIVIC	9111 6111 6111	900	07-22-2020	07-21-2023
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Llara Antonna	CCHWW DZDECK	DDLLA0420D	4005	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	\	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LION	Dahda 9 Cahusara	F0110.75	0.420024/040	07-21-2017	07-20-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2023	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

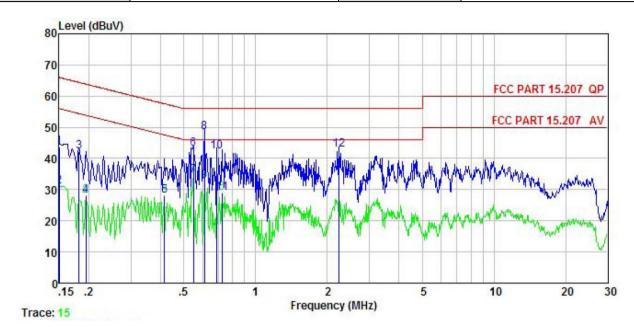
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

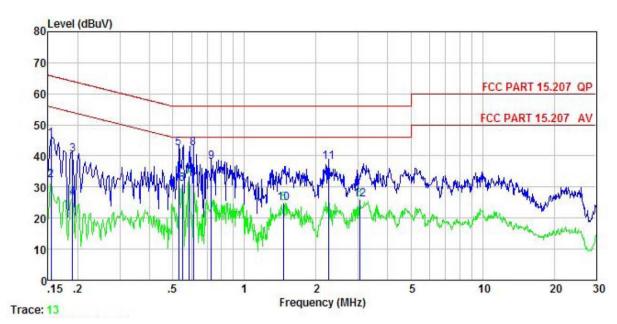
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.5 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit (dBuV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 			
Test setup:	according to ANSI C63.10(latest version) on conducted measurement. Reference Plane			
	AUX Equipment E.U.T Test table/Insulation plane	80cm Filter EMI Receiver	– AC power	
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	twork		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

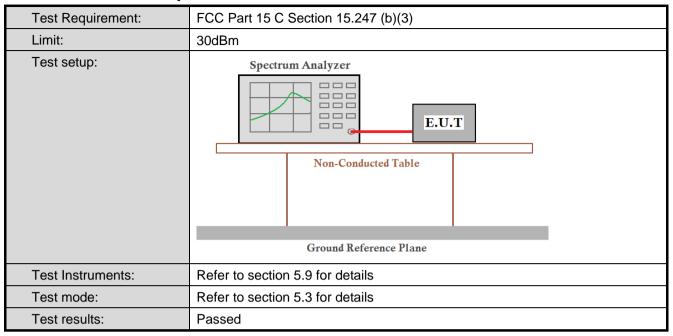
Product name:	3G SMART PHONE	Product model:	Platinum P4
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>d</u> B		<u>d</u> B	dBu₹	dBu∜	<u>dB</u>	
1	0.150	33.42	-0.57	10.78	-0.05	43.58		-22.42	14 9 (1 9 () 4
2	0.150	20.86	-0.57	10.78	-0.05	31.02	56.00	-24.98	Average
3	0.182	32.27	-0.58	10.77	-0.12	42.34	64.42	-22.08	QP
4	0.194	18.08	-0.59	10.76	-0.15	28.10	53.84	-25.74	Average
5	0.415	17.33	-0.47	10.73	0.31	27.90			Average
2 3 4 5 6 7	0.549	33.06	-0.46	10.76	-0.36	43.00	56.00	-13.00	QP
7	0.549	24.74	-0.46	10.76		34.68	46.00	-11.32	Average
8	0.611	38.49	-0.49	10.77	-0.38	48.39		-7.61	
8	0.611	22.90	-0.49	10.77	-0.38	32.80	46.00	-13.20	Average
10	0.686	32.43	-0.52	10.77	-0.40	42.28	56.00	-13.72	QP
11	0.724	19.12	-0.54	10.78	-0.32	29.04			Average
12	2.237	32.51	-0.49	10.95	-0.29	42.68		-13.32	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

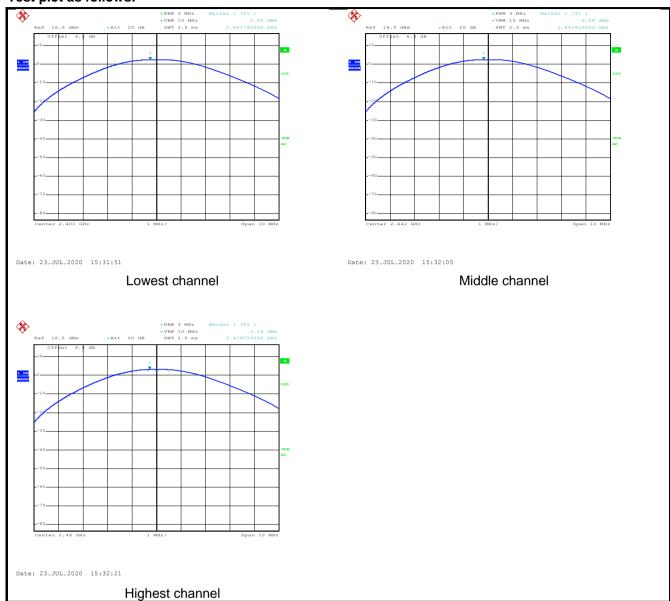
Product name:	3G SMART PHONE	Product model:	Platinum P4
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB		<u>dB</u>	dBu₹	dBu₹	<u>d</u> B	
1	0.154	35.37	-0.69	10.78	0.01	45.47	65.78	-20.31	QP
2	0.154	22.15	-0.69	10.78	0.01	32.25	55.78	-23.53	Average
3	0.190	30.34	-0.67	10.76	0.00	40.43	64.02	-23.59	QP
4	0.190	16.37	-0.67	10.76	0.00	26.46	54.02	-27.56	Average
2 3 4 5 6	0.529	32.29	-0.65	10.76	0.03	42.43	56.00	-13.57	QP
6	0.549	20.92	-0.65	10.76	0.03	31.06	46.00	-14.94	Average
7	0.585	23, 23	-0.65	10.76	0.03	33.37	46.00	-12.63	Average
8	0.611	32.36	-0.64	10.77	0.04	42.53	56.00	-13.47	QP
9	0.727	27.85	-0.64	10.78	0.04	38.03	56.00	-17.97	QP
10	1.464	14.59	-0.70	10.92	0.13	24.94	46.00	-21.06	Average
11	2.249	27.58	-0.69	10.95	0.21	38.05	56.00	-17.95	QP
12	3.041	15.29	-0.65	10.92	0.32	25.88	46.00	-20.12	Average

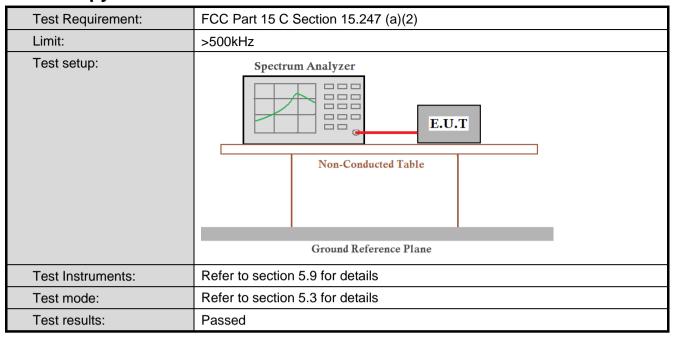
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

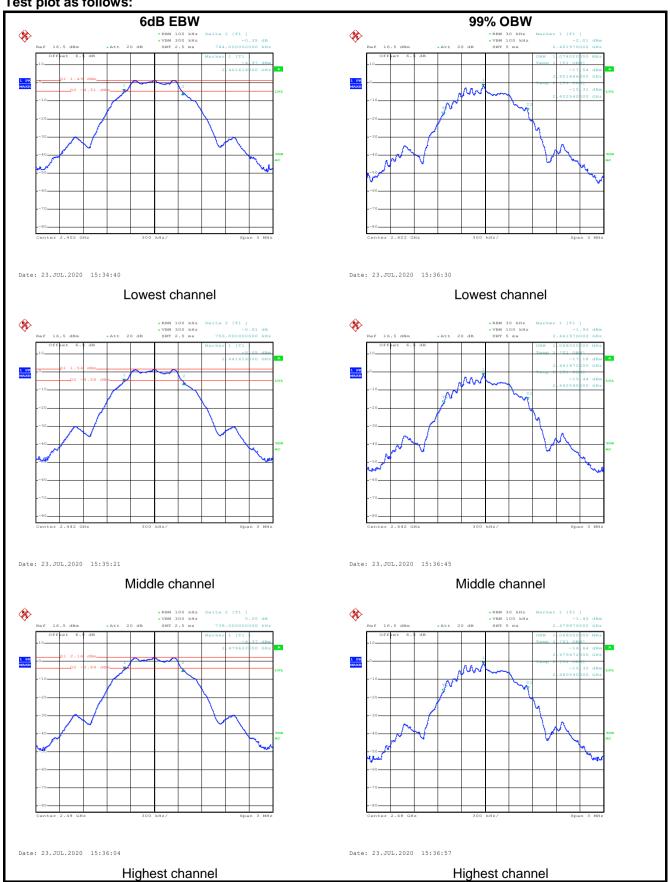

Measurement Data:

mododi omont Batai			
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	2.55		
Middle	2.58	30.00	Pass
Highest	3.19		



Test plot as follows:

6.4 Occupy Bandwidth



Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	0.744				
Middle	0.756	>500	Pass		
Highest	0.738				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.074				
Middle	1.068	N/A	N/A		
Highest	1.068				

Test plot as follows:

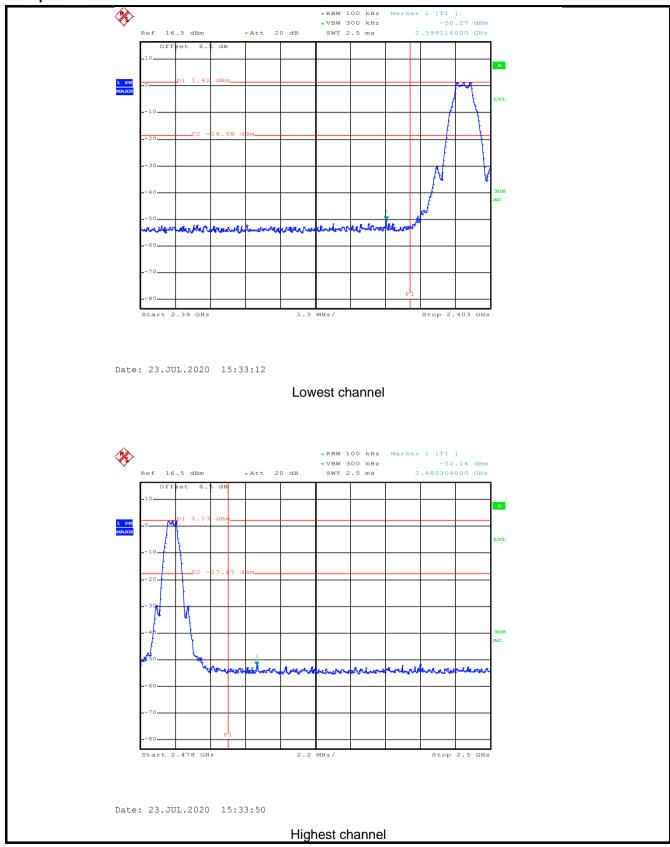
6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Limit:	8 dBm/3kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					


Measurement Data:

Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-12.87		Pass	
Middle	-12.89	8.00		
Highest	-12.28			

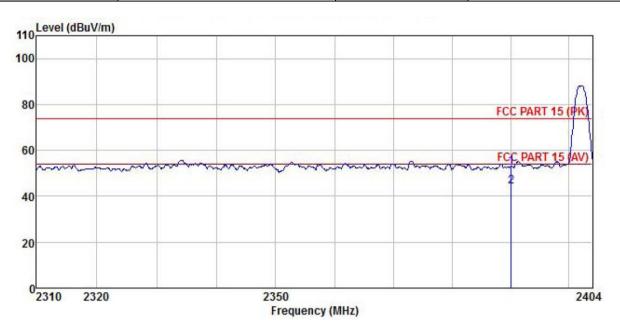
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

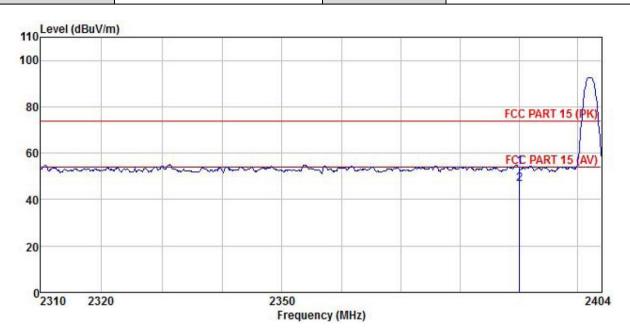
Test plots as follow:



6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Lir	nit (dBuV/m @3		Remark			
	Above 10	GHz —	54.00 74.00		verage Value Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
Test setup:	AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Architer Controller							
Test Instruments:	Refer to section	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

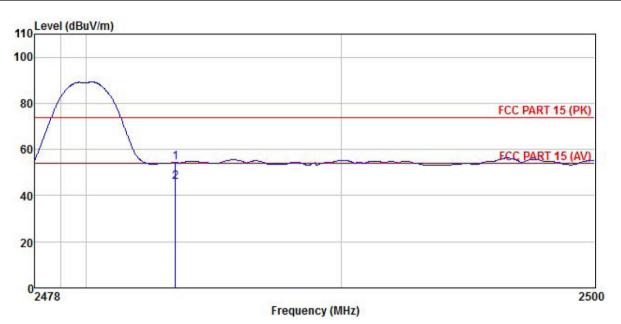
Product Name:	3G SMART PHONE	Product Model:	Platinum P4
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						Over Limit	
	MHz	dBu∀	dB/m	₫B	₫B	dB	dBuV/m	dBuV/m	₫B	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

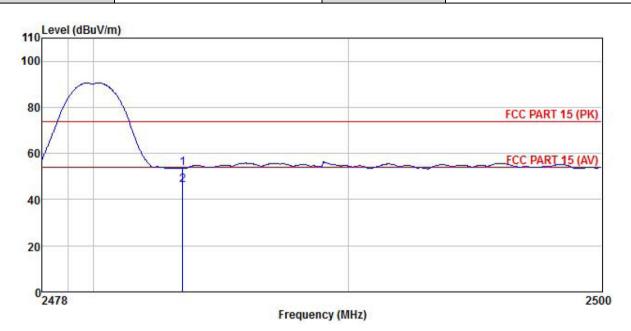
Product Name:	3G SMART PHONE	Product Model:	Platinum P4
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	ReadAntenna Freq Level Factor		Cable Aux Pream Loss Factor Factor					
	MHz	dBu∜	dB/m	 	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	3G SMART PHONE	Product Model:	Platinum P4
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



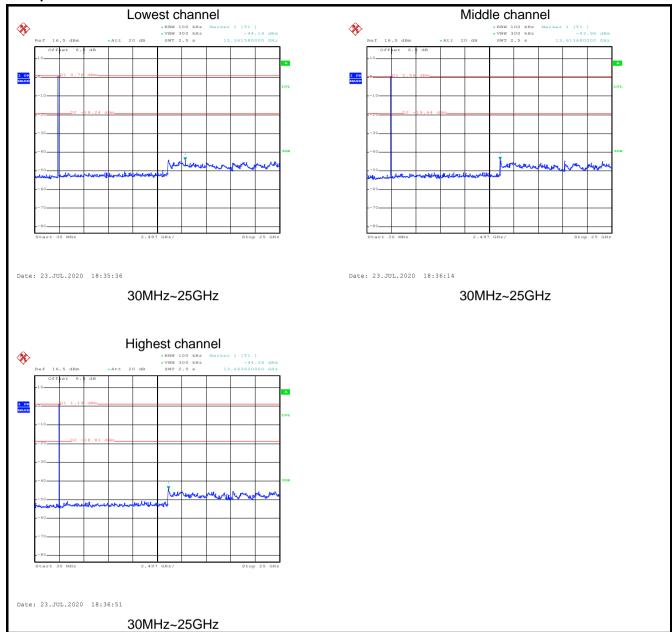
	Freq		Antenna Factor					Limit Line		
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2483,500 2483,500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	3G SMART PHONE	Product Model:	Platinum P4
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor							
MHz	dBu∜	dB/m	dB	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
2483.500 2483.500									

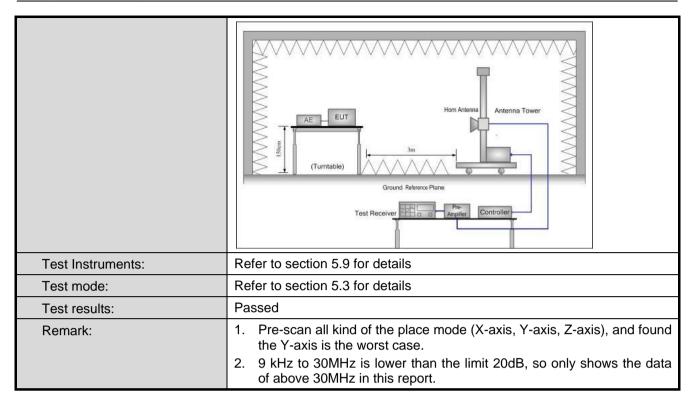
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

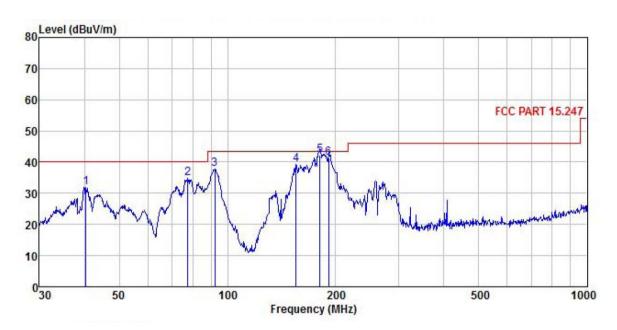
Official Entre	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:



6.7.2 Radiated Emission Method

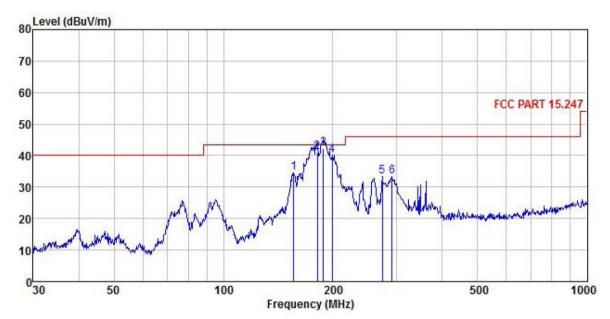
Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	tor RBW		W	Remark
	30MHz-1GHz	Quasi-peak	120KHz	3001	КНz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
	Above IGIIZ	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	/ L	imit (dBuV/m @	23m)		Remark
	30MHz-88M		40.0			Quasi-peak Value
	88MHz-216N		43.5			Quasi-peak Value
	216MHz-960N		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	lz	54.0			Average Value
Test Procedure:			74.0			Peak Value table 0.8m(below
	highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	iation. was set 3 r hich was mo na height is to determine ontal and veneasurement suspected er hen the antel the rota tab maximum rea eceiver syste sandwidth with sion level of ecified, then would be re margin wou	neters away united on the to varied from one the maximurtical polarization. The enna was tuned ading. The was turned ading. The was set the EUT in petesting could be ported. Other lid be re-tested	from the cop of a cop	ne interior variation of the areas arraceights degreed areas ped arraceight one	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m < 4m 4m 0.8m 1m			Antenna Search Antenn Test eiver —	1



Measurement Data (worst case):

Below 1GHz:

Product Name:	3G SMART PHONE	Product Model:	Platinum P4
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


			Antenna			Preamp		Limit	Over	D1
	rreq	rever	Factor	LOSS	ractor	ractor	rever	Line	Limit	Kemark
	MHz	dBu∀	dB/m	₫B	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	40.417	48.66	12.81	0.35	0.00	29.90	31.92	40.00	-8.08	QP
2	77.593	51.73	12.18	0.47	0.00	29.66	34.72	40.00	-5.28	QP
3	92.139	57.31	9.46	0.50	0.00	29.56	37.71	43.50	-5.79	QP
1 2 3 4 5	155.364	53.20	14.52	0.62	0.00	29.17	39.17	43.50	-4.33	QP
5	180.649	53.61	16.94	0.68	0.00	28.97	42.26	43.50	-1.24	QP
6	191.074	52.16	17.50	0.70	0.00	28.89	41.47	43.50	-2.03	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	3G SMART PHONE	Product Model:	Platinum P4
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAntenna 1 Level Factor				Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>d</u> B/m	<u>d</u> B	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	155.910	48.55	14.64	0.62	0.00	29.17	34.64	43.50	-8.86	QP
2	181.283	52.36	16.98	0.68	0.00	28.96	41.06	43.50	-2.44	QP
3	188.413	52.97	17.34	0.70	0.00	28.91	42.10	43.50	-1.40	QP
4	199.286	50.15	18.23	0.72	0.00	28.83	40.27	43.50	-3.23	QP
5	273.234	42.48	18.60	0.83	0.00	28.50	33.41	46.00	-12.59	QP
6	291.036	42.21	18.67	0.85	0.00	28.47	33.26	46.00	-12.74	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	47.70	30.78	6.80	2.44	41.81	45.91	74.00	-28.09	Vertical			
4804.00	47.79	30.78	6.80	2.44	41.81	46.00	74.00	-28.00	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	40.52	30.78	6.80	2.44	41.81	38.73	54.00	-15.27	Vertical			
4804.00 39.52 30.78			6.80	2.44	41.81	37.73	54.00	-16.27	Horizontal			

Test channel: Middle channel													
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	48.18	30.96	6.86	2.47	41.84	46.63	74.00	-27.37	Vertical				
4884.00	48.20	30.96	6.86	2.47	41.84	46.65	74.00	-27.35	Horizontal				
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	40.71	30.96	6.86	2.47	41.84	39.16	54.00	-14.84	Vertical				
4884.00	39.12	30.96	6.86	2.47	41.84	37.57	54.00	-16.43	Horizontal				

Test channel: Highest channel												
Detector: Peak Value												
Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
31.11	6.91	2.49	41.87	46.62	74.00	-27.38	Vertical					
31.11	6.91	2.49	41.87	46.45	74.00	-27.55	Horizontal					
Detector: Average Value												
Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
31.11	6.91	2.49	41.87	39.25	54.00	-14.75	Vertical					
31.11	6.91	2.49	41.87	37.85	54.00	-16.15	Horizontal					
	Factor (dB/m) 31.11 31.11 Antenna Factor (dB/m) 31.11	Antenna Cable Loss (dB/m) (dB) 31.11 6.91 31.11 Cable Factor (dB/m) (dB) 31.11 6.91	Antenna Cable Aux Factor (dB/m) (dB) (dB) 31.11 6.91 2.49 31.11 6.91 2.49 Detector: Antenna Cable Aux Factor (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB	Detector: Peak Value Antenna	Detector: Peak Value	Detector: Peak Value	Detector: Peak Value					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.