

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2300771

FCC RF Test Report

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL33139

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: Elite G63

Trade Mark: SKY DEVICES

FCC ID: 2ABOSSKYELITEG63

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 07 Jun., 2023

Date of Test: 08 Jun., to 03 Jul., 2023

Date of Report Issued: 04 Jul., 2023

Test Result: PASS

Tested by: Date: 04 Jul., 2023

Reviewed by: 7 Date: 04 Jul., 2023

Approved by: _____ Date: ____ 04 Jul., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	04 Jul., 2023	Original

2 Contents

			Page
С	over Pa	geg	1
1	Vers	sion	2
2	Con	itents	3
3		eral Information	
_	3.1	Client Information	
	3.2	General Description of E.U.T.	
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	
	3.5	Measurement Uncertainty	
	3.6	Additions to, Deviations, or Exclusions from the Method	
	3.7	Laboratory Facility	
	3.8	Laboratory Location	
	3.9	Test Instruments List	
4	wea	surement Setup and Procedure	
	4.1	Test Channel	7
	4.2	Test Setup	7
	4.3	Test Procedure	9
5	Tes	t Results	10
	5.1	Summary	10
	5.1.	1 Clause and Data Summary	10
	5.1.2	2 Test Limit	11
	5.2	Antenna requirement	12
	5.3	AC Power Line Conducted Emission	
	5.4	Emissions in Restricted Frequency Bands	15
	5.5	Emissions in Non-restricted Frequency Bands	

3 General Information

3.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL33139

3.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	Elite G63
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	-0.20dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.80V, 3000mAh
AC Adapter:	Input: AC100-220V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2300771

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Remark:

- 1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.
- 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

Operating Environment:		
Temperature:	15℃ ~ 35℃	
Humidity:	20 % ~ 75 % RH	
Atmospheric Pressure:	1008 mbar	

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))			
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB			
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB			
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB			
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB			
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	3.7 dB			

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

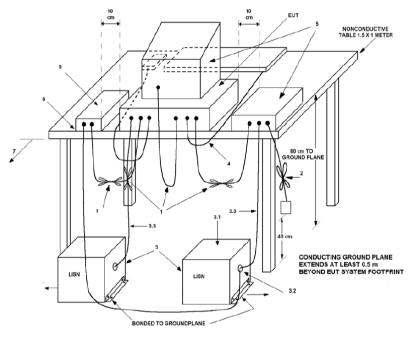
3.9 Test Instruments List

Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	02-09-2023	02-08-2024
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-09-2023	02-08-2024
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-09-2023	02-08-2024
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-10-2023	01-09-2024
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-10-2023	01-09-2024
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	01-11-2023	01-10-2024
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	01-11-2023	01-10-2024
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-18-2023	01-17-2024
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-18-2023	01-17-2024
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-18-2023	01-17-2024
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	01-10-2023	01-09-2024
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	01-11-2023	01-10-2024
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-22-2023	02-21-2024
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A
Test Software	AUDIX	E3	V	ersion: 6.11091	9b

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0	

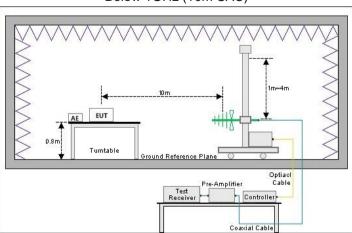
4 Measurement Setup and Procedure

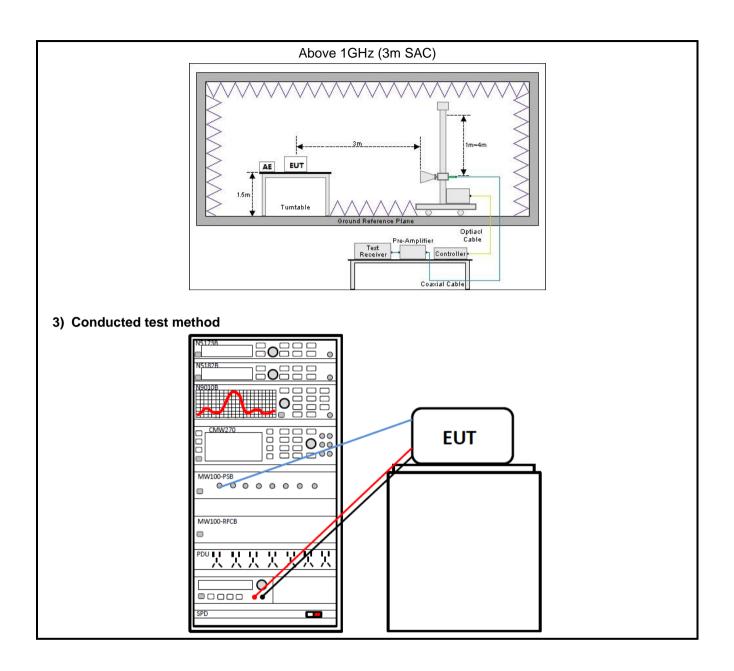

4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup


1) Conducted emission measurement:


Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:

Below 1GHz (10m SAC)

4.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz: 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix – BLE 1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix – BLE 1M PHY	Pass
Power Spectral Density	15.247 (e)	Appendix – BLE 1M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BLE 1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items			Limit				
		Frequency		Limit (d	iΒμV)		
		(MHz)	Quas	i-Peak	Average		
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1		
Emission		0.5 – 5	ŧ	56	46		
		5 – 30		60	50		
		Note 1: The limit level in dBµV Note 2: The more stringent limit			m of frequency.		
Conducted Output Power		systems using digital m l 5725-5850 MHz bands		the 902-928	MHz, 2400-2483.5 MH	łz,	
6dB Emission Bandwidth	The	e minimum 6 dB bandwid	lth shall be a	it least 500 k	Hz.		
99% Occupied Bandwidth	N/A						
Power Spectral Density	inte	digitally modulated syst ntional radiator to the ar d during any time interva	ntenna shall i	not be greate	er than 8 dBm in any 3		
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply						
	whi	ts specified in §15.209(a	(b)(3) of this IB instead of I) is not requi ands, as defi	veraging ove section, the 20 dB. Atter ired. In addit ined in §15.2	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also comp	icted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted b	(b)(3) of this IB instead of I) is not requi ands, as defi	veraging over section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composa) (see §15.205(c)).	icted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission lies.	(b)(3) of this IB instead of i) is not requi ands, as defi mits specifie	veraging over section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also comp	icted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission life	(b)(3) of this IB instead of I) is not requi ands, as defi mits specifie	veraging over section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composa) (see §15.205(c)).	icted nder eral s	
Emissions in Restricted	whi	ts specified in §15.209(a ch fall in the restricted ba the radiated emission li Frequency (MHz)	(b)(3) of this IB instead of i) is not requi ands, as defi mits specifie Limit (d	veraging over section, the 20 dB. Atter ired. In addit ined in §15.209 ed in §15.209 BµV/m) @ 10m	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composite (see §15.205(c)).	icted nder eral s	
Emissions in Restricted Frequency Bands	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line frequency (MHz) 30 – 88 88 – 216 216 – 960	(b)(3) of this IB instead of a) is not requiands, as definite specifie Limit (d @ 3m 40.0 43.5 46.0	veraging over section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209 BµV/m) @ 10m 30.0	er a time interval, as attenuation required unuation below the generion, radiated emission (05(a), must also comple(a) (see §15.205(c)). Detector Quasi-peak	icted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission life (MHz) 30 – 88 88 – 216	(b)(3) of this IB instead of a) is not requiands, as definite specifie Limit (d @ 3m 40.0 43.5	veraging over section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209 BµV/m) @ 10m 30.0 33.5	er a time interval, as attenuation required unuation below the generion, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	icted nder eral s	
	which	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line frequency (MHz) 30 – 88 88 – 216 216 – 960	(b)(3) of this IB instead of ID instead of ID is not required ands, as definited by the ID instead of ID instead o	veraging over section, the 20 dB. Atterired. In additioned in §15.209 db. Section §15.	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s	
Frequency Bands	which	ts specified in §15.209(a ch fall in the restricted bath the radiated emission limits and the radia	(b)(3) of this IB instead of ID instead of ID is not required ands, as definited by the ID instead of ID instead o	veraging over section, the 20 dB. Atterired. In additioned in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s	
Frequency Bands Emissions in Non-restricted	which	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	(b)(3) of this IB instead of ID instead of ID is not required ands, as definited by the ID instead of ID instead o	veraging over section, the 20 dB. Atterired. In additioned in §15.209 d in §15.209 m 30.0 m frequencies.	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s	
Frequency Bands Emissions in Non-restricted	which	ts specified in §15.209(a ch fall in the restricted bath the radiated emission limits and the radia	(b)(3) of this IB instead of I	veraging over section, the 20 dB. Atterired. In additioned in §15.209 dd	er a time interval, as attenuation required unuation below the generion, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	icted nder eral s	

Report No.: JYTSZ-R12-2300771

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

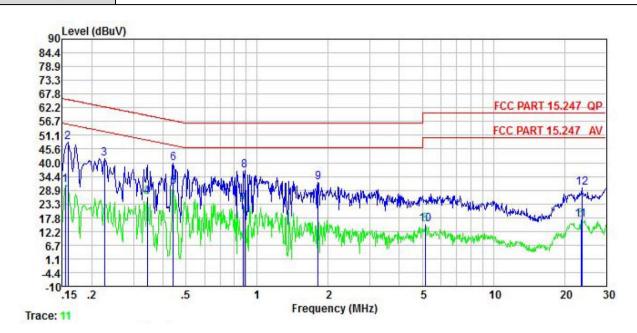
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

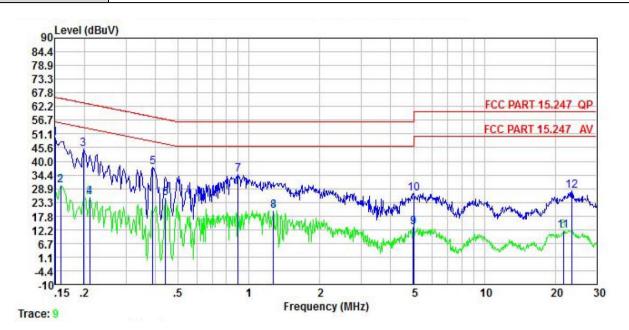
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.20 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

Product name:	mobile phone	Product model:	Elite G63
Test by:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor		Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u>	<u>dB</u>	dB	dBu∇	dBu∀	<u>dB</u>	
1 2	0.154 0.158	20.42 37.77	0.04 0.04	10.50 10.50	0.01 0.01	30.97 48.32		-24.81 -17.24	Average OP
3	0.226	31.12	0.05	10.50	0.02	41.69	62.61	-20.92	QP
4	0.343 0.442	15.59 19.68	0.06 0.05	10.50	0.02 0.03	26.17 30.26			Average Average
6	0.442	29.38	0.05	10.50	0.03	39.96	57.02	-17.06	QP
1 2 3 4 5 6 7 8 9	0.876 0.885	12.65 26.20		10.50 10.50	0.04 0.04	23.26		-22.74 -19.19	Average
	1.810	21.15	0.08	10.50	0.19	31.92	56.00	-24.08	QP
10 11	5.166 23.511	4.36 5.74	0.12 0.37	10.50 10.50	0.09	15.07 16.78			Average Average
12	23.636	18.98	0.37	10.50	0.17	30.02		-29.98	

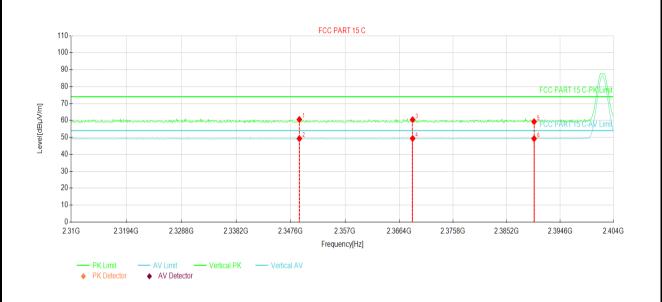
Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	mobile phone	Product model:	Elite G63
Test by:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

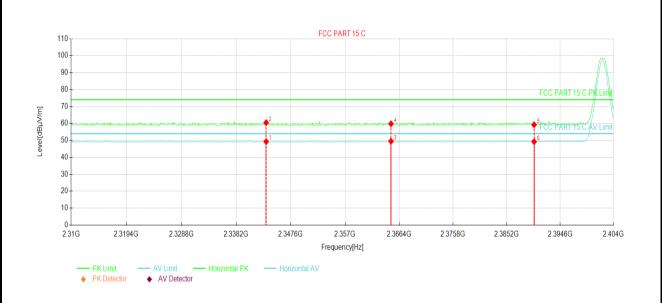
	Freq	Read Level	LISN Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>dB</u>		dBu₹	dBu√	<u>dB</u>	
1	0.150 0.158	38.85 19.49	0.06 0.06	10.50 10.50	0.01 0.01	49.42 30.06		-16.58	QP Average
3	0.198	34.34	0.05	10.50	0.04	44.93	63.71	-18.78	QP
4 5	0.211 0.389	14.89 26.84	0.05 0.04	10.50 10.50	0.03 0.04		58.08	-20.66	
1 2 3 4 5 6 7 8 9	0.442 0.899	14.48 23.93	0.04 0.06	10.50	0.03 0.04	25.05 34.53		-21.97 -21.47	Average QP
8 9	1.269 4.978	9.18 2.46	0.06	10.50	0.10	19.84 13.16			Average Average
10	5.031	16.17	0.11	10.50	0.09	26.87	60.00	-33.13	QP
11 12	21.715 23.511	0.87 17.00	0.36 0.38	10.50 10.50	0.16 0.17	11.89 28.05		-38.11 -31.95	Average QP

Remark:


1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

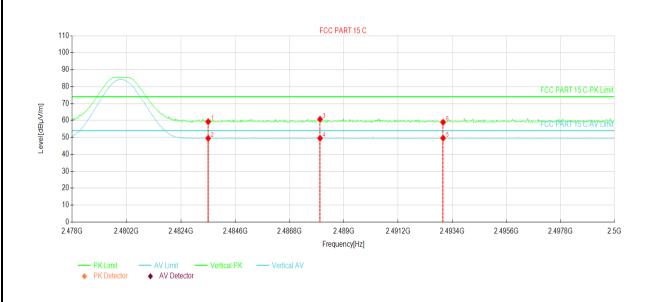
Product Name:	mobile phone	Product Model:	Elite G63
Test By:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	2349.10	24.70	60.59	35.89	74.00	13.41	PK	Vertical		
2	2349.10	13.41	49.30	35.89	54.00	4.70	AV	Vertical		
3	2368.75	24.39	60.46	36.07	74.00	13.54	PK	Vertical		
4	2368.75	13.32	49.39	36.07	54.00	4.61	AV	Vertical		
5	2390.00	22.99	59.27	36.28	74.00	14.73	PK	Vertical		
6	2390.00	12.99	49.27	36.28	54.00	4.73	AV	Vertical		

Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

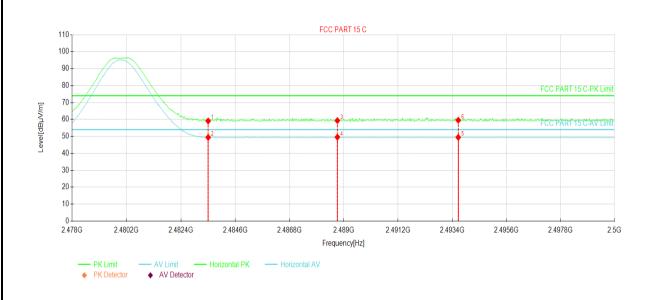
Product Name:	mobile phone	Product Model:	Elite G63
Test By:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2343.37	13.42	49.28	35.86	54.00	4.72	AV	Horizontal	
2	2343.37	24.61	60.47	35.86	74.00	13.53	PK	Horizontal	
3	2364.99	13.48	49.52	36.04	54.00	4.48	AV	Horizontal	
4	2364.99	23.75	59.79	36.04	74.00	14.21	PK	Horizontal	
5	2390.00	22.96	59.24	36.28	74.00	14.76	PK	Horizontal	
6	2390.00	12.95	49.23	36.28	54.00	4.77	AV	Horizontal	

Remark.

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	mobile phone	Product Model:	Elite G63
Test By:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	2483.50	22.89	59.23	36.34	74.00	14.77	PK	Vertical		
2	2483.50	13.12	49.46	36.34	54.00	4.54	AV	Vertical		
3	2488.03	24.40	60.73	36.33	74.00	13.27	PK	Vertical		
4	2488.03	13.16	49.49	36.33	54.00	4.51	AV	Vertical		
5	2493.02	13.25	49.56	36.31	54.00	4.44	AV	Vertical		
6	2493.02	22.61	58.92	36.31	74.00	15.08	PK	Vertical		

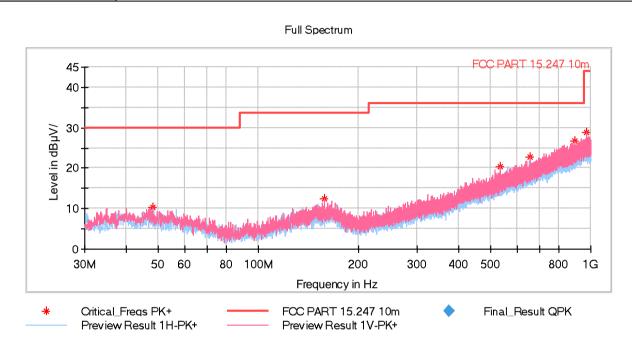
Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	mobile phone	Product Model:	Elite G63
Test By:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2483.50	22.77	59.11	36.34	74.00	14.89	PK	Horizontal	
2	2483.50	13.08	49.42	36.34	54.00	4.58	AV	Horizontal	
3	2488.73	23.01	59.33	36.32	74.00	14.67	PK	Horizontal	
4	2488.73	13.24	49.56	36.32	54.00	4.44	AV	Horizontal	
5	2493.64	13.15	49.45	36.30	54.00	4.55	AV	Horizontal	
6	2493.64	23.26	59.56	36.30	74.00	14.44	PK	Horizontal	

Remark


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	mobile phone	Product Model:	Elite G63
Test By:	Lucas	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz		

Critical_Freqs

Frequency (MHz)	MaxPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
48.187500	10.28	30.00	19.72	100.0	V	267.0	-15.9	14:30:42 - 2023/6/12
157.797500	12.43	33.50	21.07	100.0	V	136.0	-15.0	14:30:42 - 2023/6/12
532.314500	20.29	36.00	15.71	100.0	٧	324.0	-8.3	14:51:51 - 2023/6/12
655.456000	22.71	36.00	13.29	100.0	٧	209.0	-5.6	14:31:54 - 2023/6/12
895.628000	26.73	36.00	9.27	100.0	٧	341.0	-1.3	14:31:52 - 2023/6/12
972.549000	28.92	44.00	15.08	100.0	٧	199.0	0.2	14:31:45 - 2023/6/12

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

BLE Tx (LE 1M PHY)	BLE Tx (LI		
Test channel: Lowest channel			
Detector: Peak Value			
Read Level Factor Level Limit (dBµV) (dB) (dBµV/m) (dBµV/m)		Margin (dB)	Polarization
54.89 -9.08 45.81 74.00	54.89 -9.08 45.	28.19	Vertical
54.98 -9.08 45.90 74.00	54.98 -9.08 45.	28.10	Horizontal
Detector: Average Value	Detector: Av		
Read Level Factor Level Limit (dBμV) (dB) (dBμV/m) (dBμV/m)		Margin (dB)	Polarization
47.33 -9.08 38.25 54.00	47.33 -9.08 38.	15.75	Vertical
1 1111		15.62	
47.46 -9.08 38.38 54.00	47.46 -9.08 38.	15.02	Horizontal
		13.02	Horizontal
47.46 -9.08 38.38 54.00	Test channel: N	13.02	Horizontal
47.46 -9.08 38.38 54.00 Test channel: Middle channel	Test channel: N Detector: F Read Level Factor Lev	Margin	Polarization
47.46 -9.08 38.38 54.00 Test channel: Middle channel Detector: Peak Value Read Level Factor Level Limit	Test channel: N Detector: F Read Level Factor Lev (dBµV) (dB) (dBµ	Margin	
47.46 -9.08 38.38 54.00 Test channel: Middle channel Detector: Peak Value Read Level (dBμV) Factor (dBμV/m) Limit (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m)	Test channel: N Detector: F Read Level (dBμV) Factor (dBμ (dBμ) 54.98 -8.59 46.	Margin (dB)	Polarization
Test channel: Middle channel Detector: Peak Value Read Level (dBμV) Factor (dBμV/m) Level (dBμV/m) Limit (dBμV/m) 54.98 -8.59 46.39 74.00	Test channel: N Detector: F Read Level (dBμV) Factor (dBμ Level (dBμ 54.98 -8.59 46. 55.17 -8.59 46.	Margin (dB) 27.61	Polarization Vertical
Test channel: Middle channel Detector: Peak Value Read Level (dBμV) Factor (dBμV/m) Level (dBμV/m) Limit (dBμV/m) 54.98 -8.59 46.39 74.00 55.17 -8.59 46.58 74.00	Test channel: N Detector: F Read Level (dBμV) Factor (dBμ Level (dBμ 54.98 -8.59 46. 55.17 -8.59 46. Detector: Av Read Level Factor Level	Margin (dB) 27.61 27.42 Margin	Polarization Vertical
Test channel: Middle channel Detector: Peak Value Read Level (dBμV) Factor (dBμV/m) Level (dBμV/m) Limit (dBμV/m) 54.98 -8.59 46.39 74.00 55.17 -8.59 46.58 74.00 Detector: Average Value Read Level Factor Level Limit	Test channel: N Detector: F Read Level Factor Lev (dBμV) (dB) (dBμ' 54.98 -8.59 46. 55.17 -8.59 46. Detector: Av Read Level Factor Lev (dBμV) (dB) (dBμ')	Margin (dB) 27.61 27.42 Margin	Polarization Vertical Horizontal

Test channel: Highest channel							
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4960.00	54.99	-8.03	46.96	74.00	27.04	Vertical	
4960.00	54.70	-8.03	46.67	74.00	27.33	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4960.00	47.61	-8.03	39.58	54.00	14.42	Vertical	
4960.00	47.06	-8.03	39.03	54.00	14.97	Horizontal	

Remark:

-----End of report-----

^{1.} Level = Reading + Factor.

Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.