

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2102730

FCC REPORT (WIFI)

Applicant: Sky Phone LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: 4G Smart Phone

Model No.: Elite D55

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYELITED55

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 03 Dec., 2021

Date of Test: 04 Dec., to 06 Jan., 2022

Date of report issued: 07 Jan., 2022

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	07 Jan., 2022	Original

Tanet Wei
Test Engineer Tested by: Date: 07 Jan., 2022

Reviewed by: Date: 07 Jan., 2022 **Project Engineer**

Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
		TENTS	
3			_
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T.	
		TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	13
		Power Spectral Density	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		SPURIOUS EMISSION	
	6.7.1 6.7.2	Conducted Emission Method	
	· · · · <u>-</u>	Radiated Emission Method	
7	TEST	SETUP PHOTO	41
Ω	EUT (CONSTRUCTIONAL DETAILS	43

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45 205 8 45 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	.205 & 15.209 See Section 6.7.2	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.10-2013

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	4G Smart Phone			
Model No.:	Elite D55			
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)			
	2422MHz~2452MHz: 802.11n(HT40)			
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)			
	7: 802.11n(HT40)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 150Mbps			
Antenna Type:	Internal Antenna			
Antenna gain:	1.67dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh			
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.					
Mode Data rate					
802.11b	1Mbps				
802.11g	6Mbps				
802.11n(HT20)	6.5Mbps				
802.11n(HT40)	13.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	Tonscend	TS+		Version:3.0.0.1	
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022
Test Software	R&S	EMC32	\	/ersion: 10.50.4	0

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b	

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310	,	Version: 2.0.0.0	_

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

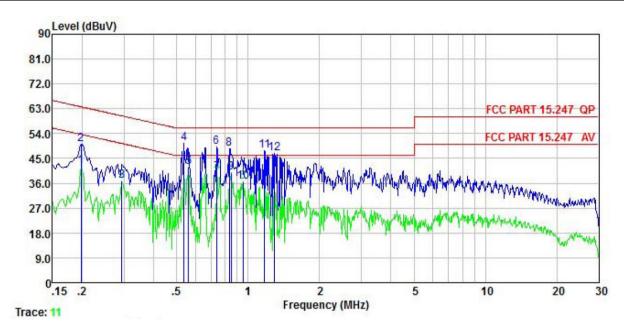
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.67 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

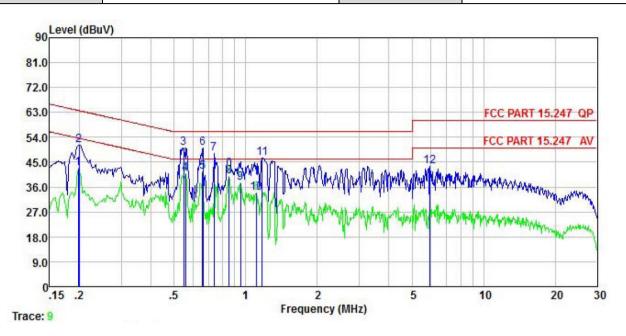
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarit	hm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 			
Test setup:	LISN	st	er — AC power	
Test Instruments:	Refer to section 5.9 for deta	ails		
Test mode:	Refer to section 5.3 for deta	ails		
Test results:	Passed			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 43

Measurement Data:

Product name:	4G Smart Phone	Product model:	Elite D55
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

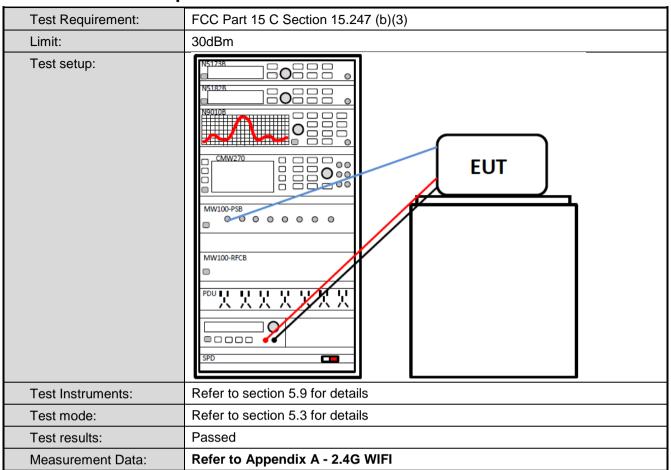

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
1	0.198 0.198	42.19 49.98	0.04 0.04	0.04 0.04	42.27 50.06		-11.44 -13.65	Average
3	0.294 0.538	36.89 50.32	0.04	0.03	36.96 50.39			Average
5	0.561 0.735	41.69	0.04	0.02	41.75	46.00 56.00	-4.25	Average
1 2 3 4 5 6 7 8 9	0.739 0.835	39.82 48.41	0.04	0.03	39.89 48.48	46.00 56.00		Average
9 10	0.848 0.953	39.73 36.31	0.05	0.04	39.82 36.41	46.00 46.00	-6.18	Average Average
11 12	1.172 1.289	47.78 46.71	0.05	0.09	47. 92 46. 88	56.00 56.00	-8.08 -9.12	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

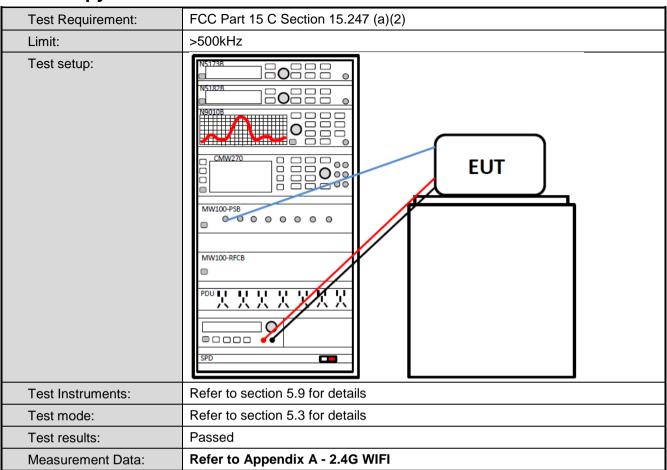
Product name:	4G Smart Phone	Product model:	Elite D55
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>d</u> B	dB	dBu₹	dBu∇	<u>d</u> B	
1 2 3 4 5 6 7 8 9	0.198	42.75	0.04	0.04	42.83			Average
2	0.200	51.21	0.04	0.04	51.29	63.62	-12.33	QP
3	0.549	50.10	0.04	0.02	50.16	56.00	-5.84	QP
4	0.558	40.69	0.04	0.02	40.75	46.00	-5.25	Average
5	0.658	41.32	0.04	0.03	41.39	46.00		Average
6	0.661	50.14	0.04	0.03	50.21	56.00		
7	0.735	47.95	0.04	0.03	48.02	56.00	-7.98	QP
8	0.853	39.65	0.05	0.04	39.74	46.00		Average
9	0.953	37.41	0.05	0.05	37.51	46.00		Average
10	1.111	33.88	0.05	0.07	34.00			Average
11	1.172	46.38	0.05	0.09	46.52	56.00		
12	5.961	43.35	0.12	0.09	43.56		-16.44	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

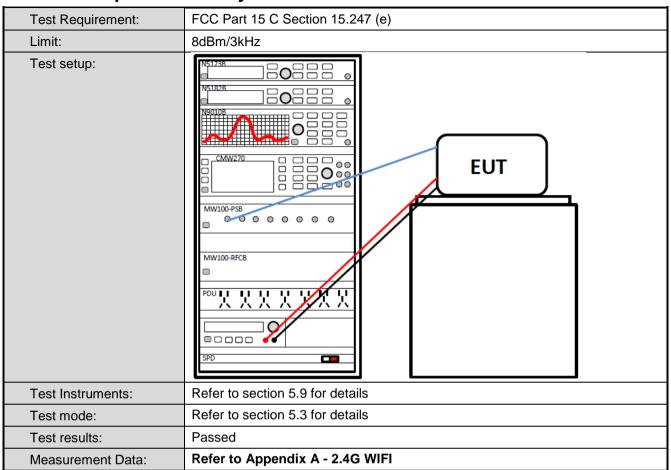

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 11 of 43


6.3 Conducted Output Power

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



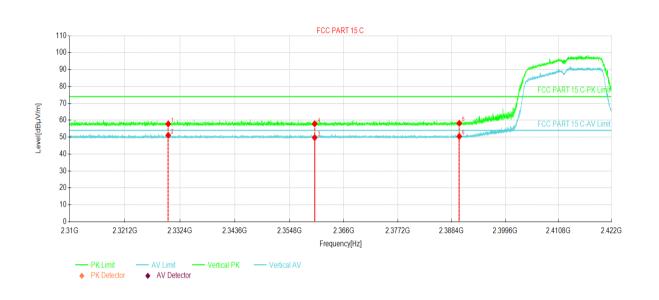
6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

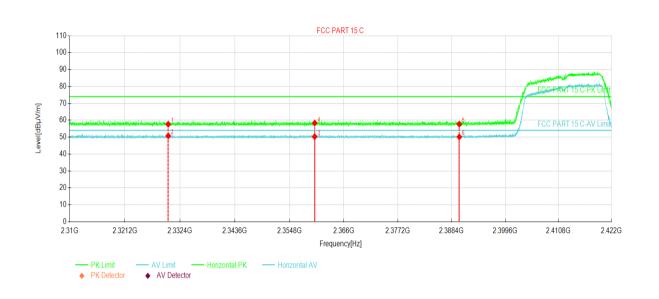
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	NS182B NS18B NS18
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - 2.4G WIFI


6.6.2 Radiated Emission Method

Test Procedure: Test P	Took Description		otion 15 200	and 15 205				
Test Distance: Receiver setup: Frequency Detector RBW VBW Remark	•		FCC Part 15 C Section 15.209 and 15.205					
Receiver setup: Frequency								
Above 1GHz RMS 1MHz 3MHz Average Value RMS 1MHz 1 3MHz Average Value Frequency Limit (dBuV/m@3m) Remark Above 1GHz 74.00 Average Value 74.00 Peak Value 74.00 Peak Value 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-high tantenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 36 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.9 for details Refer to section 5.3 for details	Test Distance:							
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value 54.00 Average Value 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are stoth the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.9 for details Refer to section 5.3 for details	Receiver setup:	Frequency						
Limit: Frequency		Above 1GHz						
Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details	Limit:	Frequency				11 12		
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.9 for details Refer to section 5.3 for details				,	,	A۱	verage Value	
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.9 for details Refer to section 5.3 for details								
Test Instruments: Refer to section 5.9 for details Test mode: Refer to section 5.3 for details		 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						
Test mode: Refer to section 5.3 for details	Test setup:	150km	(Turntable)	Ground Raference Plane				
	Test Instruments:	Refer to section 5	.9 for details					
Test results: Passed	Test mode:	Refer to section 5	.3 for details					
	Test results:	Passed						

802.11b mode:

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

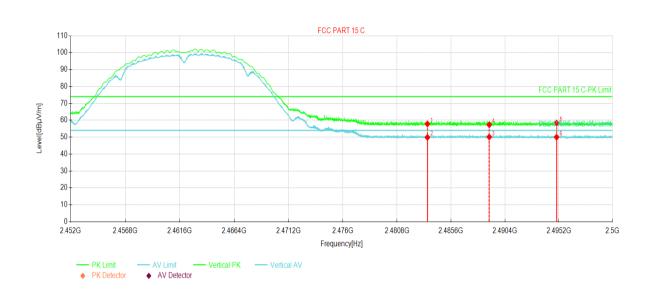

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	22.42	57.83	35.41	74.00	16.17	PK	Vertical
2	2330.00	15.70	51.11	35.41	54.00	2.89	AV	Vertical
3	2360.00	14.10	49.73	35.63	54.00	4.27	AV	Vertical
4	2360.00	22.27	57.90	35.63	74.00	16.10	PK	Vertical
5	2390.00	22.38	58.22	35.84	74.00	15.78	PK	Vertical
6	2390.00	14.62	50.46	35.84	54.00	3.54	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	22.24	57.65	35.41	74.00	16.35	PK	Horizontal
2	2330.00	15.35	50.76	35.41	54.00	3.24	AV	Horizontal
3	2360.00	14.67	50.30	35.63	54.00	3.70	AV	Horizontal
4	2360.00	22.75	58.38	35.63	74.00	15.62	PK	Horizontal
5	2390.00	21.86	57.70	35.84	74.00	16.30	PK	Horizontal
6	2390.00	14.33	50.17	35.84	54.00	3.83	AV	Horizontal

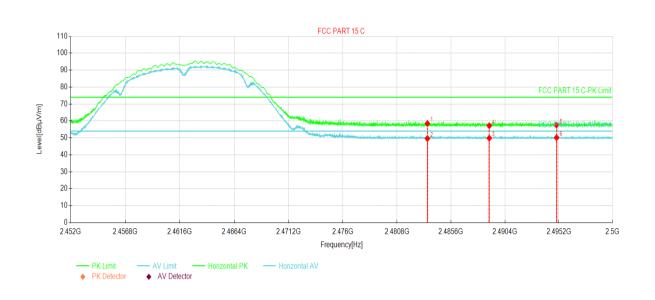

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.10	57.82	35.72	74.00	16.18	PK	Vertical
2	2483.50	14.16	49.88	35.72	54.00	4.12	AV	Vertical
3	2489.00	14.42	50.13	35.71	54.00	3.87	AV	Vertical
4	2489.00	21.63	57.34	35.71	74.00	16.66	PK	Vertical
5	2495.00	22.66	58.35	35.69	74.00	15.65	PK	Vertical
6	2495.00	14.31	50.00	35.69	54.00	4.00	AV	Vertical


Remark

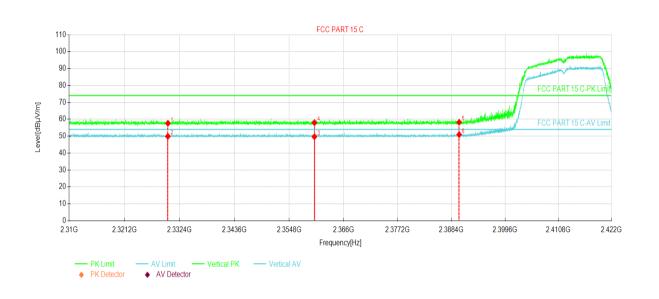
- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

755 23116366 Page 19 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.77	58.49	35.72	74.00	15.51	PK	Horizontal
2	2483.50	13.90	49.62	35.72	54.00	4.38	AV	Horizontal
3	2489.00	14.16	49.87	35.71	54.00	4.13	AV	Horizontal
4	2489.00	21.49	57.20	35.71	74.00	16.80	PK	Horizontal
5	2495.00	21.85	57.54	35.69	74.00	16.46	PK	Horizontal
6	2495.00	14.46	50.15	35.69	54.00	3.85	AV	Horizontal

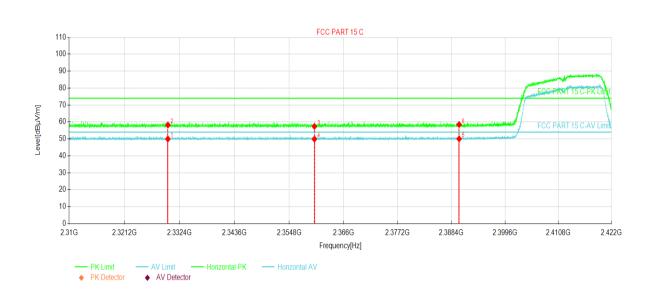
Remark:


- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 43

802.11g mode:

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

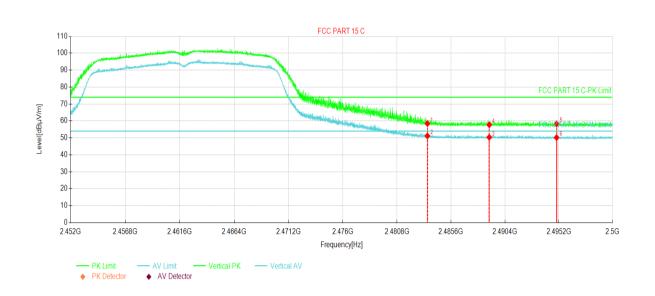

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	22.20	57.61	35.41	74.00	16.39	PK	Vertical
2	2330.00	14.49	49.90	35.41	54.00	4.10	AV	Vertical
3	2360.00	14.07	49.70	35.63	54.00	4.30	AV	Vertical
4	2360.00	22.34	57.97	35.63	74.00	16.03	PK	Vertical
5	2390.00	22.38	58.22	35.84	74.00	15.78	PK	Vertical
6	2390.00	15.09	50.93	35.84	54.00	3.07	AV	Vertical

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	14.56	49.97	35.41	54.00	4.03	AV	Horizontal
2	2330.00	22.81	58.22	35.41	74.00	15.78	PK	Horizontal
3	2360.00	21.74	57.37	35.63	74.00	16.63	PK	Horizontal
4	2360.00	14.27	49.90	35.63	54.00	4.10	AV	Horizontal
5	2390.00	14.20	50.04	35.84	54.00	3.96	AV	Horizontal
6	2390.00	22.63	58.47	35.84	74.00	15.53	PK	Horizontal


Remark:

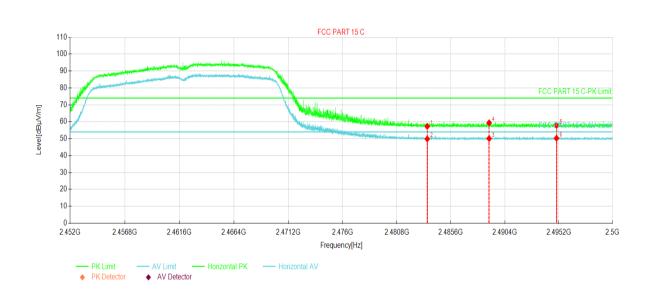
- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55	
Test By:	Janet	Test mode: 802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.75	58.47	35.72	74.00	15.53	PK	Vertical
2	2483.50	15.44	51.16	35.72	54.00	2.84	AV	Vertical
3	2489.00	14.66	50.37	35.71	54.00	3.63	AV	Vertical
4	2489.00	22.03	57.74	35.71	74.00	16.26	PK	Vertical
5	2495.00	22.55	58.24	35.69	74.00	15.76	PK	Vertical
6	2495.00	14.50	50.19	35.69	54.00	3.81	AV	Vertical

Remark


- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

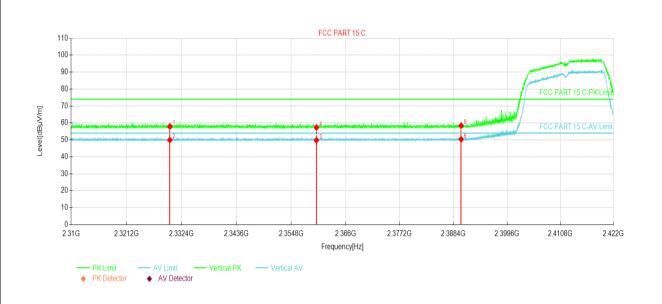
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 23 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.54	57.26	35.72	74.00	16.74	PK	Horizontal
2	2483.50	14.14	49.86	35.72	54.00	4.14	AV	Horizontal
3	2489.00	14.37	50.08	35.71	54.00	3.92	AV	Horizontal
4	2489.00	23.68	59.39	35.71	74.00	14.61	PK	Horizontal
5	2495.00	22.16	57.85	35.69	74.00	16.15	PK	Horizontal
6	2495.00	14.57	50.26	35.69	54.00	3.74	AV	Horizontal

Remark:

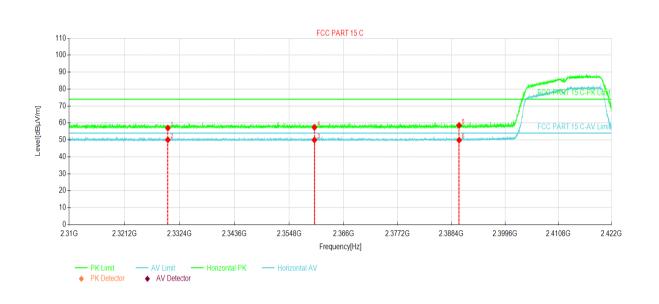

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(HT20):

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization: Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	22.54	57.95	35.41	74.00	16.05	PK	Vertical
2	2330.00	14.56	49.97	35.41	54.00	4.03	AV	Vertical
3	2360.00	14.15	49.78	35.63	54.00	4.22	AV	Vertical
4	2360.00	21.68	57.31	35.63	74.00	16.69	PK	Vertical
5	2390.00	22.55	58.39	35.84	74.00	15.61	PK	Vertical
6	2390.00	14.54	50.38	35.84	54.00	3.62	AV	Vertical


Remark:

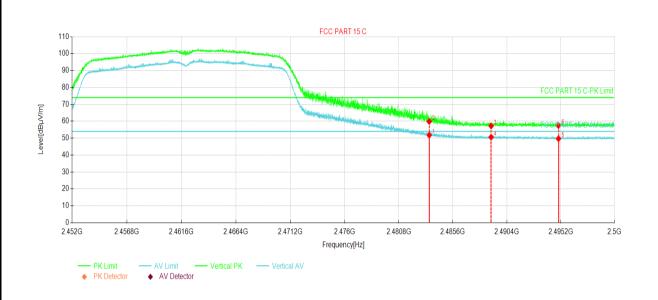
- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 25 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	21.61	57.02	35.41	74.00	16.98	PK	Horizontal
2	2330.00	14.65	50.06	35.41	54.00	3.94	AV	Horizontal
3	2360.00	14.34	49.97	35.63	54.00	4.03	AV	Horizontal
4	2360.00	21.75	57.38	35.63	74.00	16.62	PK	Horizontal
5	2390.00	22.70	58.54	35.84	74.00	15.46	PK	Horizontal
6	2390.00	14.03	49.87	35.84	54.00	4.13	AV	Horizontal

Remark

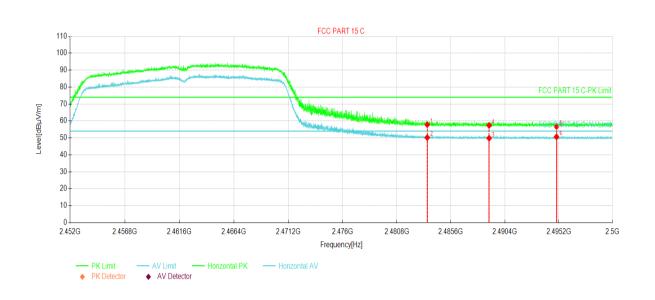

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 26 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	16.07	51.79	35.72	54.00	2.21	AV	Vertical
2	2483.50	24.15	59.87	35.72	74.00	14.13	PK	Vertical
3	2489.00	21.54	57.25	35.71	74.00	16.75	PK	Vertical
4	2489.00	14.89	50.60	35.71	54.00	3.40	AV	Vertical
5	2495.00	14.05	49.74	35.69	54.00	4.26	AV	Vertical
6	2495.00	21.76	57.45	35.69	74.00	16.55	PK	Vertical

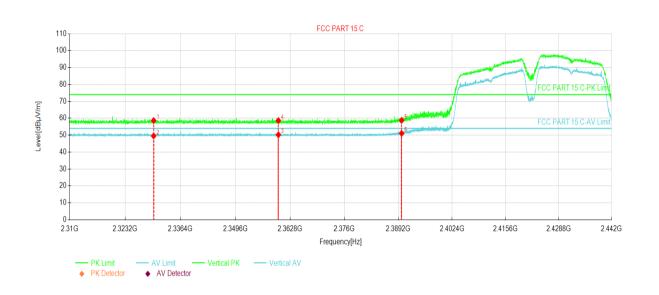

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.12	57.84	35.72	74.00	16.16	PK	Horizontal
2	2483.50	14.47	50.19	35.72	54.00	3.81	AV	Horizontal
3	2489.00	14.13	49.84	35.71	54.00	4.16	AV	Horizontal
4	2489.00	21.68	57.39	35.71	74.00	16.61	PK	Horizontal
5	2495.00	21.04	56.73	35.69	74.00	17.27	PK	Horizontal
6	2495.00	14.94	50.63	35.69	54.00	3.37	AV	Horizontal


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40):

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	23.23	58.64	35.41	74.00	15.36	PK	Vertical
2	2330.00	14.15	49.56	35.41	54.00	4.44	AV	Vertical
3	2360.00	14.61	50.24	35.63	54.00	3.76	AV	Vertical
4	2360.00	22.98	58.61	35.63	74.00	15.39	PK	Vertical
5	2390.00	22.91	58.75	35.84	74.00	15.25	PK	Vertical
6	2390.00	15.24	51.08	35.84	54.00	2.92	AV	Vertical


Remark

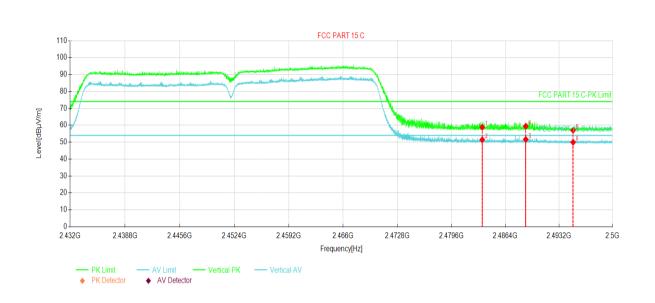
- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.00	22.54	57.95	35.41	74.00	16.05	PK	Horizontal
2	2330.00	14.11	49.52	35.41	54.00	4.48	AV	Horizontal
3	2360.00	14.95	50.58	35.63	54.00	3.42	AV	Horizontal
4	2360.00	22.61	58.24	35.63	74.00	15.76	PK	Horizontal
5	2390.00	21.74	57.58	35.84	74.00	16.42	PK	Horizontal
6	2390.00	14.24	50.08	35.84	54.00	3.92	AV	Horizontal

Remark

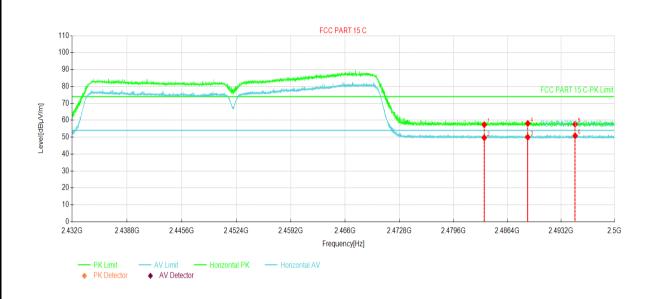

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 30 of 43

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.11	58.83	35.72	74.00	15.17	PK	Vertical
2	2483.50	15.73	51.45	35.72	54.00	2.55	AV	Vertical
3	2489.00	15.94	51.65	35.71	54.00	2.35	AV	Vertical
4	2489.00	23.73	59.44	35.71	74.00	14.56	PK	Vertical
5	2495.00	21.33	57.02	35.69	74.00	16.98	PK	Vertical
6	2495.00	14.26	49.95	35.69	54.00	4.05	AV	Vertical


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.62	57.34	35.72	74.00	16.66	PK	Horizontal
2	2483.50	13.95	49.67	35.72	54.00	4.33	AV	Horizontal
3	2489.00	14.28	49.99	35.71	54.00	4.01	AV	Horizontal
4	2489.00	22.40	58.11	35.71	74.00	15.89	PK	Horizontal
5	2495.00	21.96	57.65	35.69	74.00	16.35	PK	Horizontal
6	2495.00	15.13	50.82	35.69	54.00	3.18	AV	Horizontal

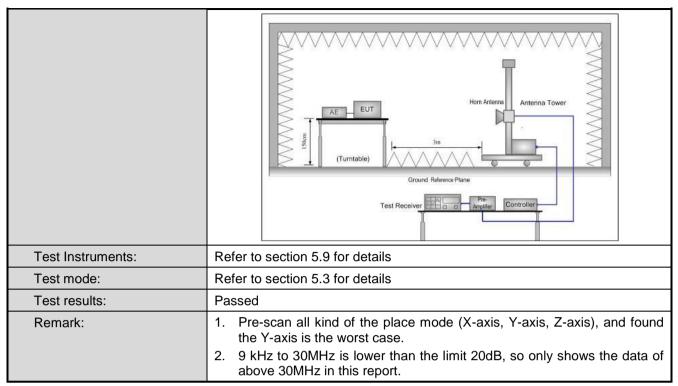
Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 32 of 43

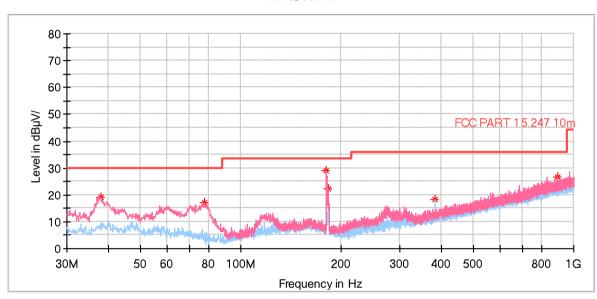
6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NSTRUM NS					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

6.7.2 Radiated Emission Method

Test Requirement:	Method FCC Part 15 C Se	ction 15.	.209 an	nd 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detec	ctor	RBW	V	BW	Remark
Receiver setup.	30MHz-1GHz	Quasi-	<u> </u>		300KHz		Quasi-peak Value
		Pea		1MHz		ИHz	Peak Value
	Above 1GHz	RM	S	1MHz	31	ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MHz 30.0 Quasi-peak Value						
	88MHz-216MH			33.5			uasi-peak Value
	216MHz-960M 960MHz-1GH			36.0 44.0			uasi-peak Value
	Frequency	Z	Limi	44.0 t (dBuV/m @3i	m)	Q	uasi-peak Value Remark
			LIIIII	54.0	111)		Average Value
	Above 1GHz	-		74.0		,	Peak Value
Test Procedure:	1. The EUT wa	as place	ed on		a rot	ating	table 0.8m(below
Test Flocedule.	1GHz)/1.5m(a (below 1GHz) 360 degrees 2. The EUT was away from the top of a visual 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable 5. The test-rece Specified Bar 6. If the emission limit specified the EUT would see the surface of the s	above 10) or 3 me to detern s set 10 le interfe ariable-h height is ermine to detern t. pected e antenna able was ading. It is individed by the need of the need o	GHz) a ter cha mine the meters rence-leight a varied he max turned em was turned with Maf the El sting corted. (e) re-tes	above the grounder (above eposition of the solution of the solution) and the solution of the s	ound 1GHz the hic z) or enna, the ter to of the as arr es fror ees to Dete Mode woed ar ee emis ne us	at a 1 z). The ghest r 3 me which of our m field sinna are co 360 c ct Funce. was 10 and the pssions ing pea	O meter chamber table was rotated adiation. ters(above 1GHz) was mounted on meters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the extion and dB lower than the beak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz EUT Turn Table Ground Pk		4m			Searc Anter	nna :



Measurement Data (worst case):

Below 1GHz:

Product Name:	4G Smart Phone	Product Model:	Elite D55
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Frequency (MHz)	MaxPeak (dB ₩V/m)	Limit (dB # V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
37.857000	19.07	30.00	10.93	100.0	V	50.0	-16.1
77.821000	16.99	30.00	13.01	100.0	V	186.0	-19.7
180.738000	29.00	33.50	4.50	100.0	V	299.0	-17.4
182.969000	22.13	33.50	11.37	100.0	V	1.0	-17.5
383.953000	18.47	36.00	17.53	100.0	Н	111.0	-12.2
896.113000	26.57	36.00	9.43	100.0	V	196.0	-0.8

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 36 of 43

Above 1GHz

Above 1GHz								
			802.11b					
	Test channel: Lowest channel							
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4824.00	45.12	-9.46	35.66	74.00	38.34	Vertical		
4824.00	45.84	-9.46	36.38	74.00	37.62	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4824.00	38.88	-9.46	29.42	54.00	24.58	Vertical		
4824.00	38.36	-9.46	28.90	54.00	25.10	Horizontal		
		Tost ch	annel: Middle ch	nannol				
			tector: Peak Valu					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4874.00	45.52	-9.11	36.41	74.00	37.59	Vertical		
4874.00	45.83	-9.11	36.72	74.00	37.28	Horizontal		
			ctor: Average Va					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4874.00	38.69	-9.11	29.58	54.00	24.42	Vertical		
4874.00	37.99	-9.11	28.88	54.00	25.12	Horizontal		
		- · · ·						
			annel: Highest cl					
		Det	tector: Peak Valu		B.4			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	46.01	-8.74	37.27	74.00	36.73	Vertical		
4924.00	46.11	-8.74	37.37	74.00	36.63	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	39.01	-8.74	30.27	54.00	23.73	Vertical		
4924.00	38.44	-8.74	29.70	54.00	24.30	Horizontal		

Remark:

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11g					
	Test channel: Lowest channel							
		De	tector: Peak Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4824.00	44.78	-9.46	35.32	74.00	38.68	Vertical		
4824.00	46.11	-9.46	36.65	74.00	37.35	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4824.00	38.71	-9.46	29.25	54.00	24.75	Vertical		
4824.00	38.52	-9.46	29.06	54.00	24.94	Horizontal		

Test channel: Middle channel							
Detector: Peak Value							
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
45.02	-9.11	35.91	74.00	38.09	Vertical		
45.86	-9.11	36.75	74.00	37.25	Horizontal		
	Dete	ctor: Average Va	lue				
Frequency Read Level Factor(dB) Level Limit Line Margin (dBuV/m) (dBuV/m) (dB)							
38.51	-9.11	29.40	54.00	24.60	Vertical		
38.45	-9.11	29.34	54.00	24.66	Horizontal		
	(dBuV) 45.02 45.86 Read Level (dBuV) 38.51	Read Level (dBuV) Factor(dB) 45.02 -9.11 45.86 -9.11 Dete Read Level (dBuV) Factor(dB) 38.51 -9.11	Detector: Peak Value Read Level (dBuV)	Detector: Peak Value	Detector: Peak Value Read Level (dBuV)		

	Test channel: Highest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	44.77	-8.74	36.03	74.00	37.97	Vertical			
4924.00	46.05	-8.74	37.31	74.00	36.69	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	38.74	-8.74	30.00	54.00	24.00	Vertical			
4924.00	38.11	-8.74	29.37	54.00	24.63	Horizontal			

Remark

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	44.60	-9.46	35.14	74.00	38.86	Vertical
4824.00	46.24	-9.46	36.78	74.00	37.22	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	38.47	-9.46	29.01	54.00	24.99	Vertical
4824.00	37.90	-9.46	28.44	54.00	25.56	Horizontal
		Test ch	nannel: Middle ch	annel		
		De	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	44.70	-9.11	35.59	74.00	38.41	Vertical
4874.00	46.58	-9.11	37.47	74.00	36.53	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	38.13	-9.11	29.02	54.00	24.98	Vertical
4874.00	37.44	-9.11	28.33	54.00	25.67	Horizontal
		Test ch	annel: Highest cl	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	44.50	-8.74	35.76	74.00	38.24	Vertical
4924.00	46.79	-8.74	38.05	74.00	35.95	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	38.14	-8.74	29.40	54.00	24.60	Vertical
4924.00	37.12	-8.74	28.38	54.00	25.62	Horizontal
Remark: 1. Final Level =	Receiver Read level	+ Factor.				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT40)			
			annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	44.54	-9.32	35.22	74.00	38.78	Vertical
4844.00	46.93	-9.32	37.61	74.00	36.39	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	38.31	-9.32	28.99	54.00	25.01	Vertical
4844.00	36.97	-9.32	27.65	54.00	26.35	Horizontal
		Test ch	annel: Middle ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	44.42	-9.11	35.31	74.00	38.69	Vertical
4874.00	46.82	-9.11	37.71	74.00	36.29	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	38.72	-9.11	29.61	54.00	24.39	Vertical
4874.00	37.40	-9.11	28.29	54.00	25.71	Horizontal
		Taskah				
			annel: Highest cl tector: Peak Valu			
Frequency	Dood Lovel	Det	Level	Limit Line	Morgin	
(MHz)	Read Level (dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Polarization
4904.00	44.77	-8.90	35.87	74.00	38.13	Vertical
4904.00	46.76	-8.90	37.86	74.00	36.14	Horizontal
	T	Dete	ctor: Average Va		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4904.00	38.46	-8.90	29.56	54.00	24.44	Vertical
			28.08	54.00	25.92	

^{1.} Final Level = Receiver Read level + Factor.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.