

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100814

FCC REPORT

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: 4G Smart Phone

Model No.: Elite D5Max

Trade mark: SKY Devices

FCC ID: 2ABOSSKYELITED5X

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 11 May, 2021

Date of Test: 12 May, to 11 Jun., 2021

Date of report issued: 11 Jun., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	11 Jun., 2021	Original

Tested by:	Carey Chen	Date:	11 Jun., 2021	
	Test Engineer			
Reviewed by:	Winner thang	Date:	11 Jun., 2021	
-	Project Engineer			

JianYan Testing Group Shenzhen Co., Ltd.
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Contents

			Page
1	COVER PAG	GE	1
2	VERSION		2
3			9
4		MARY	
5	GENERAL IN	NFORMATION	5
	5.1 CLIENT I	INFORMATION	5
		AL DESCRIPTION OF E.U.T	
		NVIRONMENT AND MODE	
	5.4 DESCRIP	IPTION OF SUPPORT UNITS	6
		REMENT UNCERTAINTY	
		ATORY FACILITY	
	5.7 LABORA	ATORY LOCATION	6
	5.8 TEST INS	NSTRUMENTS LIST	7
6	TEST RESUI	ILTS AND MEASUREMENT DATA	8
	6.1 ANTENN	NA REQUIREMENT	8
		ICTED EMISSION	
		CTED OUTPUT POWER	
		Y BANDWIDTH	
		SPECTRAL DENSITY	
		DGE	
		ducted Emission Method	
		iated Emission Method	
		OUS EMISSION	
		ducted Emission Method	
	6.7.2 Radia	iated Emission Method	30
7	TEST SETUR	IP PHOTO	36
8	FUT CONST	TRUCTIONAL DETAILS	27
J		::\\\::\\::\\:\:\:\:\:\:\:\:\:\:\:\:\:	

Page 3 of 37

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.10-2013

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Decit (News	40.0 m 4 Pl			
Product Name:	4G Smart Phone			
Model No.:	Elite D5Max			
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)			
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 72.2Mbps			
Antenna Type:	Internal Antenna			
Antenna gain:	0.5dBi			
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2000mAh			
AC adapter:	Input: AC100-220V, 50/60Hz, 02A			
	Output: DC 5.0V, 1000mA			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b 1Mbps				
802.11g 6Mbps				
802.11n(HT20)	6.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32	Version: 10.50.40		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	\	ersion: 6.110919b)

Conducted method:					
Test Equipment	Manufacturer	Model No. Serial No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0		
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

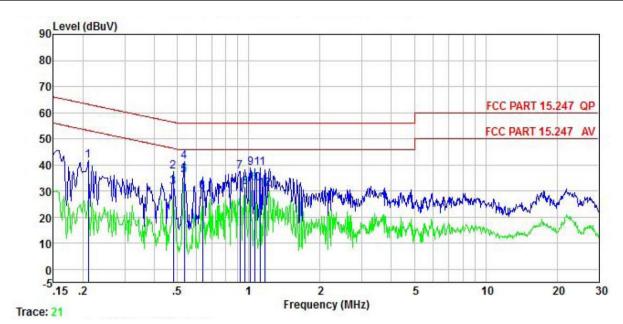
E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.

Page 8 of 37

Project No.: JYTSZE2105050

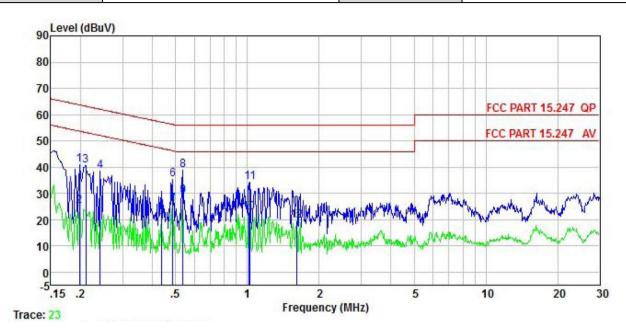
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207					
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz						
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarit	hm of the frequency.					
Test procedure	line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please re photographs). 3. Both sides of A.C. line interference. In order to positions of equipment	LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
Test setup:	LISN	st	er — AC power				
Test Instruments:	Refer to section 5.9 for deta	ails					
Test mode:	Refer to section 5.3 for deta	ails					
Test results:	Passed						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 37

Measurement Data:

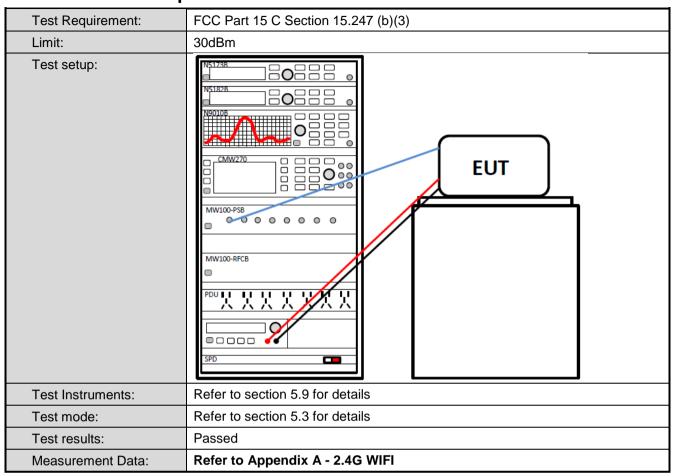
Product name:	4G Smart Phone	Product model:	Elite D5Max
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	<u>dB</u>	<u>d</u> B	dB	dBu₹	₫₿uѶ	dB	
1	0.211	31.51	10.15	-0.17	0.03	41.52		-21.66	
2	0.481	27.35	10.33	-0.24	0.03	37.47	56.32	-18.85	QP
3	0.481	21.24	10.33	-0.24	0.03	31.36	46.32	-14.96	Average
1 2 3 4 5	0.535	31.18	10.36	-0.36	0.03	41.21	56.00	-14.79	QP
5	0.535	26.04	10.36	-0.36	0.03	36.07	46.00	-9.93	Average
6	0.637	19.76	10.39	-0.39	0.02	29.78	46.00	-16.22	Average
7	0.918	26.67	10.46	0.24	0.04	37.41	56.00	-18.59	QP
7 8 9	0.963	20.41	10.47	0.36	0.05	31.29	46.00	-14.71	Average
9	1.016	27.88	10.48	0.44	0.05	38.85	56.00	-17.15	QP
10	1.065	22.05	10.49	0.39	0.07	33.00	46.00	-13.00	Average
11	1.117	27.84	10.49	0.34	0.07	38.74	56.00	-17.26	QP
12	1.172	20.04	10.49	0.29	0.09	30.91	46.00	-15.09	Average

Notes:

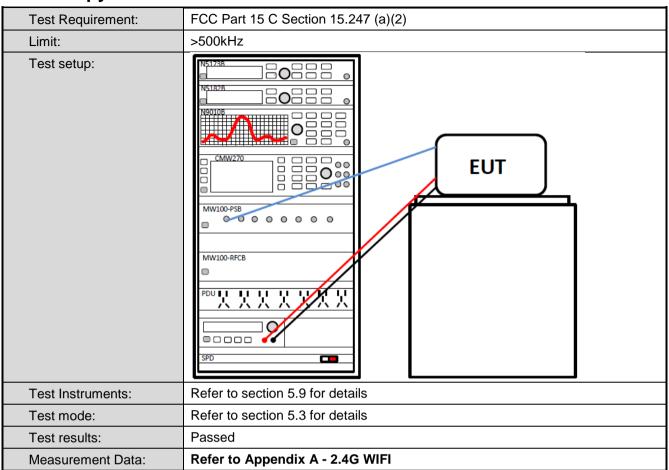
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	4G Smart Phone	Product model:	Elite D5Max
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

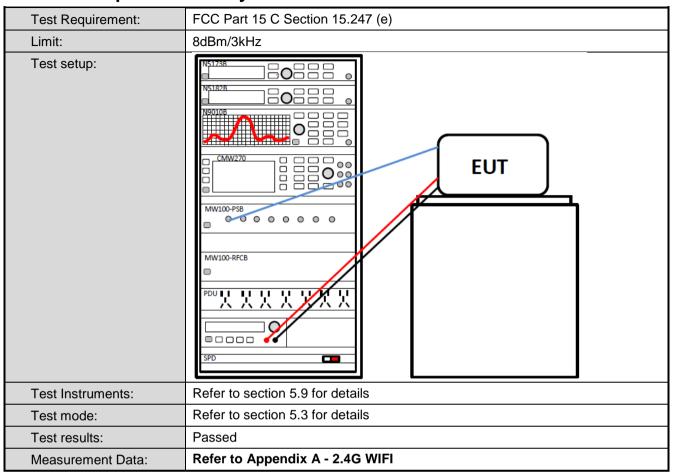

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	<u>dB</u>		dBu₹	₫₿u₹	<u>dB</u>	
1	0.198	31.01	9.92	0.00	0.04	40.97	63.71	-22.74	QP
2	0.198	15.30	9.92	0.00	0.04	25.26	53.71	-28.45	Average
3	0.211	30.65	9.93	0.00	0.03	40.61	63.18	-22.57	QP
4	0.242	28.65	9.96	0.00	0.01	38.62	62.04	-23.42	QP
1 2 3 4 5 6 7 8 9	0.435	10.82	10.15	-0.03	0.03	20.97	47.15	-26.18	Average
6	0.486	25.07	10.19	0.02	0.03	35.31	56.23	-20.92	QP
7	0.486	15.78	10.19	0.02	0.03	26.02	46.23	-20.21	Average
8	0.538	28.59	10.24	0.03	0.03	38.89	56.00	-17.11	QP
9	0.538	18.54	10.24	0.03	0.03	28.84	46.00	-17.16	Average
10	1.016	12.01	10.57	0.08	0.05	22.71	46.00	-23.29	Average
11	1.027	23.47	10.57	0.08	0.06	34.18	56.00	-21.82	QP
12	1.610	8.35	10.72	0.14	0.16	19.37	46.00	-26.63	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

6.5 Power Spectral Density

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

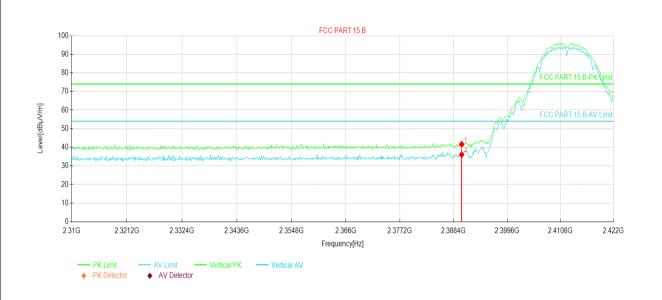
6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS182B NS18B NS182B NS18B NS182B NS18B NS1B NS18B NS18B NS18B NS1B NS1B NS1B NS1B NS1B NS1B NS1B NS1					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ection 15.209	and 15.205						
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW					
	Above 1GHz	Peak	1MHz	3MHz	+				
Limite	Frequency	RMS	<u> 1MHz </u>	3MHz	z Average Value Remark				
Limit:			54.00	3111)	Average Value				
	Above 1GH		74.00		Peak Value				
Test procedure:	the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum reasonable in the emission limit specified the EUT wou 10dB margin.	a 3 meter can be position of the position of the set 3 meters of was mountained the management of the set of t	amber. The take the highest radices away from the saway from the top died from one maximum value arizations of the stuned to heigh ned from 0 deg was set to Peal Maximum Hold a EUT in peak reg could be stop d. Otherwise the	ole was rolliation. e interfere of a variable eter to four of the fielder antennal was arranged as from 1 arees to 36 k Detect Fill Mode, mode was ped and the emission one using	or meters above the d strength. Both are set to make the ged to its worst case meter to 4 meters 60 degrees to find the function and 10dB lower than the he peak values of ons that did not have peak, quasi-peak or				
Test setup:	- 150cm	AE EUT (Turntable)	Ground Reference Plane		na Tower				
Test Instruments:	Refer to section 5	.9 for details							
Test mode:	Refer to section 5	.3 for details							
Test results:	Passed								

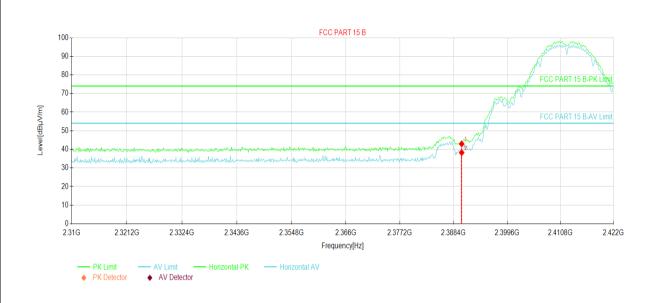

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 16 of 37

802.11b mode:

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List⊮										
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity			
1₽	2390.00	58.88₽	41.63₽	-17.25₽	74.00₽	32.37₽	PK₽	Vertical₽			
2₽	2390.00	53.33₽	36.08₽	-17.25₽	54.00₽	17.92₽	AV₽	Vertical₽ +			

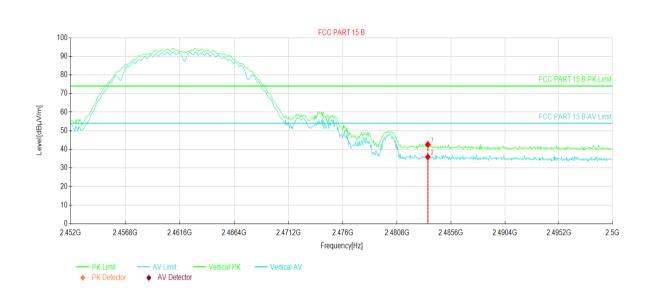

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List										
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace₽	Polarity∂		
1₽	2390.00	60.18₽	42.93₽	-17.25₽	74.00₽	31.07₽	PK₽	Horizontal₽		
2₽	2390.00	55.48₽	38.23₽	-17.25₽	54.00₽	15.77₽	AV₽	Horizontal₽		


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List∂							
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level√ [dBµV/m]	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace	Polarity∉
1₽	2483.50	59.46₽	42.59₽	-16.87₽	74.00₽	31.41₽	PK₽	Vertical₽
2₽	2483.50	52.77₽	35.90₽	-16.87₽	54.00₽	18.10₽	AV₽	Vertical₽

Remark

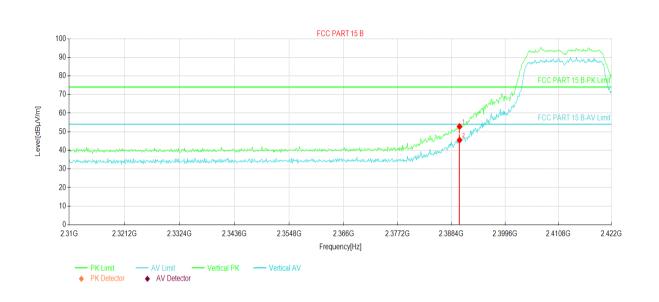
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 37

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

S	Suspected Data List∍								
N	%.O l	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]∉	Trace₽	Polarity
	1₽	2483.50	58.27₽	41.40₽	-16.87₽	74.00₽	32.60₽	PK₽	Horizontal₽
	2₽	2483.50	53.31₽	36.44₽	-16.87₽	54.00₽	17.56₽	AV₽	Horizontal₽

Remark:

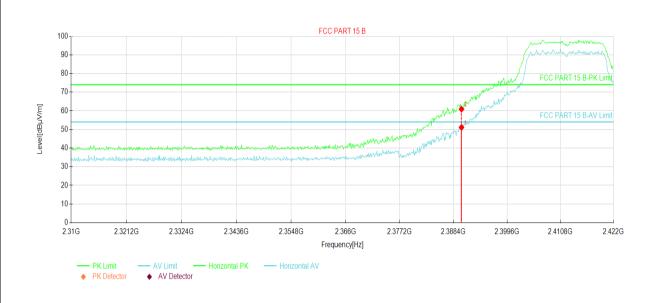

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2105050

802.11g mode:

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List∂							
NO.	Freq.⊌ [MHz]₽	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace	Polarity
1₽	2390.00	70.04₽	52.79₽	-17.25₽	74.00₽	21.21₽	PK₽	Vertical₽
2₽	2390.00	62.78₽	45.53₽	-17.25₽	54.00₽	8.47₽	AV₽	Vertical₽

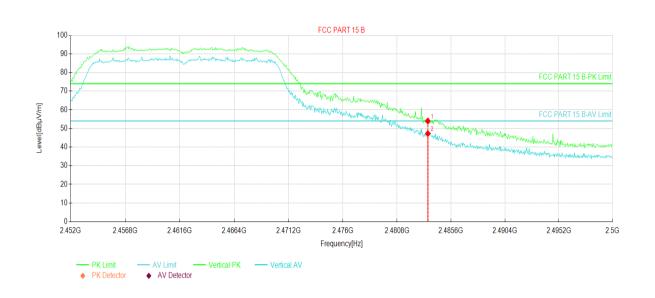

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 37

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	Suspected Data List							
NO.	Freq.⊌ [MHz]⊌	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]∉	Trace	Polarity₀
1₽	2390.00	68.39₽	51.14₽	-17.25₽	54.00₽	2.86₽	AV₽	Horizontal₽
2₊□	2390.00	78.15₽	60.90₽	-17.25₽	74.00₽	13.10₽	PK₽	Horizontal₽

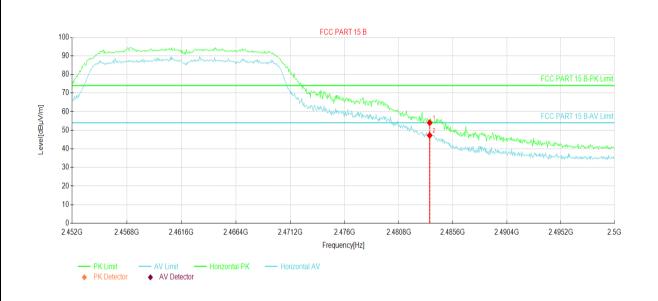

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D5Max		
Test By:	Carey	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Susp	Suspected Data List∂								
NO.₽	Freq.⊌ [MHz]₽	Reading√ [dBµV/m]⊬	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace₽	Polarity₽	
1₽	2483.50	70.86₽	53.99₽	-16.87₽	74.00₽	20.01₽	PK₽	Vertical₽⊸	
2₽	2483.50	64.10₽	47.23₽	-16.87₽	54.00₽	6.77₽	AV₽	Vertical₽	


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

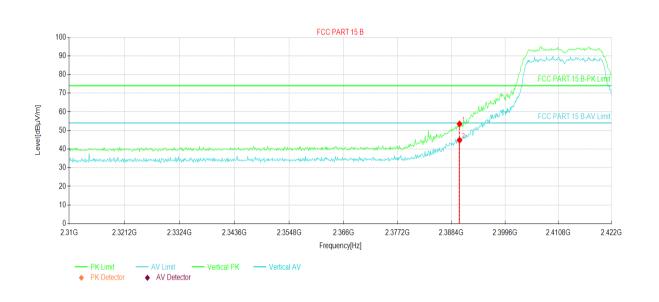
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List								
NO.₽	Freq.∉ [MHz]∂	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity₽
1₽	2483.50	70.90₽	54.03₽	-16.87₽	74.00₽	19.97₽	PK₽	Horizontal -
2₽	2483.50	64.10₽	47.23₽	-16.87₽	54.00₽	6.77₽	AV₽	Horizontal₽ €

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

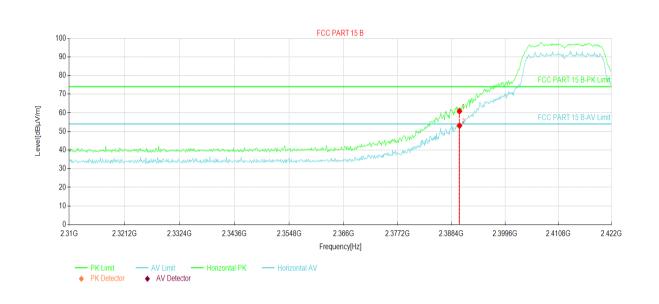

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 37

Project No.: JYTSZE2105050

802.11n(HT20):

Product Name:	4G Smart Phone	Product Model:	Elite D5Max		
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Suspe	Suspected Data List										
NO.₽	Freq.⊬ [MHz]⊬	Reading⊬ [dBuV/m]⊮	Level⊬ [dBuV/m]⊬	Factor⊌ [dB]⊌	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace₽	Polarity∂			
1₽	2390.00	70.73₽	53.48₽	-17.25₽	74.00₽	20.52₽	PK₽	Vertical₽			
2€	2390.00	62.02₽	44.77₽	-17.25₽	54.00₽	9.23₽	AV₽	Vertical₽			

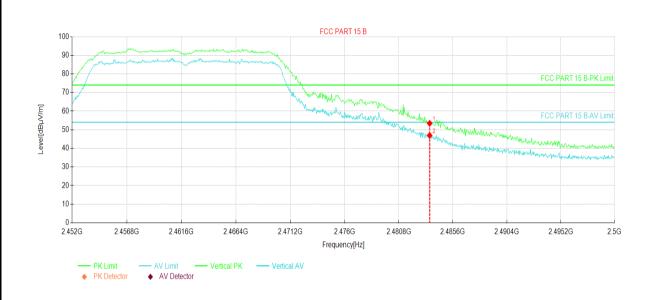

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 25 of 37

Product Name:	4G Smart Phone	Product Model:	Elite D5Max	
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

Suspe	Suspected Data List										
NO.₽	Freq.⊬ [MHz]⊬	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace	Polarity₽			
1₽	2390.00	78.11₽	60.86₽	-17.25₽	74.00₽	13.14₽	PK₽	Horizontale •			
2₽	2390.00	70.37₽	53.12₽	-17.25₽	54.00₽	0.88₽	AV₽	Horizontale •			


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D5Max		
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Susp	Suspected Data List										
NO.₽	Freq.⊌ [MHz]⊌	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]∉	Trace	Polarity∂			
1₽	2483.50₽	70.31₽	53.44₽	-16.87₽	74.00₽	20.56₽	PK₽	Vertical₽			
2↩	2483.50₽	63.81₽	46.94₽	-16.87₽	54.00₽	7.06₽	AV₽	Vertical∉			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Elite D5Max
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List∂										
NO.₽	Freq.⊌ [MHz]₽	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace₽	Polarity			
1₽	2483.50	70.60₽	53.73₽	-16.87₽	74.00₽	20.27₽	PK₽	Horizontal₽			
2₽	2483.50₽	63.80₽	46.93₽	-16.87₽	54.00₽	7.07₽	AV₽	Horizontal₽			

Remark:

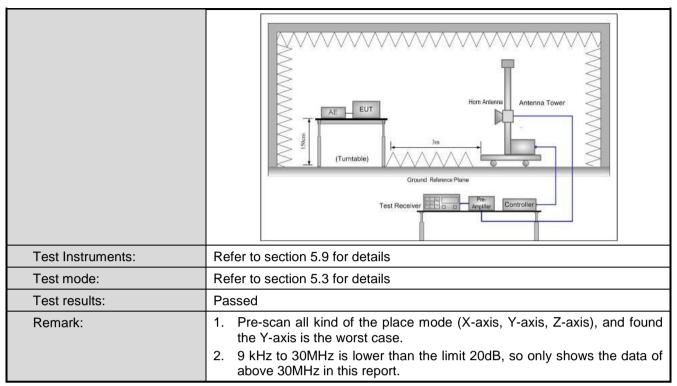
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

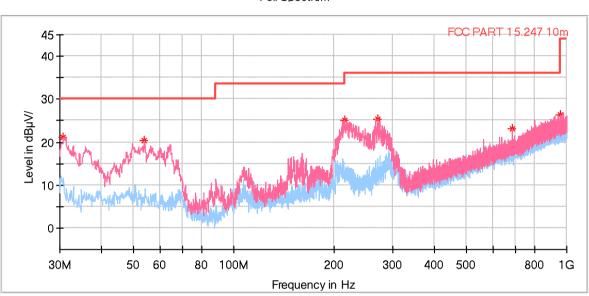
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS173B NS182P NS182P					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Test Requirement:	FCC Part 15 C Se	ection 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detecto	or	RBW	V	BW	Remark
	30MHz-1GHz	Quasi-peak		120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peak	(1MHz	31	ИHz	Peak Value
	Above IGHZ	RMS	;	1MHz	31	ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH	lz		30.0			uasi-peak Value
	88MHz-216MHz 33.5 Quasi-peak Valu						
	216MHz-960M			36.0			uasi-peak Value
	960MHz-1GH	łz		44.0		Q	uasi-peak Value
	Frequency		Limit	t (dBuV/m @3	m)		Remark
	Above 1GHz	<u>_</u>		54.0		,	Average Value
Test Procedure:	1. The EUT w	as placed	d on	74.0	a rot	tating	Peak Value table 0.8m(below
	1GHz)/1.5m(i (below 1GHz) 360 degrees 2. The EUT wa away from the top of a v 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable so the EUT wou	above 1Gi)or 3 metero to determine interfered ariable-height is vertical part. pected emantenna was table was tabl	Hz) a er cha er cha ine the meters ence-r ight a varied e max polariz missior vas tur turned m was ith Ma the El ting co rted. (re-tes	above the gramber (above the position of the p	ound 1GHz the hid z) or enna, eter to of the ante as arre s from ees to Dete Mode woed are e emis ne us	at a 1 z). The ghest r 3 me which of our m field sinna are co 360 c ct Funcies. Was 10 and the pssions ing pea	O meter chamber table was rotated adiation. ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the ction and dB lower than the peak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz EUT Turn Table Ground Pl. Above 1GHz		m 1m		<u></u>	Antei RF Test Receive	nna :



Measurement Data (worst case):

Below 1GHz:

Product Name:	4G Smart Phone	Product Model:	Elite D5Max		
Test By:	Carey	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

-	Frequency↓	MaxPeak↓	Limit↓	Margin↓	Height↓	Pol₽	Azimuth↓	Corr.↓
	(MHz)∂	(dB µ V/m)∂	(dB μ	(dB)∂	(cm) <i>₀</i>		(deg)∂	(dB/m)∂
•	683.877000₽	23.13₽	36.00₽	12.87₽	100.0₽	V₽	0.0₽	-5.1₽
-	953.828000₽	26.31₽	36.00₽	9.69₽	100.0₽	V₽	56.0₽	0.0₽
-	53.862000₽	20.32₽	30.00₽	9.68₽	100.0₽	V₽	188.0₽	-16.0↩
-	215.561000₽	25.19₽	33.50₽	8.31₽	100.0₽	V₽	202.0₽	-17.4₽
-	270.657000₽	25.41∂	36.00₽	10.59₽	100.0₽	V₽	330.0₽	-15.0₽
-	30.776000₽	21.10₽	30.00₽	8.90₽	100.0₽	V₽	350.0₽	-17.6↩

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

Above 1GHz						
			802.11b			
		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	56.94	-10.33	46.61	74.00	27.39	Vertical
4824.00	57.42	-10.33	47.09	74.00	26.91	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	50.89	-10.33	40.56	54.00	13.44	Vertical
4824.00	50.75	-10.33	40.42	54.00	13.58	Horizontal
		Test ch	annel: Middle ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	55.16	-10.17	44.99	74.00	29.01	Vertical
4874.00	57.96	-10.17	47.79	74.00	26.21	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	49.95	-10.17	39.78	54.00	14.22	Vertical
4874.00	48.17	-10.17	38.00	54.00	16.00	Horizontal
		Test cha	annel: Highest cl	hannel		
		Det	tector: Peak Valu	ie		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	56.63	-10.02	46.61	74.00	27.39	Vertical
4924.00	57.41	-10.02	47.39	74.00	26.61	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	50.52	-10.02	40.50	54.00	13.50	Vertical
4924.00	49.30	-10.02	39.28	54.00	14.72	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			902 11a						
	802.11g Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	56.74	-10.33	46.41	74.00	27.59	Vertical			
4824.00	58.51	-10.33	48.18	74.00	25.82	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	50.11	-10.33	39.78	54.00	14.22	Vertical			
4824.00	49.90	-10.33	39.57	54.00	14.43	Horizontal			
		Test ch	annel: Middle ch	nannel					
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	56.62	-10.17	46.45	74.00	27.55	Vertical			
4874.00	57.41	-10.17	47.24	74.00	26.76	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	50.39	-10.17	40.22	54.00	13.78	Vertical			
4874.00	49.97	-10.17	39.80	54.00	14.20	Horizontal			
	Test channel: Highest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	57.52	-10.02	47.50	74.00	-26.50	Vertical			
4924.00	56.19	-10.02	46.17	74.00	-27.83	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	51.53	-10.02	41.51	54.00	12.49	Vertical			
4924.00	48.97	-10.02	38.95	54.00	15.05	Horizontal			

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)					
			annel: Lowest ch					
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4824.00	55.90	-10.33	45.57	74.00	28.43	Vertical		
4824.00	57.16	-10.33	46.83	74.00	27.17	Horizontal		
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4824.00	49.95	-10.33	39.62	54.00	14.38	Vertical		
4824.00	50.37	-10.33	40.04	54.00	13.96	Horizontal		
			nannel: Middle ch					
		De	tector: Peak Valu					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4874.00	57.85	-10.17	47.68	74.00	26.32	Vertical		
4874.00	58.39	-10.17	48.22	74.00	25.78	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4874.00	49.95	-10.17	39.78	54.00	14.22	Vertical		
4874.00	50.16	-10.17	39.99	54.00	14.01	Horizontal		
Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	56.62	-10.02	46.60	74.00	27.40	Vertical		
4924.00	56.79	-10.02	46.77	74.00	27.23	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	52.52	-10.02	42.50	54.00	11.50	Vertical		
4924.00	49.96	-10.02	39.94	54.00	14.06	Horizontal		
Remark:								

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.