

Report No.: JYTSZB-R01-2100780

# FCC REPORT

| Applicant:              | SKY PHONE LLC                                       |  |  |
|-------------------------|-----------------------------------------------------|--|--|
| Address of Applicant:   | 1348 Washington Av. Suite 350, Miami Beach, FL33139 |  |  |
| Equipment Under Test (E | EUT)                                                |  |  |
| Product Name:           | SMART PHONE                                         |  |  |
| Model No.:              | Elite P55Max                                        |  |  |
| Trade mark:             | SKY DEVICES                                         |  |  |
| FCC ID:                 | 2ABOSSKYELITEP55MX                                  |  |  |
| Applicable standards:   | FCC CFR Title 47 Part 15 Subpart B                  |  |  |
| Date of sample receipt: | 18 Nov., 2021                                       |  |  |
| Date of Test:           | 19 Nov., to 16 Dec., 2021                           |  |  |
| Date of report issued:  | 13 Mar., 2023                                       |  |  |
| Test Result:            | PASS *                                              |  |  |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



#### Version 2

| Version No. | Date          | Description   |
|-------------|---------------|---------------|
| 00          | 21 Dec., 2021 | Original      |
| 01          | 13 Mar., 2023 | Update page 1 |
|             |               |               |
|             |               |               |
|             |               |               |

Tested by:

Mike.OU Test Engineer

Date: 13 Mar., 2023

Date:

Winner Thang Project Engineer

Reviewed by:

13 Mar., 2023

Project No.: JYTSZE2111063



# 3 Contents

|        |                                    | Page |
|--------|------------------------------------|------|
| 1      | COVER PAGE                         | 1    |
| 2      | VERSION                            | 2    |
| 3      | CONTENTS                           | 3    |
| 4      | TEST SUMMARY                       | -    |
| 4<br>5 | GENERAL INFORMATION                |      |
| 5.     | 1 CLIENT INFORMATION               | 5    |
| 5.     |                                    |      |
| 5.     | 3 TEST MODE AND TEST SAMPLES PLANS | 5    |
| 5.     | .4 Measurement Uncertainty         | 5    |
| 5.     |                                    |      |
| 5.     |                                    |      |
| 5.     |                                    |      |
| 5.     |                                    |      |
| 5.     | .9 LABORATORY FACILITY             |      |
|        | .10 LABORATORY LOCATION            |      |
|        |                                    |      |
| 6      | TEST RESULTS AND MEASUREMENT DATA  | 8    |
| 6.     | 1 CONDUCTED EMISSION               | 8    |
| 6.     | 2 RADIATED EMISSION                | 11   |
| 7      | TEST SETUP PHOTO                   |      |
| 8      | EUT CONSTRUCTIONAL DETAILS         |      |



# 4 Test Summary

| Test Item                                                                                                                                           | Section in CFR 47 | Result |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|--|--|
| Conducted Emission                                                                                                                                  | Part 15.107       | Pass   |  |  |
| Radiated Emission                                                                                                                                   | Part 15.109       | Pass   |  |  |
| Remark:         1. Pass: The EUT complies with the essential requirements in the standard.         2. N/A: The EUT not applicable of the test item. |                   |        |  |  |
| Test Method: ANSI C63.4:2014                                                                                                                        |                   |        |  |  |





# **5** General Information

## **5.1 Client Information**

| Applicant:    | SKY PHONE LLC                                       |
|---------------|-----------------------------------------------------|
| Address:      | 1348 Washington Av. Suite 350, Miami Beach, FL33139 |
| Manufacturer: | SKY PHONE LLC                                       |
| Address:      | 1348 Washington Av. Suite 350, Miami Beach, FL33139 |

## 5.2 General Description of E.U.T.

| Product Name:          | SMART PHONE                                                                   |
|------------------------|-------------------------------------------------------------------------------|
| Model No.:             | Elite P55Max                                                                  |
| Power supply:          | Rechargeable Li-ion Battery DC3.8V, 2000mAh                                   |
| AC adapter:            | Input: AC100-240V, 50/60Hz, 0.3A                                              |
|                        | Output: DC 5.0V, 1000mA                                                       |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |

## 5.3 Test Mode and test samples plans

| Operating mode Detail description                                                                                                                                                                                                                                                                                   |                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| PC mode                                                                                                                                                                                                                                                                                                             | Keep the EUT in Downloading mode(Worst case) |  |
| Charging+Recording mode                                                                                                                                                                                                                                                                                             | Keep the EUT in Charging+Recording mode      |  |
| Charging+Playing mode                                                                                                                                                                                                                                                                                               | Keep the EUT in Charging+Playing mode        |  |
| FM mode                                                                                                                                                                                                                                                                                                             | Keep the EUT in FM receiver mode             |  |
| GPS mode                                                                                                                                                                                                                                                                                                            | Keep the EUT in GPS receiver mode            |  |
| The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered |                                              |  |

continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

## 5.4 Measurement Uncertainty

| Parameter                                                  | Expanded Uncertainty<br>(Confidence of 95%) |
|------------------------------------------------------------|---------------------------------------------|
| Conducted Emission (9kHz ~ 150KHz) for V-AMN               | 3.11 dB                                     |
| Conducted Emission (150kHz ~ 30MHz) for V-AMN              | 2.62 dB                                     |
| Conducted Emission (150kHz ~ 30MHz) for AAN                | 3.54 dB                                     |
| Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC | 3.13 dB                                     |
| Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC | 3.13 dB                                     |
| Radiated Emission (30MHz ~ 1GHz) for 3m SAC                | 4.45 dB                                     |
| Radiated Emission (1GHz ~ 18GHz) for 3m SAC                | 5.34 dB                                     |
| Radiated Emission (18GHz ~ 40GHz) for 3m SAC               | 5.34 dB                                     |
| Radiated Emission (30MHz ~ 1GHz) for 10m SAC               | 4.32 dB                                     |



## 5.5 Description of Support Units

| Manufacturer | Description | Model              | S/N        | FCC ID/DoC |  |
|--------------|-------------|--------------------|------------|------------|--|
| Lenovo       | Laptop      | ThinkPad T14 Gen 1 | SL10Z47277 | DoC        |  |
| HP           | Printer     | HP LaserJet P1007  | VNFP409729 | DoC        |  |

## 5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

### 5.7 Description of Cable Used

| Cable Type             | Description | Length | From | То         |
|------------------------|-------------|--------|------|------------|
| Detached USB Cable     | Shielding   | 1.04m  | EUT  | PC/Adapter |
| Detached headset cable | Unshielded  | 1.2m   | EUT  | Headset    |

## 5.8 Additions to, deviations, or exclusions from the method

## 5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

## 5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com



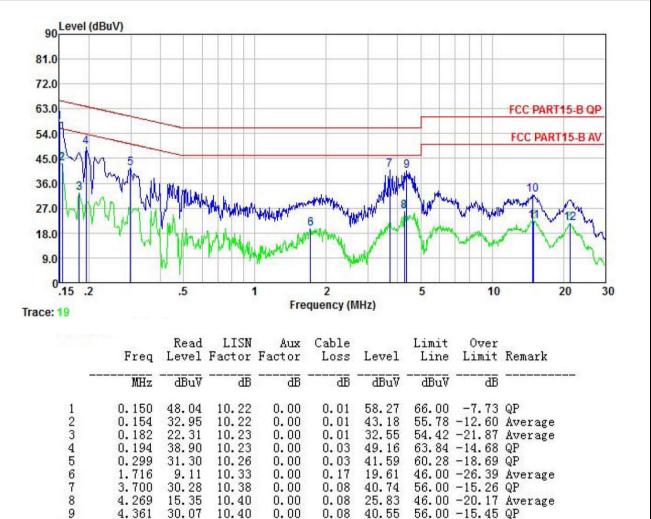
# 5.11 Test Instruments list

| Radiated Emission:         |                 |                  |             |                        |                            |
|----------------------------|-----------------|------------------|-------------|------------------------|----------------------------|
| Test Equipment             | Manufacturer    | Model No.        | Serial No.  | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 3m SAC                     | ETS             | RFD-100          | Q1984       | 04-14-2021             | 04-13-2024                 |
| Loop Antenna               | SCHWARZBECK     | FMZB 1519 B      | 1519B-044   | 03-07-2021             | 03-06-2022                 |
| BiConiLog Antenna          | SCHWARZBECK     | VULB9163         | 9163-1246   | 03-07-2021             | 03-06-2022                 |
| <b>Biconical Antenna</b>   | SCHWARZBECK     | VUBA 9117        | 9117#359    | 06-17-2021             | 06-17-2022                 |
| Horn Antenna               | SCHWARZBECK     | BBHA9120D        | 912D-916    | 03-07-2021             | 03-06-2022                 |
| Broad-Band Horn<br>Antenna | SCHWARZBECK     | BBHA9170         | 1067        | 04-02-2021             | 04-01-2022                 |
| Broad-Band Horn<br>Antenna | SCHWARZBECK     | BBHA9170         | 1068        | 04-02-2021             | 04-01-2022                 |
| EMI Test Receiver          | Rohde & Schwarz | ESRP7            | 101070      | 03-03-2021             | 03-02-2022                 |
| Spectrum analyzer          | Rohde & Schwarz | FSP30            | 101454      | 03-03-2021             | 03-02-2022                 |
| Spectrum analyzer          | Keysight        | N9010B           | MY60240202  | 10-27-2021             | 10-26-2022                 |
| Simulated Station          | Anritsu         | MT8820C          | 6201026545  | 03-03-2021             | 03-02-2022                 |
| Low Pre-amplifier          | SCHWARZBECK     | BBV9743B         | 00305       | 03-07-2021             | 03-06-2022                 |
| High Pre-amplifier         | SKET            | LNPA_0118G-50    | MF280208233 | 03-07-2021             | 03-06-2022                 |
| Cable                      | Qualwave        | JYT3M-1G-NN-8M   | JYT3M-1     | 03-07-2021             | 03-06-2022                 |
| Cable                      | Qualwave        | JYT3M-18G-NN-8M  | JYT3M-2     | 03-07-2021             | 03-06-2022                 |
| Cable                      | Qualwave        | JYT3M-1G-BB-5M   | JYT3M-3     | 03-07-2021             | 03-06-2022                 |
| Cable                      | Bost            | JYT3M-40G-SS-8M  | JYT3M-4     | 04-02-2021             | 04-01-2022                 |
| EMI Test Software          | Tonscend        | TS+              |             | Version:3.0.0.1        |                            |
| 10m SAC                    | ETS             | RFSD-100-F/A     | Q2005       | 04-28-2021             | 04-27-2024                 |
| BiConiLog Antenna          | SCHWARZBECK     | VULB 9168        | 1249        | 04-02-2021             | 04-01-2022                 |
| BiConiLog Antenna          | SCHWARZBECK     | VULB 9168        | 1250        | 04-02-2021             | 04-01-2022                 |
| EMI Test Receiver          | R&S             | ESR 3            | 102800      | 04-08-2021             | 04-07-2022                 |
| EMI Test Receiver          | R&S             | ESR 3            | 102802      | 04-08-2021             | 04-07-2022                 |
| Low Pre-amplifier          | Bost            | LNA 0920N        | 2016        | 04-06-2021             | 04-05-2022                 |
| Low Pre-amplifier          | Bost            | LNA 0920N        | 2019        | 04-06-2021             | 04-05-2022                 |
| Cable                      | Bost            | JYT10M-1G-NN-10M | JYT10M-1    | 04-02-2021             | 04-01-2022                 |
| Cable                      | Bost            | JYT10M-1G-NN-10M | JYT10M-2    | 04-02-2021             | 04-01-2022                 |
| Test Software              | R&S             | EMC32            | ١           | /ersion: 10.50.4       | 0                          |

| <b>Conducted Emission:</b> |                 |                |            |                  |               |
|----------------------------|-----------------|----------------|------------|------------------|---------------|
| Test Equipment             | Manufacturer    | Model No.      | Serial No. | Cal. Date        | Cal. Due date |
|                            | manufacturor    |                |            | (mm-dd-yy)       | (mm-dd-yy)    |
| EMI Test Receiver          | Rohde & Schwarz | ESCI 3         | 101189     | 03-03-2021       | 03-02-2022    |
| LISN                       | Rohde & Schwarz | ENV432         | 101602     | 04-06-2021       | 04-05-2022    |
| LISN                       | Rohde & Schwarz | ESH3-Z5        | 843862/010 | 06-18-2020       | 06-17-2022    |
| RF Switch                  | TOP PRECISION   | RSU0301        | N/A        | 03-03-2021       | 03-02-2022    |
| Cable                      | Bost            | JYTCE-1G-NN-2M | JYTCE-1    | 03-03-2021       | 03-02-2022    |
| Cable                      | Bost            | JYTCE-1G-BN-3M | JYTCE-2    | 03-03-2021       | 03-02-2022    |
| EMI Test Software          | AUDIX           | E3             | V          | ersion: 6.110919 | b             |



# 6 Test results and Measurement Data


## 6.1 Conducted Emission

| Test Requirement:     | FCC Part 15 B Section 15.107                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |                                                                                                                                              |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                              |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |                                                                                                                                              |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                              |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                                                       | Limit                                                                                                                                                                                                            | (dBµV)                                                                                                                                       |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak                                                                                                                                                                                                       | Average                                                                                                                                      |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                              | 66 to 56*                                                                                                                                                                                                        | 56 to 46*                                                                                                                                    |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                 | 56                                                                                                                                                                                                               | 46                                                                                                                                           |
|                       | 0.5-30                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                               | 50                                                                                                                                           |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                        | of the frequency.                                                                                                                                                                                                |                                                                                                                                              |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                              |
|                       | Test table/Insulation plane<br>Remark:<br>E.U.T: Equipment Under Test<br>LISN: Line Impedence Stabilization Network<br>Test table height=0.8m                                                                                                                                                                                                                                         | EMI<br>Receiver                                                                                                                                                                                                  |                                                                                                                                              |
| Test procedure        | <ol> <li>The E.U.T and simulators are<br/>impedance stabilization netw<br/>coupling impedance for the r</li> <li>The peripheral devices are a<br/>LISN that provides a 500hm/<br/>termination. (Please refers to<br/>photographs).</li> <li>Both sides of A.C. line are<br/>interference. In order to fin<br/>positions of equipment and<br/>according to ANSI C63.4(late)</li> </ol> | vork(L.I.S.N.). The prov<br>neasuring equipment.<br>Ilso connected to the m<br>'50uH coupling impeda<br>to the block diagram of the<br>checked for maximum<br>d the maximum emission<br>all of the interface cal | vide a 50ohm/50uH<br>nain power through a<br>unce with 50ohm<br>the test setup and<br>conducted<br>ion, the relative<br>bles must be changed |
| Test Instruments:     | Refer to section 5.11 for details                                                                                                                                                                                                                                                                                                                                                     | i                                                                                                                                                                                                                |                                                                                                                                              |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                              |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                              |



#### Measurement data:

| Product name:   | SMART PHONE      | Product model: | Elite P55Max            |
|-----------------|------------------|----------------|-------------------------|
| Test by:        | Mike             | Test mode:     | PC mode                 |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                    |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp.: 22.5℃ Humi.: 55% |



31.72

22.37

21.46

0.14

0.14

0.17

60.00 -28.28 QP

50.00 -27.63 Average

50.00 -28.54 Average

Notes:

10

11 12

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

10.76

10.77

10.93

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

0.00

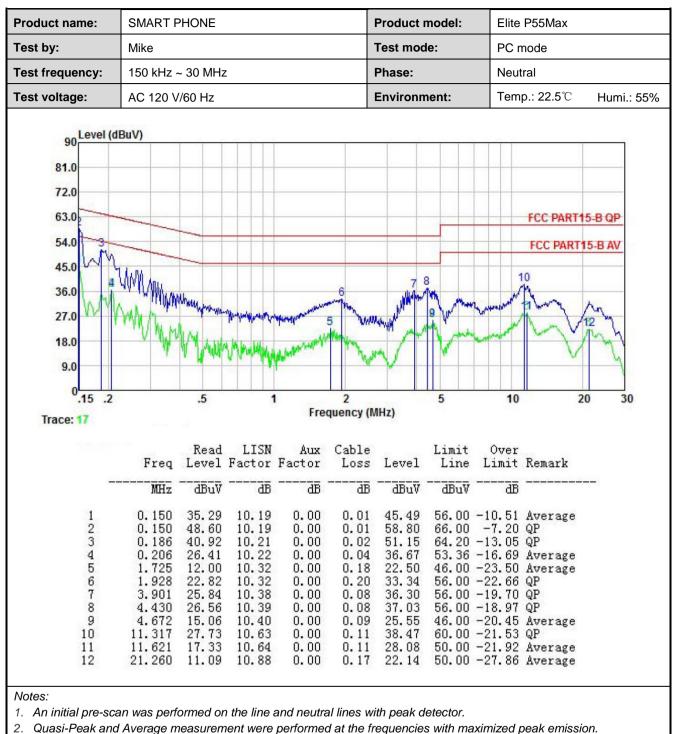
0.00

0.00

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

20.82

11.46


10.36

14.828

14.986

21.260





3. Final Level =Receiver Read level + LISN Factor + Cable Loss.





# 6.2 Radiated Emission

| Test Requirement:     | FCC Part 15 B Se                                                  | ection 15.10                                           | 9                       |                                            |                                                        |                                                                                                           |  |  |
|-----------------------|-------------------------------------------------------------------|--------------------------------------------------------|-------------------------|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Test Frequency Range: | 30MHz to 6000MH                                                   | Hz                                                     |                         |                                            |                                                        |                                                                                                           |  |  |
| Test site:            | Measurement Dis                                                   | tance: 3m c                                            | or 10                   | m (Semi-An                                 | echoic Cha                                             | amber)                                                                                                    |  |  |
| Receiver setup:       | Frequency                                                         | Detecto                                                | or                      | RBW                                        | VBW                                                    | Remark                                                                                                    |  |  |
|                       | 30MHz-1GHz                                                        | Quasi-pe                                               | ak                      | 120kHz                                     | 300kHz                                                 | Quasi-peak Value                                                                                          |  |  |
|                       | Above 1GHz                                                        | Peak                                                   |                         | 1MHz                                       | 3MHz                                                   | Peak Value                                                                                                |  |  |
|                       | Above IGHZ                                                        | RMS                                                    |                         | 1MHz                                       | 3MHz                                                   | Average Value                                                                                             |  |  |
| Limit:                | Frequenc                                                          | y                                                      | Lim                     | it (dBuV/m @                               | @10m)                                                  | Remark                                                                                                    |  |  |
|                       | 30MHz-88N                                                         | 1Hz                                                    |                         | 30.0                                       |                                                        | Quasi-peak Value                                                                                          |  |  |
|                       | 88MHz-216N                                                        | MHz                                                    |                         | 33.5                                       |                                                        | Quasi-peak Value                                                                                          |  |  |
|                       | 216MHz-960                                                        |                                                        |                         | 36.0                                       |                                                        | Quasi-peak Value                                                                                          |  |  |
|                       | 960MHz-1G                                                         |                                                        |                         | 44.0                                       |                                                        | Quasi-peak Value                                                                                          |  |  |
|                       | Frequenc                                                          | у                                                      | Lim                     | nit (dBuV/m                                | @3m)                                                   | Remark                                                                                                    |  |  |
|                       | Above 1G                                                          | 47                                                     |                         | 54.0                                       |                                                        | Average Value                                                                                             |  |  |
|                       | 7,5070 101                                                        | 12                                                     |                         | 74.0                                       |                                                        | Peak Value                                                                                                |  |  |
|                       | EUT<br>Turn<br>Table<br>Ground Plane<br>Above 1GHz                | 4m<br>- 1                                              |                         |                                            | Antenna To<br>Search<br>Antenna<br>RF Test<br>Receiver | wer                                                                                                       |  |  |
|                       |                                                                   |                                                        | 3m                      | Pre                                        | Antenna Tower                                          |                                                                                                           |  |  |
| Test Procedure:       | ground at a 1<br>1GHz). The t<br>the highest ra<br>2. The EUT was | 0 meter cha<br>able was ro<br>adiation.<br>s set 10 me | ambe<br>otatec<br>ters( | er (below 1G<br>d 360 degree<br>below 1GHz | GHz)or 3 m<br>es to detern                             | 0.8 meters above the<br>eter chamber(above<br>mine the position of<br>ers(above 1GHz)<br>h was mounted on |  |  |

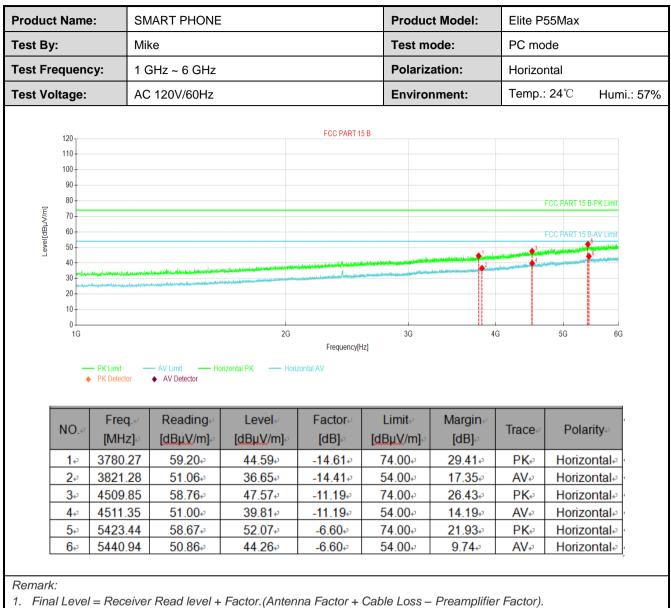
Project No.: JYTSZE2111063



|                   | the top of a variable-height antenna tower.                                                                                                                                                                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified<br>Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                         |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.11 for details                                                                                                                                                                                                                                                                                                                      |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                 |
| Remark:           | All of the observed value above 6GHz ware the niose floor , which were no recorded                                                                                                                                                                                                                                                                     |



#### Measurement Data:


| roduct Name:                                 | SMART PHON                 | E                    |                 | Proc                                                                                                            | duct Model:        | Elite P         | 55Max                                                              |
|----------------------------------------------|----------------------------|----------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-----------------|--------------------------------------------------------------------|
| est By:                                      | Mike                       |                      |                 | Test                                                                                                            | mode:              | PC mo           | de                                                                 |
| est Frequency:                               | 30 MHz ~ 1 GH              | z                    |                 | Pola                                                                                                            | rization:          | Horizor         | ntal & Vertical                                                    |
| est Voltage:                                 | AC 120V/60Hz               |                      |                 | Envi                                                                                                            | ironment:          | Temp.:          | 24℃ Humi.: 57                                                      |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
|                                              |                            |                      | Full Spec       | trum                                                                                                            |                    |                 | 1                                                                  |
| 45 T                                         |                            |                      |                 |                                                                                                                 |                    | X PART 15 C     | lass B 10m                                                         |
| 40-                                          |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
| 20                                           |                            |                      |                 |                                                                                                                 |                    |                 | 0 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 |
| ≥ <sup>30</sup>                              |                            |                      |                 |                                                                                                                 |                    |                 | .76                                                                |
| Γevel in dBμ//                               |                            |                      | *               |                                                                                                                 |                    |                 |                                                                    |
| ·트 20 +                                      | ······                     | ;<br>* *             |                 | *                                                                                                               |                    |                 |                                                                    |
| Lev Lev                                      |                            |                      |                 |                                                                                                                 |                    | I The second    |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 | h. Aldalan         |                 |                                                                    |
| 10+                                          | 1. Marshell aller a        |                      |                 |                                                                                                                 | ALC: NOT THE OWNER | 11              |                                                                    |
|                                              |                            |                      |                 | A AND A A |                    |                 |                                                                    |
| o+                                           |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
| 30M                                          | 50 60                      | 80 100N              | И               | 200                                                                                                             | 300 40             | 0 500           | 800 1G                                                             |
|                                              |                            |                      | Freque          | ncy in Hz                                                                                                       |                    |                 |                                                                    |
| 1                                            |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
| Frequency                                    |                            | Limit                | Margin J        | Height∔                                                                                                         | Pole               | Azimuth↓        | Corr.↓                                                             |
| (MHz)∉<br>■ 65.987                           | (dB ዞ V/m)∂<br>000∉ 20.74∂ | (dB ₩ V/m)<br>30.00€ | (dĔ)∂<br>9.26₽  | (cm)⊬<br>100.0⊮                                                                                                 | <b>V</b> ⇔         | (deg)⊮<br>73.0⊮ | (dB/m)∂<br>-17.5₽                                                  |
| <ul> <li>69.479</li> </ul>                   |                            | 30.00₊⊃              | 11.84           | 100.0∉<br>100.0∉                                                                                                |                    | <b>152.0</b> ∉  | -18.2                                                              |
| 77.918                                       | 000∉ 18.56₽                | 30.00⊧∂              | 11.44↩          | <b>100.0</b> ∉                                                                                                  |                    | 102.0           | -19.7**                                                            |
| 162.017                                      |                            | 33.50∉<br>22.50 ±    | 10.53           | 100.0∉<br>100.0                                                                                                 | V.₽                | 94.0∢           | -15.6+*                                                            |
| <ul> <li>185.976</li> <li>959.939</li> </ul> |                            | 33.50↔<br>36.00↔     | 13.31∉<br>8.83∉ | 100.0↩<br>100.0↩                                                                                                |                    | 60.0¢<br>0.0¢   | -17.6⊷<br>-0.6⊷                                                    |
|                                              | 21111                      | 50.00                | 0.004           | 100.04                                                                                                          | •••                | 0.04            |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
|                                              |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |
| emark:                                       |                            |                      |                 |                                                                                                                 |                    |                 |                                                                    |



#### Above 1GHz:

| Fest Frequency:     1 GHz ~ 6 GHz     Polarization:     Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | t Name                                             | e:                                                                                                                                             | SMART                                                                                                                                            | PHONE                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | Product                                                              | t Model:                                                                | Elite P5                           | 55Max                                                   |                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------|----------------------------------------------|--|
| Test Voltage:AC 120V/60HzEnvironment:Temp.: 24°CHumi.: 5Image: Strain S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test By: |                                                    |                                                                                                                                                | Mike                                                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | Test mo                                                              | Test mode:                                                              |                                    | PC mode                                                 |                                              |  |
| PCCPART 15 B $PCC PART 15 B$ $PCC PART 15 B$ $PCC PART 15 B EVPC Limit PCC PART 15 EVPC Limit PCC PART PC PART PC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | est Fre  | equen                                              | cy:                                                                                                                                            | 1 GHz ~                                                                                                                                          | 6 GHz                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | Polariza                                                             | Polarization:                                                           |                                    | Vertical                                                |                                              |  |
| $\frac{1}{P_{Q}} \frac{1}{P_{Q}} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | est Vo   | Itage:                                             |                                                                                                                                                | AC 120V                                                                                                                                          | //60Hz                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | Environ                                                              | ment:                                                                   | Temp.:                             | <b>24</b> °C                                            | Humi.: 57                                    |  |
| $\frac{1}{100} \frac{1}{100} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOO DADTA                                                                                                                          | 5 D                                                                  |                                                                         |                                    |                                                         |                                              |  |
| $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FUU PART 1                                                                                                                         | 9 B                                                                  |                                                                         |                                    |                                                         |                                              |  |
| $\begin{split} & \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      |                                                                         |                                    |                                                         |                                              |  |
| $ \frac{1}{1^{o}} = \frac{1}{1^{o}} + \frac{1}{1^{o}} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      |                                                                         |                                    |                                                         |                                              |  |
| $\frac{1}{16} + \frac{1}{16} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [E,      |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      |                                                                         |                                    | FCC PART 15 B                                           | -PK Limit                                    |  |
| $\frac{1}{9} \underbrace{1}_{e^{-1}} \underbrace{1}_{$ | [dBµV    |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      |                                                                         |                                    | FCC PART 15 B                                           | -AV Limit                                    |  |
| $\frac{1}{16} + \frac{1}{16} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level    |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      | <b>▲</b> <sup>2</sup>                                                   | in the second second               |                                                         | 1992                                         |  |
| $\frac{1}{16} + \frac{1}{26} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                    | an a                                                                                                       | ويعد أيدار ومعالمة المعالم المعالم                                                                                                               | panalis/approxidationshill                                                                                 | Parture 1. Strange in Acard March 1900 Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    | a an                             | lahinnininin san anan hasanin an islam                                  |                                    |                                                         |                                              |  |
| $\frac{1}{16} \qquad 23 \qquad 36 \qquad 46 \qquad 56 \qquad 66$ $Frequency[Hz]$ $\xrightarrow{PK \ Limit} \qquad AV \ Limit} \qquad Vertical \ PK \qquad Vertical \ AV$ $\xrightarrow{PK \ Detector} \qquad AV \ Detector$ $\frac{1}{2^{2}} \qquad AV \ Detector$ $\frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | MA.640                                             | and the state of the                                | anan an                                                                                                         | مايين الرومين ويري شير ويدرور بالدوانين .<br>مايين الرومين ويري مايين ويري ويري ويري ويري ويري ويري ويري و | a hier hier and the print for print of the p |                                                                                                                                    |                                                                      |                                                                         |                                    |                                                         |                                              |  |
| $\frac{16}{16} \qquad 26 \qquad 36 \qquad 46 \qquad 56 \qquad 66$ $\frac{16}{16} \qquad 16 \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                    |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      |                                                                         |                                    |                                                         |                                              |  |
| $\label{eq:requery[Hz]} \hline PK \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 10                                                 |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      |                                                                         |                                    |                                                         |                                              |  |
| PK Detector       AV Detector         NO.       Freq.       Reading.       Level.       Factor.       Limit.       Margin.       Trace.       Polarity.         1.0       3493.74       52.10.0       36.69.0       -15.41.0       54.00.0       17.31.0       AV.0       Vertical.0         2.0       3517.75       60.20.0       44.81.0       -15.39.0       74.00.0       29.19.0       PK.0       Vertical.0         3.0       4282.82       59.15.0       46.76.0       -12.39.0       74.00.0       27.24.0       PK.0       Vertical.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 0                                                  |                                                                                                                                                |                                                                                                                                                  |                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    | 36                                                                   | 4                                                                       | lG.                                | 56                                                      | 66                                           |  |
| NO.         [MHz]         [dBµV/m]         [dBµV/m]         [dB]         [dBµV/m]         [dB]         [dBµV/m]         [dB]         [dBµV/m]         [dB]         Irace         Polarity           1         3493.74         52.10         36.69         -15.41         54.00         17.31         AV         Vertical           2         3517.75         60.20         44.81         -15.39         74.00         29.19         PK         Vertical           3         4282.82         59.15         46.76         -12.39         74.00         27.24         PK         Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0                                                  |                                                                                                                                                |                                                                                                                                                  |                                                                                                            | 2G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frequency[ł                                                                                                                        |                                                                      | 4                                                                       | IG                                 | 5G                                                      | 6G                                           |  |
| NO.#         [MHz]#         [dBµV/m]#         [dBµV/m]#         [dB]#         [dBµV/m]#         [dB]#         Irace#         Polarity#           1#         3493.74         52.10#         36.69#         -15.41#         54.00#         17.31#         AV#         Vertical#           2#         3517.75         60.20#         44.81#         -15.39#         74.00#         29.19#         PK#         Vertical#           3#         4282.82         59.15#         46.76#         -12.39#         74.00#         27.24#         PK#         Vertical#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0                                                  |                                                                                                                                                |                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                      | 4                                                                       | lG                                 | 5G                                                      | 6G                                           |  |
| 2.e         3517.75         60.20.e         44.81.e         -15.39.e         74.00.e         29.19.e         PK.e         Vertical.e           3.e         4282.82         59.15.e         46.76.e         -12.39.e         74.00.e         27.24.e         PK.e         Vertical.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0                                                  | PK Detector                                                                                                                                    | ♦ AV De                                                                                                                                          | etector                                                                                                    | rtical PK — Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AV                                                                                                                                 | łz]                                                                  |                                                                         | G                                  | 5G                                                      | 6G                                           |  |
| 3e 4282.82 59.15e 46.76e -12.39e 74.00e 27.24e PKe Verticale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0<br>1G                                            | PK Detector                                                                                                                                    | AV De     Rea                                                                                                                                    | etector<br>ading⊬                                                                                          | rtical PK — Vertical<br>Level+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AV<br>Factor₊                                                                                                                      | tz]<br>Limit⇔                                                        | Margin∉                                                                 |                                    |                                                         |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0_1G<br>1G<br>NO.43                                | Freq.<br>[MHz]                                                                                                                                 | AV De     Rea     [dB]                                                                                                                           | ading⊮<br>uV/m]₽                                                                                           | rtical PK — Vertical<br>Levele<br>[dBµV/m]+?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AV<br>Factor⊮<br>[dB]₽                                                                                                             | Limit⊬<br>[dBµV/m]⊮                                                  | Margin∉<br>[dB]₽                                                        | Trace                              | Polar                                                   | ity⇔                                         |  |
| 4 4334.83 51.18 39.10 -12.08 54.00 14.90 AV Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        | 0<br>1G<br>NO.≁<br>1₽                              | Freq.<br>[MHz]<br>3493.7                                                                                                                       | <ul> <li>AV De</li> <li>Rea</li> <li>[dB]</li> <li>4 52</li> </ul>                                                                               | ading⊮<br>uV/m]∞<br>2.10₽                                                                                  | rtical PK — Vertical<br>Level↔<br>[dBµV/m],₂<br>36.69↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AV<br>Factor⊮<br>[dB]⊮<br>-15.41₽                                                                                                  | Limit.<br>[dBµV/m].<br>54.00.                                        | Margin.∉<br>[dB]∉<br>17.31⊷                                             | Trace.<br>AV⊷                      | Polar                                                   | ity₂<br>cal₽                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        | 0<br>1G<br>NO.≁<br>1₽<br>2₽                        | <ul> <li>PK Detector</li> <li>Freq.</li> <li>[MHz]</li> <li>3493.7</li> <li>3517.7</li> </ul>                                                  | AV De     Rea     [dB]     4     52     60                                                                                                       | ading<br>uV/m]<br>2.10<br>0.20                                                                             | rtical PK — Vertical<br>Level↔<br>[dBµV/m],○<br>36.69↔<br>44.81↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AV<br>Factor⊮<br>[dB]₽<br>-15.41₽<br>-15.39₽                                                                                       | Limit.<br>[dBµV/m].<br>54.00.<br>74.00.                              | Margin.∉<br>[dB].∘<br>17.31.₊<br>29.19.₂                                | Trace.<br>AV.<br>PK.               | Polar<br>Vertic<br>Vertic                               | itye<br>cale<br>cale                         |  |
| 5 4829.38 50.70 40.78 -9.92 54.00 13.22 AV Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0<br>1G<br>NO.↔<br>1↔<br>2↔<br>3↔                  | <ul> <li>PK Detector</li> <li>Freq.</li> <li>[MHz]</li> <li>3493.7</li> <li>3517.7</li> <li>4282.8</li> </ul>                                  | AV De     Rea     [dB]     4     52     5     60     2     59                                                                                    | ading                                                                                                      | rtical PK → Vertical<br>Level↔<br>[dBµV/m]↔<br>36.69↔<br>44.81↔<br>46.76↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AV<br>Factor<br>[dB]<br>-15.41<br>-15.39<br>-12.39                                                                                 | Limite<br>[dBµV/m]e<br>54.00e<br>74.00e<br>74.00e                    | Margin.∉<br>[dB].∮<br>17.31.¢<br>29.19.¢<br>27.24.¢                     | Trace<br>AV↔<br>PK↔<br>PK↔         | Polar<br>Vertio<br>Vertio                               | itye<br>cale<br>cale<br>cale                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0<br>16<br>NO.≁<br>1≁<br>2↔<br>3↔<br>4↔            | <ul> <li>PK Detector</li> <li>Freq.</li> <li>[MHz]</li> <li>3493.7</li> <li>3517.7</li> <li>4282.8</li> <li>4334.8</li> </ul>                  | <ul> <li>AV De</li> <li>Rea</li> <li>[dB<sub>1</sub></li> <li>4</li> <li>52</li> <li>60</li> <li>2</li> <li>59</li> <li>3</li> <li>51</li> </ul> | ading<br>u//m]<br>2.10<br>2.20<br>0.20<br>0.15<br>1.18<br>4.3                                              | rtical PK — Vertical<br>Level↔<br>[dBµV/m]↔<br>36.69↔<br>44.81↔<br>46.76↔<br>39.10↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AV<br>Factor<br>[dB]. <sup>2</sup><br>-15.41. <sup>2</sup><br>-15.39. <sup>2</sup><br>-12.39. <sup>2</sup><br>-12.08. <sup>2</sup> | Limit<br>[dBµV/m]<br>54.00<br>74.00<br>54.00<br>54.00                | Margin.↓<br>[dB].↓<br>17.31.↓<br>29.19.↓<br>27.24.↓<br>14.90.↓          | Trace<br>AV<br>PK<br>PK<br>AV      | Polar<br>Vertic<br>Vertic<br>Vertic<br>Vertic           | itye<br>Cale<br>Cale<br>Cale<br>Cale         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0                                                  | PK Detector                                                                                                                                    | ♦ AV De                                                                                                                                          | etector                                                                                                    | rtical PK — Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AV                                                                                                                                 | łz]                                                                  |                                                                         | G                                  | 5G                                                      | 6                                            |  |
| 6e 4907.39 58.08e 48.68e -9.40e 74.00e 25.32e PKe Verticale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0<br>16<br>NO.↔<br>1.↔<br>2.↔<br>3.↔<br>4.↔<br>5.↔ | <ul> <li>PK Detector</li> <li>Freq</li> <li>[MHz]</li> <li>3493.7 -</li> <li>3517.7</li> <li>4282.8</li> <li>4334.8</li> <li>4829.3</li> </ul> | <ul> <li>AV De</li> <li>Rea</li> <li>[dB]</li> <li>4 52</li> <li>5 60</li> <li>2 59</li> <li>3 51</li> <li>8 50</li> </ul>                       | ading<br>µV/m]<br>2.10<br>0.20<br>0.15<br>1.18<br>0.70                                                     | Level+<br>[dBµV/m]+<br>36.69+<br>44.81+<br>46.76+<br>39.10+<br>40.78+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AV<br>Factor                                                                                                                       | Limit<br>[dBµV/m]•<br>54.00•<br>74.00•<br>54.00•<br>54.00•<br>54.00• | Margin (dB))<br>[dB])<br>17.31+<br>29.19+<br>27.24+<br>14.90+<br>13.22+ | Trace↔<br>AV↔<br>PK↔<br>AV↔<br>AV↔ | Polar<br>Vertic<br>Vertic<br>Vertic<br>Vertic<br>Vertic | ity#<br>cal#<br>cal#<br>cal#<br>cal#<br>cal# |  |





2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.