

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201009205

FCC REPORT

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: 3G Smart Phone

Model No.: Platinum K55

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYPLATK55

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 26 Oct., 2020

Date of Test: 27 Oct., to 11 Dec., 2020

Date of report issued: 16 Dec., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No: JYTSZE201009205

Version

Version No.	Date	Description
00	16 Dec., 2020	Original

Mike OU

Test Engineer

Winner thang

Project Engineer Tested by: 16 Dec., 2020 Date:

Reviewed by: Date: 16 Dec., 2020

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4		EST SUMMARY	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	13
7	TI	EST SETUP PHOTO	19
R	FI	LIT CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	3G Smart Phone
Model No.:	Platinum K55
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode	
FM mode	Keep the EUT in FM receiver mode	
GPS mode	Keep the EUT in GPS receiver mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

Report No: JYTSZE201009205

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.03m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.04m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

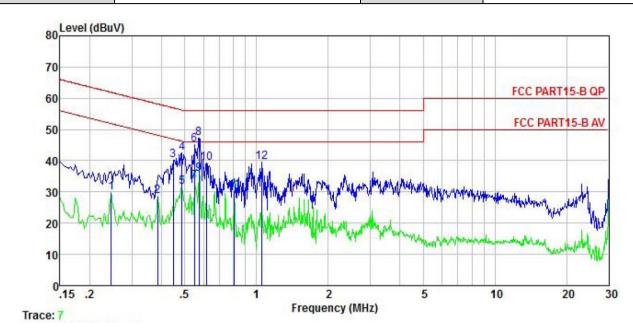
5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021	
Horn Antenna	SCHWARZBECK	DDUA 0470	DDUA0470500	11-18-2019	11-17-2020	
HOITI Aitteilia	SCHWARZBECK	SCHWARZBECK BBHA 9170 BBHA9170582		11-18-2020	11-17-2021	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
Spectrum analyzer	Notice & Scriwarz	F3F40	100303	11-18-2020	11-17-2021	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

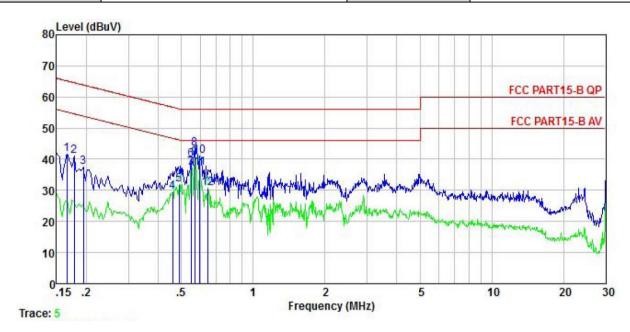
6 Test results and Measurement Data

6.1 Conducted Emission


Test Requirement:	FCC Part 15 B Section 15.107					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)	Limit (dBu\/)				
	Quasi-peak Average					
		0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46			
	0.5-30	60	50			
	* Decreases with the logarithm	of the frequency.				
Test setup:	Reference Plane					
Test presedure	AUX Filter AC power Equipment E.U.T EMI Receiver Remark E.U.T EQuipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 					
Test Instruments:	Refer to section 5.11 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					
Tool Toolito.	1. 400					

Measurement data:

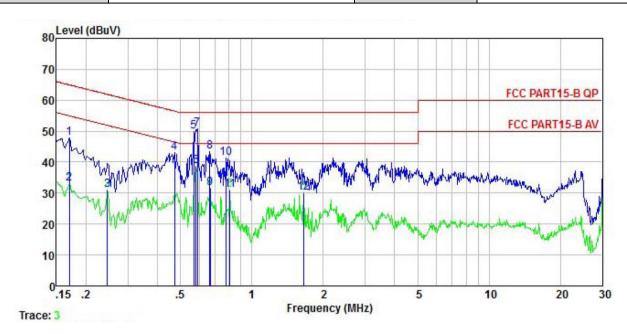
Product name:	3G Smart Phone	Product model:	Platinum K55
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
1	MHz	dBu₹	dB	<u>d</u> B	dB	dBu₹	₫₿u₹	dB	
1 2	0.246 0.385	19.86 18.21	-0.57 -0.49	-0.21 0.33	10.75 10.72	29.83 28.77			Average Average
2 3 4	0.447 0.486	29.88 32.44	-0.46 -0.44	0.05 -0.26	10.74 10.76	40.21 42.50	56.93	-16.72 -13.73	QP
4 5 6	0.486 0.549	21.56 35.24	-0.44 -0.46	-0.26 -0.36	10.76 10.76	31.62 45.18	46.23		Average
7	0.549 0.573	23.49 37.46	-0.46 -0.47	-0.36 -0.37	10.76 10.76	33.43 47.38		-12.57	Average
9 10	0.573 0.617	25.94 29.31	-0.47 -0.49	-0.37 -0.38	10.76 10.77	35.86 39.21	46.00		Average
11 12	0.809 1.054	20.08 28.80	-0.57 -0.61	-0.05 0.40	10.81	30.27 39.47	46.00		Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

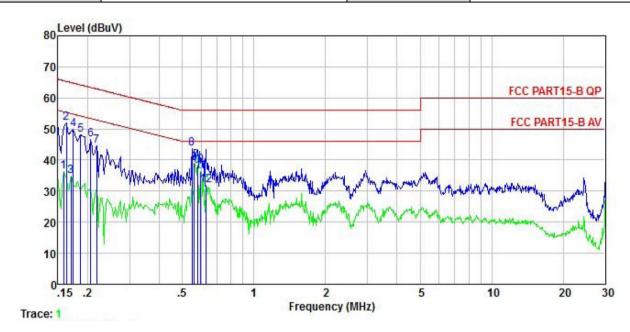
Product name:	3G Smart Phone	Product model:	Platinum K55		
Test by:	Mike	Test mode:	PC mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		


	Freq	Kead Level	Factor	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∇	<u>dB</u>	<u>d</u> B		dBu∀	dBu∇		
1	0.166	31.65	-0.68	0.01	10.77	41.75	65.16	-23.41	QP
2	0.178	30.81	-0.68	0.00	10.77	40.90	64.59	-23.69	QP
3	0.194	27.53	-0.67	0.00	10.76	37.62	63.84	-26.22	QP
1 2 3 4 5 6 7 8 9	0.459	19.35	-0.64	0.00	10.74	29.45	46.71	-17.26	Average
5	0.489	21.82	-0.65	0.02	10.76	31.95	46.19	-14.24	Average
6	0.549	29.62	-0.65	0.03	10.76	39.76	56.00	-16.24	QP
7	0.549	27.01	-0.65	0.03	10.76	37.15	46.00	-8.85	Average
8	0.570	33.31	-0.65	0.03	10.76	43.45	56.00	-12.55	QP
9	0.570	30.24	-0.65	0.03	10.76	40.38	46.00	-5.62	Average
10	0.598	30.94	-0.64	0.04	10.77	41.11	56.00	-14.89	QP
11	0.598	26.98	-0.64	0.04	10.77	37.15	46.00	-8.85	Average
12	0.647	20.61	-0.64	0.04	10.77	30.78	46.00	-15.22	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	3G Smart Phone	Product model:	Platinum K55		
Test by:	Mike	Test mode:	Charging & Recording mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dB	dBu₹	dBu₹	dB	
1	0.170	37.66	-0.58		10.77	47.75		-17.19	POTENTIAL CONTRACTOR OF THE PARTY OF THE PAR
2	0.170	23.03	-0.58	-0.10	10.77	33.12			Average
3	0.246	21.07	-0.57	-0.21	10.75	31.04	51.91	-20.87	Average
4	0.471	33.07	-0.44	-0.15	10.75	43.23	56.49	-13.26	QP
4 5 6	0.570	40.05	-0.47	-0.37	10.76	49.97	56.00	-6.03	QP
6	0.582	28.68	-0.48	-0.37	10.76	38.59	46.00	-7.41	Average
7	0.589	40.78	-0.48	-0.37	10.76	50.69	56.00		
8	0.665	33.59	-0.51	-0.39	10.77	43.46	56.00	-12.54	QP
8 9	0.668	21.65	-0.52	-0.39	10.77	31.51	46.00	-14.49	Average
10	0.779	31.36	-0.56	-0.15	10.80	41.45	56.00	-14.55	QP
11	0.809	20.72	-0.57	-0.05	10.81	30.91	46.00	-15.09	Average
12	1.654	19.84	-0.54	-0.11	10.94	30.13			Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	3G Smart Phone	Product model:	Platinum K55		
Test by:	Mike	Test mode:	Charging & Recording mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
•	MHz	dBu₹	₫B	₫B	₫B	dBu₹	dBu∀	₫B	
1	0.158	26.12	-0.69	0.01	10.77	36.21	55.56	-19.35	Average
2	0.162	41.87	-0.68	0.01	10.77	51.97	65.34	-13.37	QP
3	0.170	24.85	-0.68	0.01	10.77	34.95	54.94	-19.99	Average
4	0.174	39.79	-0.68	0.00	10.77	49.88	64.77	-14.89	QP
1 2 3 4 5 6 7 8 9	0.186	38.03	-0.67	0.00	10.76	48.12	64.20	-16.08	QP
6	0.206	36.63	-0.67	0.00	10.76	46.72	63.36	-16.64	QP
7	0.219	34.42	-0.67	0.00	10.76	44.51	62.88	-18.37	QP
8	0.549	33.53	-0.65	0.03	10.76	43.67	56.00	-12.33	QP
9	0.561	28.88	-0.65	0.03	10.76	39.02	46.00	-6.98	Average
10	0.579	28.14	-0.65	0.03	10.76	38.28	46.00		Average
11	0.598	26.13	-0.64	0.04	10.77	36.30	46.00		Average
12	0.630	21.70	-0.64	0.04	10.77	31.87	46.00		Average

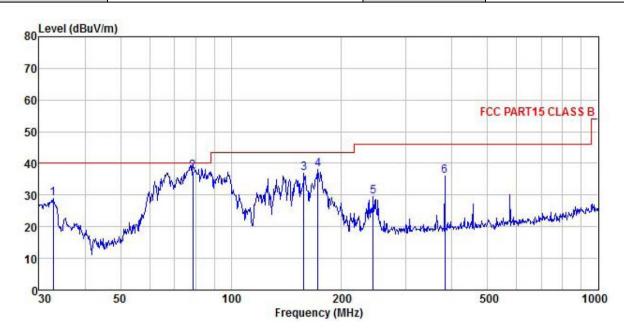
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.10)9				
Test Frequency Range:	30MHz to 6000MI	Hz					
Test site:	Measurement Dis	tance: 3m ((Sem	i-Anechoic (Chamber)		
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remark	
, 1000, 101 001ap	30MHz-1GHz			120kHz	300kHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz	Peak Value	
	Above 1GHz	RMS		1MHz	3MHz	Average Value	
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark	
	30MHz-88N			40.0		Quasi-peak Value	
	88MHz-216			43.5		Quasi-peak Value	
	216MHz-960			46.0		Quasi-peak Value	
	960MHz-1G	ÞΗΖ		54.0 54.0		Quasi-peak Value	
	Above 1GI	Hz		74.0		Average Value Peak Value	
Test setup:	Below 1GHz 3m	4m	_		Antenna Tower Search Antenna		
	RF Test Receiver Tum Table O.8m Im Ground Plane Above 1GHz						
	AE - (Turnt		3m	Pra	Antenna Tow	er	
Test Procedure:	ground at a 3 ndegrees to detect 2. The EUT was swhich was mound 3. The antenna hours ground to detect to detect the street at a 2 nd a	neter semi- ermine the p set 3 meters unted on the eight is vari rmine the m	anecl positi s awa e top ed fro naxim	hoic camber on of the hig by from the in of a variable om one mete um value of	The table table the table that the table that the table that the table the table the table the table the table tab	ce-receiving antenna, ntenna tower. meters above the	

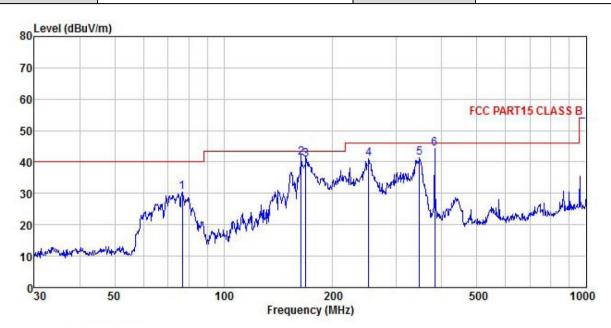
	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit are sified, then testing excludes a temporal and the peak value of the
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded



Measurement Data:

Below 1GHz:

Product Name:	3G Smart Phone	Product Model:	Platinum K55
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


		Read	Ant enna	Cable	Aux	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u> /π	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	32.749	46.15	12.25	0.37	0.00	29.96	28.81	40.00	-11.19	QP
2	78.689	54.33	12.46	0.47	0.00	29.65	37.61	40.00	-2.39	QP
3	158.112	50.43	15.13	0.63	0.00	29.15	37.04	43.50	-6.46	QP
4	172.599	49.68	16.65	0.66	0.00	29.03	37.96	43.50	-5.54	QP
5	244.232	38.97	18.48	0.77	0.00	28.57	29.65	46.00	-16.35	QP
6	382.588	44.64	19.00	0.97	0.00	28.70	35.91	46.00	-10.09	QP

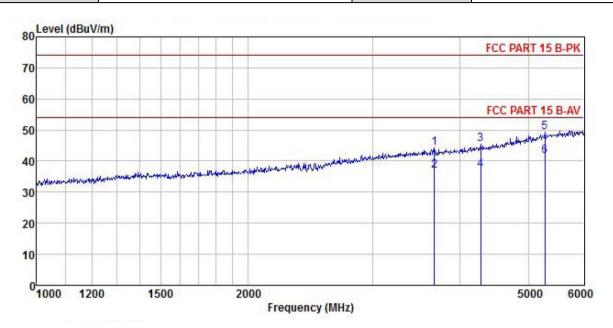
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	3G Smart Phone	Product Model:	Platinum K55
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Limit Line	Over Limit	Remark
	MHz	dBu∜			<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	76.781	47.55	11.98	0.46	0.00	29.67	30.32	40.00	-9.68	QP
1 2	163.755	54.07	15.58	0.64	0.00	29.10	41.19	43.50	-2.31	QP
3	168.414	52.87	16.20	0.65	0.00	29.06	40.66	43.50	-2.84	QP
4	251.180	50.40	18.50	0.78	0.00	28.54	41.14	46.00	-4.86	QP
5	346.809	50.09	18.79	0.93	0.00	28.55	41.26	46.00	-4.74	QP
6	382.588	52.89	19.00	0.97	0.00	28.70	44.16	46.00	-1.84	QP

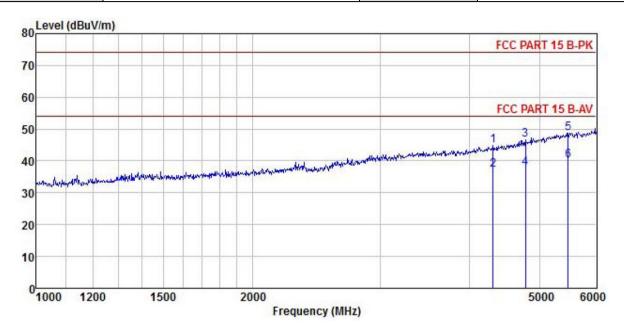
Remark


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	3G Smart Phone	Product Model:	Platinum K55
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line		Remark
	MHz	—dBu∜			<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1	3675.958	49.29	28.92	5.47	2.20	41.63	44.25	74.00	-29.75	Peak
2	3675.958	41.91	28.92	5.47	2.20	41.63	36.87	54.00	-17.13	Average
3	4278.467	49.30	29.76	5.98	2.29	41.87	45.46	74.00	-28.54	Peak
4	4278.467	41.00	29.76	5.98	2.29	41.87	37.16	54.00	-16.84	Average
5	5279.087	50.04	31.83	6.81	2.58	41.91	49.35	74.00	-24.65	Peak
6	5279.087	42.33	31.83	6.81	2.58	41.91	41.64	54.00	-12.36	Average


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	3G Smart Phone	Product Model:	Platinum K55
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /π	₫B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2 3 4 5	4311, 899 4311, 899 4780, 340 4780, 340 5477, 920 5477, 920	48.59 40.83 48.93 40.24 48.79 40.19	29.82 29.82 30.72 30.72 32.23	6.00 6.00 6.37 6.37 6.97	2.43	41.90 41.85 41.85 41.84	46.60	54.00 74.00 54.00 74.00	-27.40 -16.09 -25.20	Average Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.