

Report No.: JYTSZ-R12-2202215

FCC RF Test Report

Applicant:	Sky Phone LLC
Address of Applicant:	1348 Washington Av.Suite 350, Miami Beach, Florida, United States
Equipment Under Test (E	UT)
Product Name:	SMART PHONE
Model No.:	Elite A63
Trade Mark:	SKY DEVICES
FCC ID:	2ABOSSKYELITEA63
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)
Date of Sample Receipt:	11 Nov., 2022
Date of Test:	12 Nov., to 21 Dec., 2022
Date of Report Issued:	28 Dec., 2022
Test Result:	PASS

Tested by:	Janet Wei Test Engineer	Date:	28 Dec., 2022
Reviewed by:	Resject Engineer	Date:	28 Dec., 2022
Approved by:	社会社会員も用章 Manager	Date:	28 Dec., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	28 Dec., 2022	Original

2 Contents

			Page
С	over Pa	age	1
1	Ver	sion	2
2	Cor	ntents	3
3	Ger	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	5
	3.9	Test Instruments List	6
4	Меа	asurement Setup and Procedure	8
	4.1	Test Channel	8
	4.2	Test Setup	8
	4.3	Test Procedure	10
5	Tes	t Results	11
	5.1	Summary	11
	5.1.	1 Clause and Data Summary	11
	5.1.	2 Test Limit	12
	5.2	Antenna requirement	13
	5.3	AC Power Line Conducted Emission	14
	5.4	Emissions in Restricted Frequency Bands	16
	5.5	Emissions in Non-restricted Frequency Bands	20

3 General Information

3.1 Client Information

Applicant:	Sky Phone LLC			
Address:	1348 Washington Av.Suite 350, Miami Beach, Florida, United States			
Manufacturer:	Sky Phone LLC			
Address:	1348 Washington Av.Suite 350, Miami Beach, Florida, United States			

3.2 General Description of E.U.T.

Product Name:	SMART PHONE
Model No.:	Elite A63
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	0.89 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.8V, 3000mAh
AC Adapter:	Model: ZHY-QU050100S
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Keep the EUT in continuous transmitting with modulation
ucted emission and radiated spurious emission (below 1GHz), pre-scan all data speed,
vorse case mode. The report only reflects the test data of worst mode.
15℃ ~ 35℃
20 % ~ 75 % RH
1008 mbar

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	3.7 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://jyt.lets.com</u>

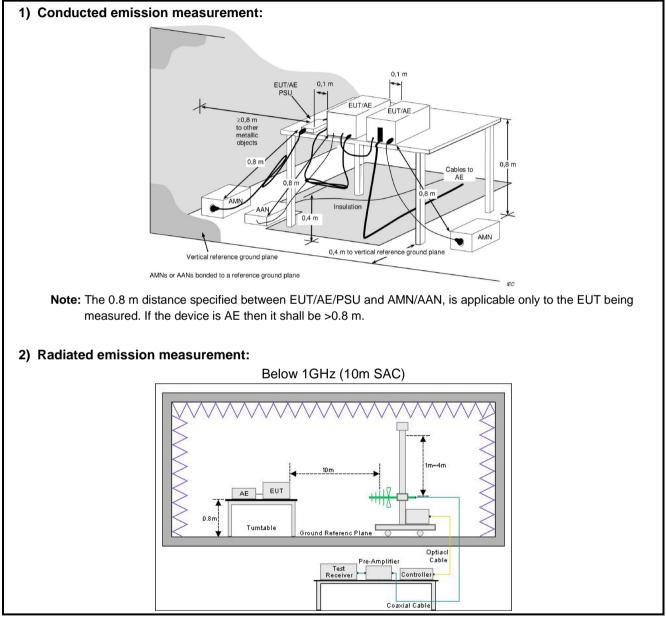
3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

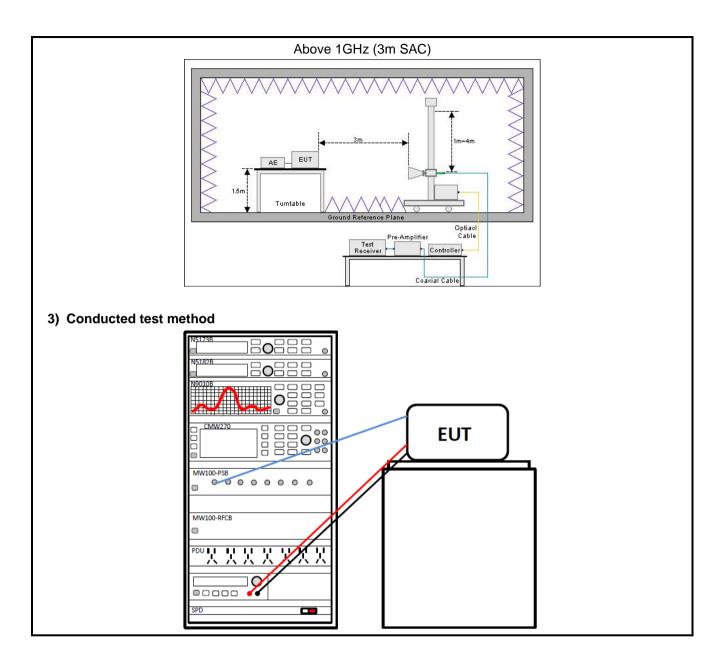
Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	04-01-2022	03-31-2023	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-31-2022	03-30-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	03-30-2022	03-29-2023	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-20-2022	01-19-2023	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-20-2022	01-19-2023	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-20-2022	01-19-2023	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-20-2022	01-19-2023	
Test Software	R&S	EMC32	Version: 10.50.40			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A		
Test Software	AUDIX	E3	V	Version: 6.110919b		

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023	
DC Power Supply	Keysight	E3642A	WXJ025-2	N/A		
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			


4 Measurement Setup and Procedure

4.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowe	Lowest channel		le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
0	2402	20	2442	39	2480	

4.2 Test Setup

4.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.
	2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	1. The BLE antenna port of EUT was connected to the test port of the test
	system through an RF cable.
	 The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE 1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE 1M PHY	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE 1M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE 1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass
Remark:			1

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items		Lin	nit					
	Frequency		Limit (dE	βμV)				
	(MHz)	Quas	si-Peak	Average				
AC Power Line Conducted	0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1				
Emission	0.5 – 5		56	46				
Emicolon	5 – 30		60	50				
	Note 1: The limit level in dBμ Note 2: The more stringent lin			of frequency.				
Conducted Output Power		For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.						
6dB Emission Bandwidth	The minimum 6 dB bandw	vidth shall be a	at least 500 k⊢	łz.				
99% Occupied Bandwidth	N/A							
Power Spectral Density	For digitally modulated system intentional radiator to the a band during any time inter	antenna shall	not be greater	than 8 dBm in any 3				
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth spectrum or digitally modu frequency power that is pr dB below that in the 100 k highest level of the desired radiated measurement, pr the peak conducted power power limits based on the permitted under paragraph this paragraph shall be 30 limits specified in §15.209 which fall in the restricted with the radiated emission	Ilated intentior oduced by the Hz bandwidth d power, base ovided the tra r limits. If the t use of RMS a h (b)(3) of this dB instead of (a) is not requised bands, as def	hal radiator is intentional ra- within the bar d on either an nsmitter demo ransmitter cor veraging over section, the a 20 dB. Attenu ired. In additio ined in §15.20	operating, the radio idiator shall be at least and that contains the RF conducted or a ponstrates compliance w inplies with the conduct a time interval, as ittenuation required un uation below the gener pon, radiated emissions (5(a), must also compl	with cted nder ral			
	Frequency		BµV/m)	Detector				
	(MHz) 30 – 88	@ 3m 40.0	@ 10m 30.0	Quasi nack				
Emissions in Restricted	<u> </u>	40.0	30.0	Quasi-peak Quasi-peak	-			
Frequency Bands	216 - 960	45.5	36.0	Quasi-peak	1			
r requericy Danus	960 - 1000	54.0	44.0	Quasi-peak Quasi-peak	1			
	Note: The more stringent limit			Quasipean	1			
Emissions in Non-restricted		-ppnee at transitio	Limit (dBµV/m) @ 3m	1			
Frequency Bands	Frequency	Ave	rage	Peake				
	Above 1 GHz		l.0	74.0	1			
	Note: The measurement band	lwidth shall be 1 M	Hz or greater.		1			
					-			

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

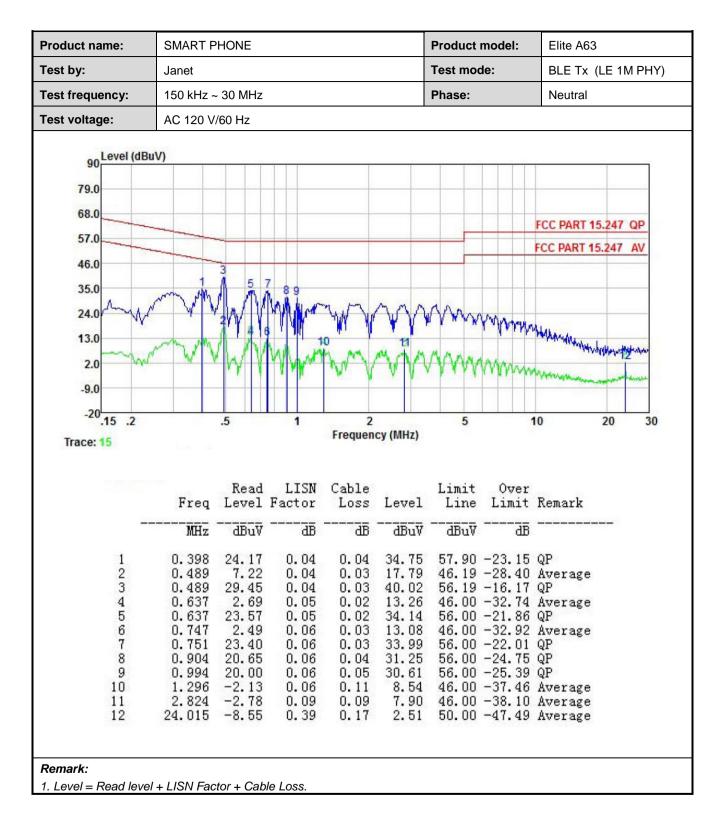
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.89 dBi. See product internal photos for details.

Product name:	SMART P	HONE			Р	roduct m	odel:	Elite A63	
ſest by:	Janet				т	est mode):	BLE Tx (LE 1M PHY)	
Test frequency:	150 kHz ~	- 30 MHz			Р	Phase:		Line	
fest voltage:	AC 120 V	/60 Hz							
Level (dB									
90 Level (ub	uvj			1					
79.0									
68.0								FOC DADT 4	5 AUZ OD
57.0								FCC PART 1	
46.0								FCC PART 1	5.247 AV
	1	1 4	6 8			11			
35.0	Marin Marin	10MV	MALLA	N. M.	MAA	Ann.			
24.0		2° 1 1	\$ UNT	W V	WYX	r r r rvv	WWWWW	Juppenen and and	
13.0	Mmon	/ M	hulund	9	MAA	10		1 and my and	Harring tothe have
2.0		WW Y	M MAR	WW	CALL	IVVW	When	Manshadh at	
				1.1.1				A CONTRACTOR OF A CONTRACTOR	County States
-9.0				-					
-20.15 .2		.5	1	2 Frequen	cy (MHz)	5		10	20 30
		.5	1		cy (MHz)	5		10	20 30
-20.15 .2				Frequen	cy (MHz)			10	20 30
-20.15 .2	Freq	Read	LISN	Frequen Cable		Limit	Over		20 30
-20.15 .2	-	Read Level	LISN Factor	Frequen Cable Loss	Level	Limit Line	Over Limit	10 Remark	20 30
-20.15 .2	Freq MHz	Read	LISN Factor	Frequen Cable		Limit Line	Over		20 30
-20.15 .2 Trace: 13	MHz 0.402	Read Level dBuV 26.22	LISN Factor dB 0.05	Frequen Cable Loss dB 0.04	Level 	Limit Line dBuV 57.81	Over Limit dB -21.00	Remark 	20 30
-20.15 .2 Trace: 13	MHz 0.402 0.489	Read Level 	LISN Factor dB 0.05 0.05	Frequen Cable Loss dB 0.04 0.03	Level 	Limit Line dBuV 57.81 46.19	Over Limit dB -21.00 -26.23	Remark QP Average	20 30
-20.15 .2 Trace: 13 	MHz 0.402 0.489 0.489 0.489 0.637	Read Level dBuV 26.22 9.38 31.71 25.75	LISN Factor dB 0.05 0.05 0.05 0.05 0.06	Frequen Cable Loss dB 0.04 0.03 0.03 0.03 0.02	Level 	Limit Line dBuV 57.81 46.19 56.19 56.00	Over Limit -21.00 -26.23 -13.90 -19.67	Remark QP Average QP QP	20 30
-20.15 .2 Trace: 13	MHz 0.402 0.489 0.489 0.637 0.751	Read Level dBuV 26.22 9.38 31.71 25.75 4.61	LISN Factor dB 0.05 0.05 0.05 0.06 0.07	Frequen Cable Loss dB 0.04 0.03 0.03 0.03 0.02 0.03	Level 	Limit Line dBuV 57.81 46.19 56.19 56.00 46.00	Over Limit -21.00 -26.23 -13.90 -19.67 -30.79	Remark QP Average QP QP Average	20 30
-20.15 .2 Trace: 13 	MHz 0.402 0.489 0.489 0.489 0.637	Read Level dBuV 26.22 9.38 31.71 25.75	LISN Factor dB 0.05 0.05 0.05 0.06 0.07 0.07	Frequen Cable Loss dB 0.04 0.03 0.03 0.03 0.02 0.03 0.03	Level dBuV 36.81 19.96 42.29 36.33 15.21 36.51	Limit Line dBuV 57.81 46.19 56.19 56.00 46.00 56.00	Over Limit -21.00 -26.23 -13.90 -19.67 -30.79 -19.49	Remark QP Average QP QP Average	20 30
-20.15 .2 Trace: 13 	MHz 0.402 0.489 0.489 0.637 0.751 0.751 0.751 0.894 0.894	Read Level dBuV 26.22 9.38 31.71 25.75 4.61 25.91 2.04 23.15	LISN Factor dB 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07	Frequen Cable Loss dB 0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.04	Level dBuV 36.81 19.96 42.29 36.33 15.21 36.51 12.65 33.76	Limit Line dBuV 57.81 46.19 56.00 56.00 46.00 56.00 46.00 56.00	Over Limit -21.00 -26.23 -13.90 -19.67 -30.79 -19.49 -33.35 -22.24	Remark QP Average QP Average QP Average QP	20 30
-20 .15 .2 Trace: 13 1 2 3 4 5 6 7 8 9	MHz 0.402 0.489 0.489 0.637 0.751 0.751 0.751 0.894 0.894 1.810	Read Level dBuV 26.22 9.38 31.71 25.75 4.61 25.91 2.04 23.15 -0.71	LISN Factor dB 0.05 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.08	Frequen Cable Loss dB 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04	Level dBuV 36.81 19.96 42.29 36.33 15.21 36.51 12.65 33.76 10.06	Limit Line dBuV 57.81 46.19 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Over Limit -21.00 -26.23 -13.90 -19.67 -30.79 -19.49 -33.35 -22.24 -35.94	Remark QP Average QP Average QP Average QP Average QP Average	20 30
-20.15 .2 Trace: 13 	MHz 0.402 0.489 0.489 0.637 0.751 0.751 0.751 0.894 0.894	Read Level dBuV 26.22 9.38 31.71 25.75 4.61 25.91 2.04 23.15	LISN Factor dB 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07	Frequen Cable Loss dB 0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.04	Level dBuV 36.81 19.96 42.29 36.33 15.21 36.51 12.65 33.76	Limit Line dBuV 57.81 46.19 56.00 46.00 56.00 46.00 56.00 46.00 46.00	Over Limit -21.00 -26.23 -13.90 -19.67 -30.79 -19.49 -33.35 -22.24 -35.94	Remark QP Average QP Average QP Average QP Average Average Average	20 30

5.3 AC Power Line Conducted Emission

5.4 Emissions in Restricted Frequency Bands

ouuoti	Name:	SMART PHONE Janet Lowest channel DC 3.8V			Product I	Nodel:	Elite A63	
st By:					Test mod	le:	BLE Tx (LE 1M PHY)	
st Cha	nnel:				Polarizati	ion:	Horizontal	
st Volt	age:					·		
1 1 1			1	FCC PART 15 (C		. 5	ART 15 C-PK Limit
	30 20 10 0 2.316 2.316 2. PK Limit • PK Detec			476G 2.357G Frequency[Hz] rizontal AV	2.3664G	2.3758G 2.3	852G 2.39	46G 2.404G
	20 10 0 2.316 2. PK Limit PK Detection PK Detection PK Detection PK Detection PK Detection PK Detection PK Limit	AV Limit AV Detector	- Honzontal PK — He Factor	Frequency[Hz] rizontal AV	Limit	Margin	852G 2.39	46G 2.404G Polarity
Suspe NO.	20 10 0 2.31G 2 PK Limit PK Detector PK Detector P	AV Limit AV Detector A List Reading [dBµV/m]	- Horizontal PK — Ho Factor [dB]	Frequency[Hz] rizontal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO.	20 10 0 2.316 2. PK Limit PK Detection PK Detection PK Detection PK Detection PK Detection PK Detection PK Limit PK Detection PK De	AV Limit AV Detector A List Reading [dBµV/m] 24.96	Factor [dB] 35.24	Frequency[Hz] rizontal AV	Limit [dBµV/m] 74.00	Margin [dB] 13.80	Trace	Polarity Horizontal
Suspe NO. 1 2	20 10 0 2.31G 2. PK Limit • PK Detect • PK Detect • PK Detect • PK Detect • PK Detect • PK Detect • PK 2. •	a List Reading [dBµV/m] 24.96 12.97	Factor [dB] 35.24 35.24	Frequency[Hz] rizontal AV	Limit [dBµV/m] 74.00 54.00	Margin [dB] 13.80 5.79	Trace PK AV	Polarity Horizontal Horizontal
Suspe NO. 1 2 3	20 10 0 2.316 2 PK Limit PK Detec PK Detec PK Detec 2.342.99 2.342.99 2.342.99 2.342.99	AV Limit AV Detector AV Detector	- Honzontal PK — Ho Factor [dB] 35.24 35.24 35.24	Frequency[Hz] rizontal AV	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 13.80 5.79 14.54	Trace PK AV PK	Polarity Horizontal Horizontal Horizontal
Suspe NO. 1 2 3 4	20 10 0 2.316 2. PK Limit PK Detector PK Detector Freq. [MHz] 2.342.99 2.342.99 2.342.99 2.374.10 2.374.10	AV Limit AV Detector AV Detec	- Horizontal PK — Horizontal PK — Horizontal PK [dB] 35.24 35.24 35.48 35.48	Frequency[Hz] rizontal AV	Limit [dBµV/m] 74.00 54.00 74.00 54.00	Margin [dB] 13.80 5.79 14.54 5.84	Trace PK AV PK AV	Polarity Horizontal Horizontal Horizontal Horizontal
Suspe NO. 1 2 3	20 10 0 2.316 2 PK Limit PK Detec PK Detec PK Detec 2.342.99 2.342.99 2.342.99 2.342.99	AV Limit AV Detector AV Detector	- Honzontal PK — Ho Factor [dB] 35.24 35.24 35.24	Frequency[Hz] rizontal AV	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 13.80 5.79 14.54	Trace PK AV PK	Polarity Horizontal Horizontal Horizontal

		SMART PHONE			Product I	Model:	Elite A63	
Test By: Test Channel:		Janet			Test mod	le:	BLE Tx (LE 1M PHY) Vertical	
		Highest channe	Polarizat	ion:				
st Volt	age:	DC 3.8V						
1 [W/Vriap	10 00 90 80 70 60 50		2	FCC PART 15	C		• 5	RT 15 C-PK Limit
	40 30 20 10 0 2.478G 2 PK Limit ♦ PK Deter		2.4846G 2. – Vertical PK –– Ver	4868G 2.489G Frequency[Hz tical AV	2.4912G 2]	2 4934G 2.	4956G 2.497	/8G 2.5G
Suspe	30 20 10 0 2.478G 2 PK Limit PK Deter	AV Limit tor AV Detector	- Vertical PK Ver	Frequency[H;	2		4956G 2.497	
	30 20 10 0 2.478G 2 PK Limit	AV Limit		Frequency[Hz		2 4934G 2 Margin [dB]	4956G 2.497	Polarity
Suspe	30 20 10 0 2.478G 2 PK Limit PK Deter PK Deter PK Deter PK Deter PK Deter PK Deter	AV Limit AV Detector a List Reading	- Vertical PK - Ver Factor	Frequency[H2 lical AV	Limit	Margin		
Suspe NO.	30 20 10 0 2.478G 2 PK Limit ◆ PK Deter ● Cted Dat Freq. [MHz]	AV Limit AV Detector A List Reading [dBµV/m]	- Vertical PK Ver Factor [dB]	Frequency[Hz Ical AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO. 1	30 20 10 0 2.478G 2 → PK Limit ◆ PK Deter → PK Deter → PK Deter → PK Deter → PK Deter	a List Reading [dBµV/m] 22.56	Factor [dB] 35.51	Frequency[H2 Ical AV	Limit [dBµV/m] 74.00	Margin [dB] 15.93	Trace	Polarity Vertical
Suspe NO.	30 20 10 0 2.478G 2 PK Limit ◆ PK Deter • PK Deter • PK Deter • PK Deter • PK Deter • PK 2483.50 2483.50	a List Reading [dBµV/m] 22.56 12.66	Factor [dB] 35.51 35.51	Frequency[H2 itcal AV	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.93 5.83	Trace PK AV	Polarity Vertical Vertical
Suspe NO. 1 2 3	30 20 10 0 2.478G 2 PK Limit ♦ PK Deter PK Deter • PK Det	a List Reading [dBµV/m] 22.56 12.66 12.65	- Vertical PK Ver Factor [dB] 35.51 35.51 35.50	Frequency[H2 Ical AV	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.93 5.83 5.85	Trace PK AV AV	Polarity Vertical Vertical Vertical

	Name:	SMART PHONE	E		Product Model:		Elite A63		
st By:		Janet Highest channel			Test mode:		BLE Tx (LE 1M PHY)		
st Cha	nnel:				Polarizatio	on:	Horizontal		
st Volt	age:	DC 3.8V							
1 [W/VHBE	110 100 90 80 70 60 50		1	FCC PART 15 C			_5	ART 15 C-PK Limit	
	40 30 20 10 0 2.478G 2 PK Limit • PK Detection	tor AV Detector		888G 2.489G Frequency[Hz] orizontal AV	2.4912G	2.4934G 2.4	956G 2.49	78G 2.5G	
	30 20 10 0 2.478G 2 PK Limit	AV Limit		Frequency[Hz]	2.4912G Limit [dBµV/m]	24934G 2.4 Margin [dB]	956G 2.49 Trace	78G 2.5G Polarity	
Suspe	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect ● Cted Data Freq. [MHz] 2483.50	AV Limit AV Detector a List Reading	Horizontal PK — H	Frequency[Hz] orizontal AV	Limit	Margin			
Suspe NO.	30 20 10 0 2.4786 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50 2483.50	a List Reading [dBµV/m]	Horizontal PK — H Factor [dB]	Frequency[Hz] orizontal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
Suspe NO. 1	30 20 10 2,4786 2 PK Limit ◆ PK Detect ● PK Detect	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector	Horizontal PK — H Factor [dB] 35.51	Frequency(Hz) onzontal AV Level [dBµV/m] 58.05	Limit [dBµV/m] 74.00	Margin [dB] 15.95	Trace	Polarity Horizontal	
Suspe NO. 1 2	30 20 10 24786 2 → PK Limit → PK Detect Freq. [MHz] 2483.50 2483.50 2488.36 2488.36	a List Reading [dBµV/m] 22.54 12.55 12.46 23.75	Horizontal PK — H Factor [dB] 35.51 35.51	Frequency[H2] orizontal AV	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.95 5.94	Trace PK AV	Polarity Horizontal Horizontal	
Suspe NO. 1 2 3	30 20 10 2,4786 2 PK Limit ◆ PK Detect ● PK Detect	AV Limit AV Detector AV Dete	Horizontal PK — H Factor [dB] 35.51 35.51 35.50	Level [dBμV/m] 58.05 48.06 47.96 1	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.95 5.94 6.04	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal	

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

	lame:	SMART PHO	NE		Pro	duct Model:	Elite A	63
est By:		Janet			Tes	t mode:	BLE T	(LE 1M PHY)
Fest Freq	uency:	30 MHz ~ 1 G	Hz		Pol	arization:	Vertica	I & Horizontal
Fest Volta	Voltage: DC 3.8V							
				Full Spectr	um			
	45 -						FOC PART 15	5.247 10m
	40							
	≥ 30							
								* *
							* *	A PARTY AND
-	ē 20 T						and a state of the	and the second se
-						In the Ball ball		
	10	بالددية أسالوار غاياته	"	Half bar bar bar bar	Lan - Alertan	A REAL PROPERTY AND A REAL		
				him her had a second	And the state of the state			
	0+	+ + +				+ +		
	30M	50 60	80 100		200	300 400	500	800 1G
				Frequen	cy in Hz			
*	Critica	LFreas PK+		FCC PART	15.247 10m	•	Final_Resu	lt QPK
	Previe	wResult 1H-PK+		 Preview Re 	sult 1V-PK+			
F	requency (MHz)	MaxPeak	Limit	Margin (dB)	Height (cm)	Pol	Azimuth	Corr. (dB/m)
F	(MHz) 165.024000	(dB µ V/m) 0 10.60	(dB µ V/m) 33.50	(dB) 22.90	(cm) 100.0	Н	(deg) 113.0	Corr. (dB/m) -15.0
F	(MHz) 165.024000 629.314500	(dB µ V/m) 0 10.60 0 21.76	(dB µ V/m) 33.50 36.00	(dB) 22.90 14.24	(cm) 100.0 100.0	H V	(deg) 113.0 14.0	(dB/m) -15.0 -6.4
F	(MHz) 165.024000 629.314500 763.514000	(dB µ V/m) 0 10.60 0 21.76 0 25.51	(dB µ V/m) 33.50 36.00 36.00	(dB) 22.90 14.24 10.49	(cm) 100.0 100.0 100.0	H V V	(deg) 113.0 14.0 108.0	(dB/m) -15.0 -6.4 -3.6
F	(MHz) 165.024000 629.314500	(dB µ V/m) 0 10.60 0 21.76 0 25.51 0 24.33 0 26.69	(dB µ V/m) 33.50 36.00	(dB) 22.90 14.24	(cm) 100.0 100.0	H V	(deg) 113.0 14.0	(dB/m) -15.0 -6.4

Above 1GHz:

			LE Tx (LE 1M PH			
			channel: Lowest ch			
	T T	D	etector: Peak Valu		Γ	T
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Martiaal
4804.00	55.03	-9.08	45.95	74.00	28.05	Vertical
4804.00	54.73	-9.08	45.65	74.00	28.35	Horizontal
_			tector: Average Va	·	· · · ·	
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	47.94	-9.08	38.86	54.00	15.14	Vertical
4804.00	47.52	-9.08	38.44	54.00	15.56	Horizontal
		Test	channel: Middle ch	nannel		
		D	etector: Peak Valu	ue		
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4884.00	55.06	-8.59	46.47	74.00	27.53	Vertical
4884.00	54.93	-8.59	46.34	74.00	27.66	Horizontal
	· · · · ·	De	tector: Average Va	alue		
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarizatior
4884.00	47.97	-8.59	39.38	54.00	14.62	Vertical
4884.00	47.70	-8.59	39.11	54.00	14.89	Horizontal
			hannel: Highest c			
_			etector: Peak Valu	[T
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	54.73	-8.03	46.70	(αΒμν/m) 74.00	27.30	Vertical
4960.00	54.51	-8.03	46.48	74.00	27.52	Horizontal
1000.00	01.01		tector: Average Va		21.02	Tionzontai
	Read Level	Factor	Level	Limit	Margin	T
Frequency		(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
Frequency (MHz)	(dBµV)	()			i	1
	(dBµV) 47.50	-8.03	39.47	54.00	14.53	Vertical

2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----