

Report No: JYTSZB-R12-2100788

FCC REPORT (Bluetooth)

Applicant:	SKY PHONE LLC
Address of Applicant:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Equipment Under Test (E	EUT)
Product Name:	4G Smart Phone
Model No.:	Elite E55Max
Trade mark:	SKY Devices
FCC ID:	2ABOSSKYELITE55MX
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	10 May, 2021
Date of Test:	10 May, to 02 Jun., 2021
Date of report issued:	16 Jun., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jun., 2021	Original

Janet Wei Test Engineer Winner Mang

Date: 16 Jun., 2021

Tested by:

Reviewed by:

Project Engineer

Date: 16 Jun., 2021

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	_
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY.	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE.	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	15.247 (a)(1) Appendix A – BT	
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	45 005 8 45 000	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A – BT	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:			

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
rest method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	4G Smart Phone
Model No.:	Elite E55Max
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	0.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2500mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19 2421MHz 39 2441MHz 59 2461MHz							

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.
Padiated Emission: The same	Ne was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	-
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date		
		inouci ito.	oonan to:	(mm-dd-yy)	(mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021				
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021				
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021				
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021				
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021				
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A				

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2105042

PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0			
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021	

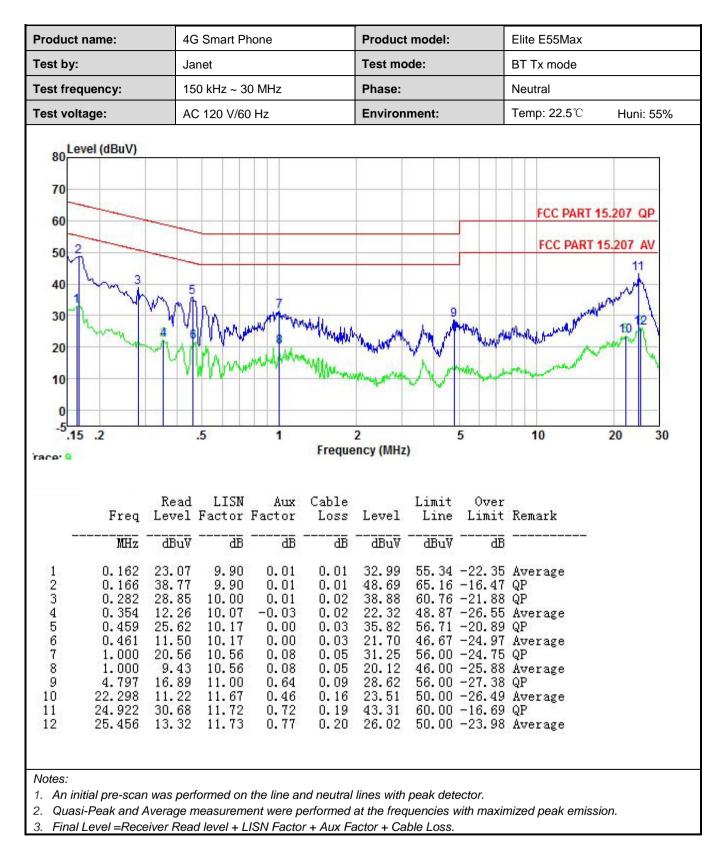
6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)							
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the							
E.U.T Antenna:								
The Bluetooth antenna is an the antenna is 0.5 dBi.	Internal antenna which permanently attached, and the best case gain of							

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.	207				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz	, Sweep time=auto				
Limit:	Frequency range (MHz)	Limit (dBuV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logari	60 thm of the frequency	50			
Test setup:	Reference Pl					
Test constants	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m					
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	his provides a ng equipment. main power through a lance with 500hm the test setup and n conducted sion, the relative ables must be changed			
Test Instruments:	Refer to section 5.9 for det	ails				
Test mode:	Hopping mode					
Test results:	Pass					



Measurement Data:

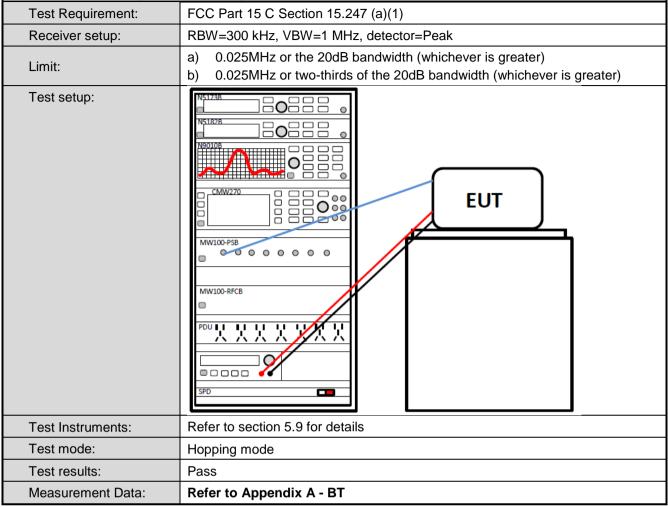
oduct name:	4G Smart Phone			4G Smart Phone Product model:					Elite E55Max			
st by:	Jai	net			Test m	ode:		BT Tx mode				
st frequency:	15	0 kHz ~ 3	0 MHz		Phase:			Line				
st voltage:	AC	: 120 V/60) Hz		Enviro	nment:		Temp: 22.5℃	Huni: 55%			
60 50 40 30 40 2 40 2 40 2 40 2 40 2 40 2 40		M	9 10 8 10 10		accord Harry			FCC PAR	T 15.207 QP			
-5 15 2		F			2		5	10	20 30			
-5 .15 .2	Read	5 LISN Factor		Freque Cable	2 ency (MHz Level	Limit			20 30			
11 'a'	Read		Aux	Freque Cable	-	Limit	Ove Limi		20 30			

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Project No.: JYTSZE2105042

0.5 Conducted Out	
Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

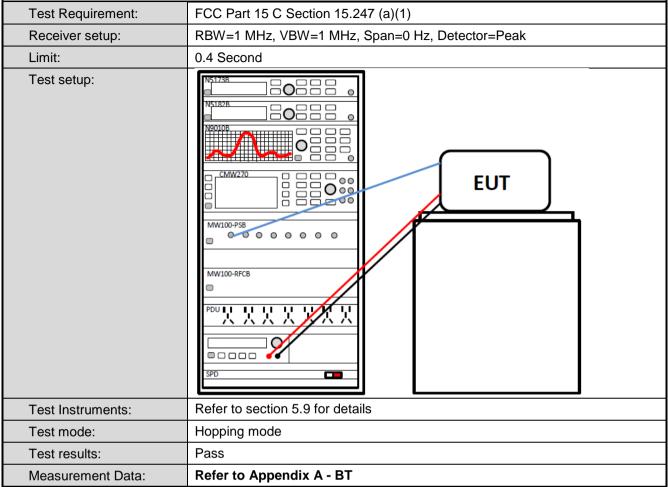
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.7 Dwell Time

6.8 Pseudorandom Frequency Hopping Sequence

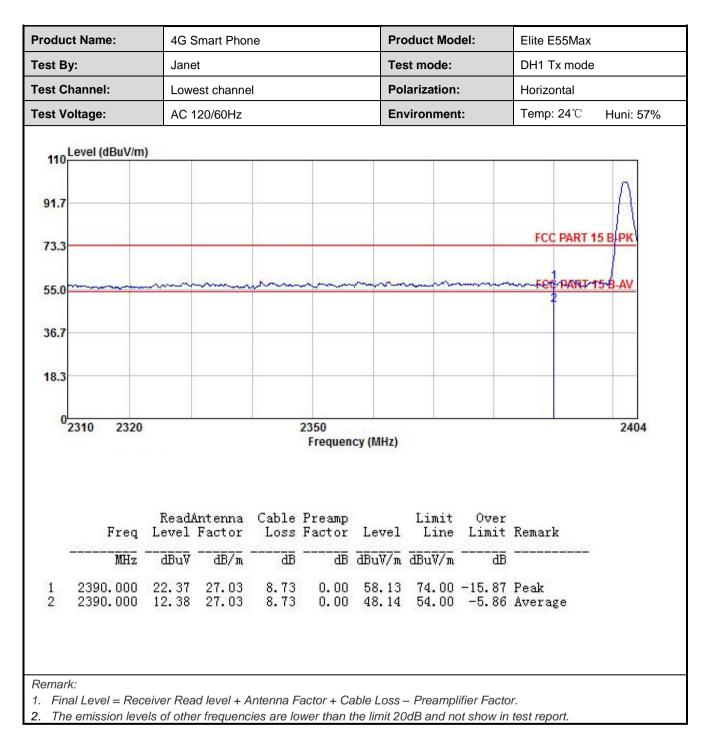
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) requirement:	
25 kHz or the 20 dB bandwid Alternatively. Frequency hop channel carrier frequencies hopping channel, whichever	s shall have hopping channel carrier frequencies separated by a n odth of the hopping channel, whichever is greater. pping systems operating in the 2400-2483.5 MHz band may have that are separated by 25 kHz or two-thirds of the 20 dB bandwidth r is greater, provided the systems operate with an output power no shall hop to channel frequencies that are selected at the system he	hopping h of the o greater
rate from a Pseudorandom of on the average by each tran	ordered list of hopping frequencies. Each frequency must be used nomitter. The system receivers shall have input bandwidths that m s of their corresponding transmitters and shall shift frequencies in	d equally atch the
EUT Pseudorandom Frequ	uency Hopping Sequence	
outputs are added in a modu	sequence: $2^9 - 1 = 511$ bits	ne first
Linear Feedback Sl	hift Register for Generation of the PRBS sequence	
•	om Frequency Hopping Sequence as follow:	
0 2 4 6	62 64 78 1 73 75 77	
The system receivers have i	ly on the average by each transmitter. input bandwidths that match the hopping channel bandwidths of th and shift frequencies in synchronization with the transmitted signa	

6.9 Band Edge

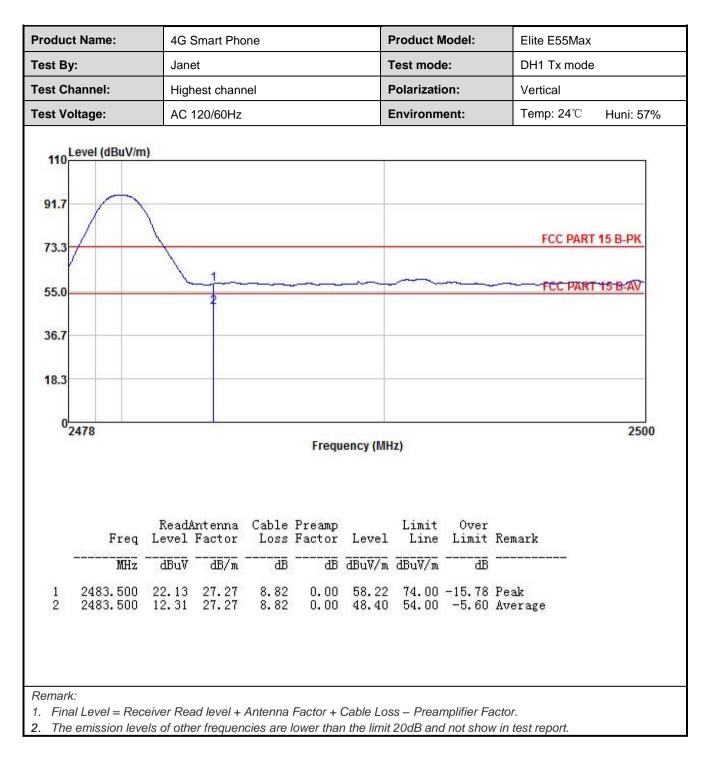
6.9.1 Conducted Emission Method

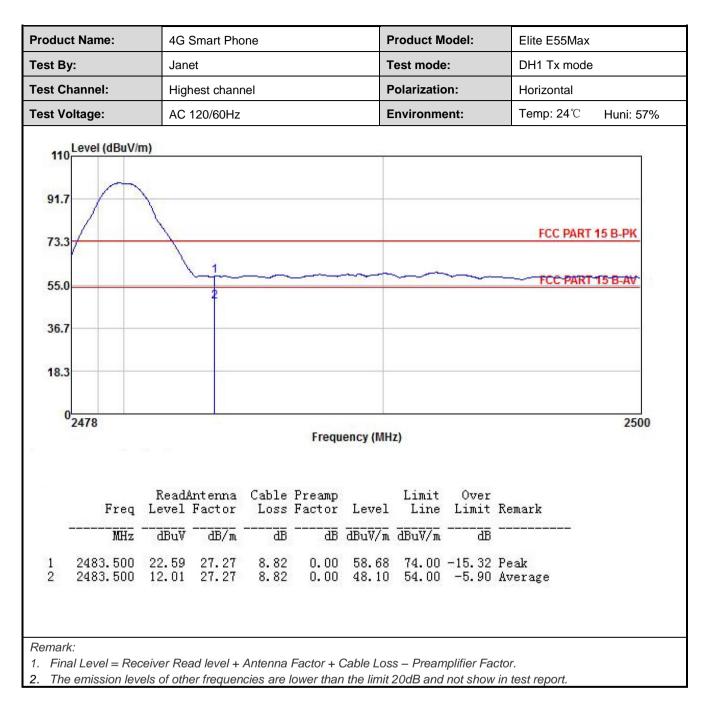
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Frequency Range:	2310 MHz to 23	90 MHz and	1 248	33.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	ſ	RBW	VBW		Remark
		Peak		1MHz	31	MHz	Peak Value
	Above 1GHz	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G			54.00		A۱	verage Value
		112		74.00		I	Peak Value
Test setup:		EUT Itable) Groun Test Receiver	3m		tenna Towe		
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the the rota table maximum reat 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	A meter camb e position of s set 3 meter ch was mour height is var termine the r d vertical po t. spected emis antenna was a was turned ading. eiver system ith Maximum on level of the d, then testin pe reported. C	ber. the rrs average of the rried max blariz ssion s tur from was n Ho e EL ng cc Othe d on	The table was highest radiation way from the in a on the top of from one meter imum value of cations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo- ould be stoppe	ion. nterfe a vari er to fo the fi antenr s arran from 0 360 o Detect de wa dand ssions g peal	ed 360 rence-re able-he our met eld stre ha are s nged to 1 meter degrees Function as 10dB I the pea s that dii k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section			· ·			
Test mode:	Non-hopping m	ode					
Test results:	Passed						

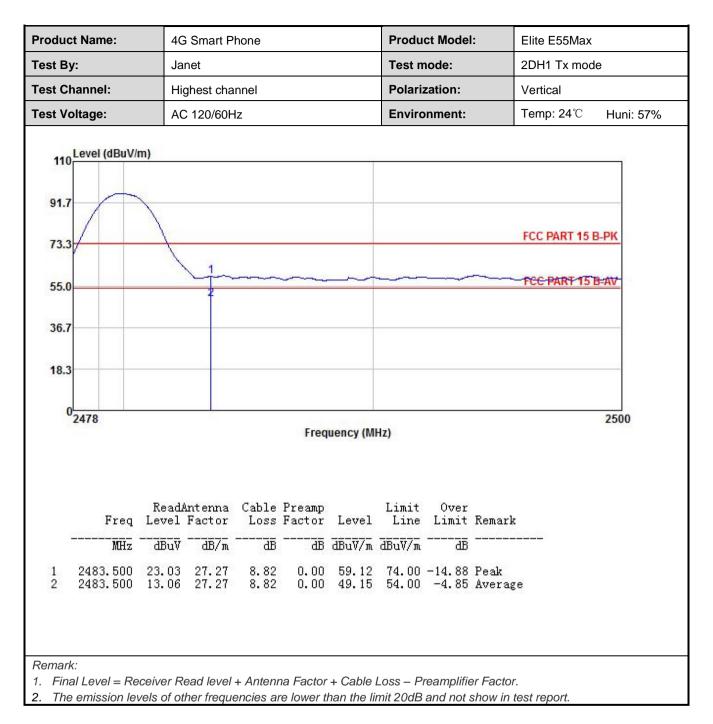
GFSK Mode:

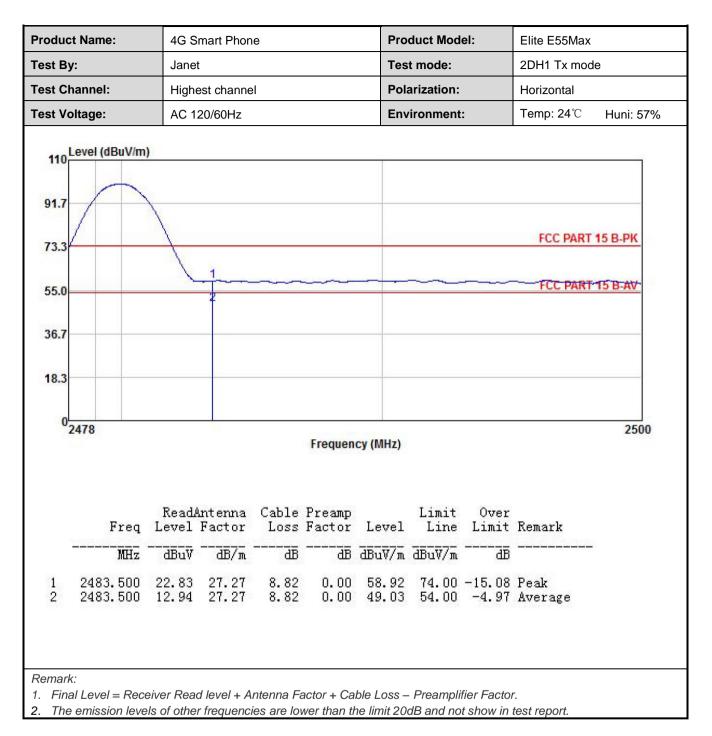

roduct Name	:	4G \$	Smart PhoneProduct Model:Elite E55Max								
est By:	Janet			Test mode:			DH1 Tx mode				
est Channel:		Low	est chan	nel			Polarization:		Ve	ertical	
est Voltage:		AC	120/60Hz	2			Environ	ment:	Te	emp: 24℃	Huni: 57%
110 Level (df	3uV/m)								0		Ĩ
91.7				-							Λ
73.3									F	CC PART 15	BPK
55.0	m		~~~~~		min		m		m	2	B-AV
36.7											
18.3					_						
0 2310	2320	-55			2350 Frequ	ency <mark>(</mark> MH	Z)				2404
F	req L	ReadAn evel 1	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
]	Hz	dBu⊽			āb	dBuV/m	dBuV/m	āē			
1 2390.1 2 2390.1		1.52 1.59	27.03 27.03		0.00 0.00	57.28 47.35		-16.72 -6.65		e	
emark:											



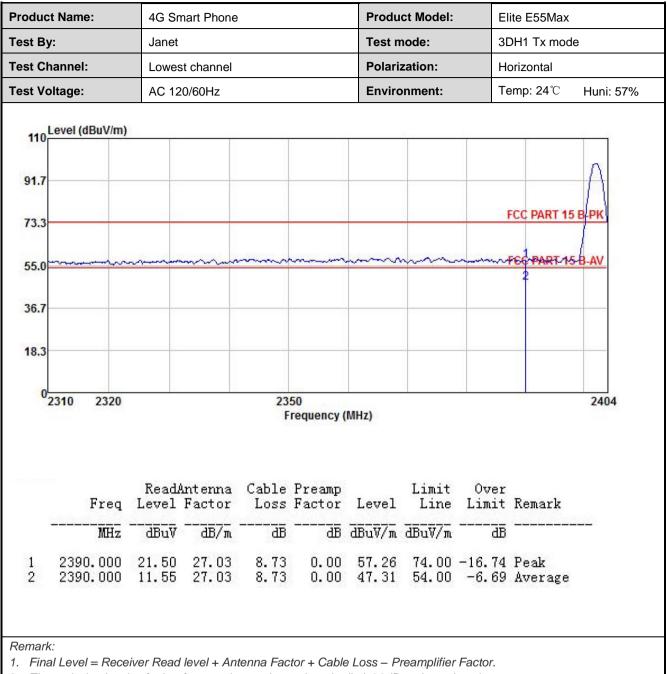
Project No.: JYTSZE2105042

π /4-DQPSK mode


	et Name: 4G Smart Phone Product Model:			Elite E55M	Elite E55Max						
est By:	Jan	et		Test mode: 2DH1 Tx mode			node				
est Channel:	Low	est chann	el		P	olarizatio	on:	Vertical	Vertical		
est Voltage:	AC	AC 120/60Hz			E	invironm	ent:	Temp: 24%	C Huni: 57%		
110 Level (dBuV	/m)										
91.7											
73.3								FCC P/	ART 15 B PK		
55.0	*	~~~~	~~~~		<u> </u>	~~~^		FECP	ART-15-8-AV		
36.7											
18.3											
0 2310 232	20			2350 Frequ	iency (MH	7)			2404		
				Trequ	iency (min	2)					
Freq	Read/ Level	Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark			
MHz	 dBu∛	 	<u>ط</u> ق		dBuV/m	dBuV/m	<u>a</u> B				
1 2390.000	21.13 11.31	27.03 27.03	8.73 8.73		56.89 47.07		-17.11 -6.93	Peak Average			



2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



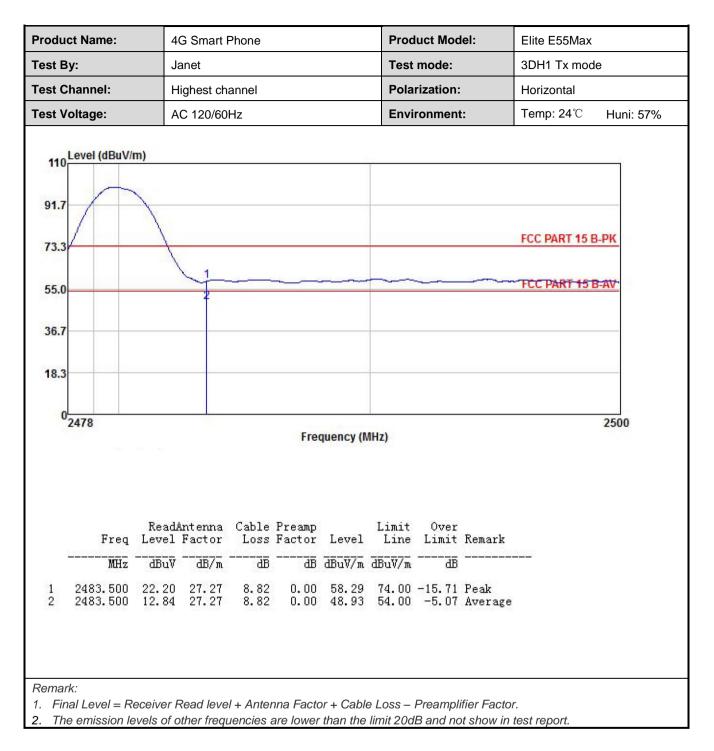
8DPSK mode

oduct Name:		Smart Pho	one			Product I	Nodel:	Elite I	Elite E55Max			
/ :	Jan	et				Test mod	mode: 3DH1 Tx mode			e		
nannel:	Lov	vest chanr	nel		1	Polarizati	Vertic	Vertical		Vertical		
oltage:	AC	120/60Hz			1	Environm	nent:	Temp	: 24 ℃	Huni: 57%		
Level (dBuV/n	n)											
										Λ		
								F	CC PAR	Г 15 B-PK		
	~~~~~~	·····		m	~~~~		man	m	EC PAR	T-15-B-AV		
			_						_			
2310 2320	)			2350 Freq	uency (M	Hz)				2404		
Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level			Remark				
MHz	dBuV	<u>d</u> B/m	<del>هه</del>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>					
2390.000	22.91 12.99		8.73 8.73	0.00 0.00	58.67 48.75		-15.33 -5.25	Peak Average				
	r: hannel: hitage: Level (dBuV/n 2310 2320 Freq	r: Jan hannel: Low hitage: AC Level (dBuV/m)	r: Janet hannel: Lowest chann hitage: AC 120/60Hz Level (dBuV/m) 2310 2320 ReadAnt enna Freq Level Factor	r: Janet hannel: Lowest channel htage: AC 120/60Hz Level (dBuV/m) 	r: Janet hannel: Lowest channel AC 120/60Hz Level (dBuV/m) 	Janet     Janet       hannel:     Lowest channel     i       hannel:     AC 120/60Hz     i       Level (dBuV/m)     i     i       Level Factor     Loss Factor     i	r: Janet Test mod hannel: Lowest channel Polarizati bitage: AC 120/60Hz Environm Level (dBuV/m) 	r: Janet Test mode: hannel: Lowest channel Polarization: httage: AC 120/60Hz Environment: Level (dBuV/m) 	r: Janet Test mode: 3DH1 hannel: Lowest channel Polarization: Vertic oltage: AC 120/60Hz Environment: Temp Level (dBuV/m)	r: Janet Test mode: 3DH1 Tx mod hannel: Lowest channel Polarization: Vertical bitage: AC 120/60Hz Environment: Temp: 24°C Level (dBuV/m) FCC PAR FCC PAR FCC PAR 2310 2320 2350 Frequency (MHz) ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark		

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report






2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.







# 6.10 Spurious Emission

#### 6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT



#### 6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209					
Test Frequency Range:	9 kHz to 25 GHz							
Test Distance:	3m or 10m							
Receiver setup:	Frequency	Detecto	r	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-pea	ak	120kHz	300kH	Iz Quasi-peak Value		
	Above 1GHz	Peak	k 1MHz		3MHz	z Peak Value		
	Above 1GHZ	RMS		1MHz	3MHz	z Average Value		
Limit:	Frequenc	су –	Limit (dBuV/m @10m)			Remark		
	30MHz-88N	ЛНz	30.0			Quasi-peak Value		
	88MHz-216	MHz	33.5			Quasi-peak Value		
	216MHz-960	)MHz		36.0		Quasi-peak Value		
	960MHz-10	GHz		44.0		Quasi-peak Value		
	Frequenc	су –	Lim	nit (dBuV/m	@3m)	Remark		
	Above 1G	U	54.0			Average Value		
	Above TG		74.0			Peak Value		
Test setup:	Below 1GHz	rn 0.8m	im			Antenna Tower Search Antenna RF Test Receiver		
	Above 1GHz	(Turntable)	Test Rd	3m Ground Reference Plane	forn Antenna	Antenna Tower		
Test Procedure:	1GHz)/1.5m (below 1GH	n(above 1G Iz)or 3 mete	GHz) er ch	above the namber(abov	ground a /e 1GHz)	ating table 0.8m(below at a 10 meter chamber ). The table was rotated ghest radiation.		

Project No.: JYTSZE2105042



	<ol> <li>The EUT was set 10 meters(below 1GHz) or 3 meters(above 1GHz) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> </ol>					
	<ol> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> </ol>					
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					
Remark:	<ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> <li>9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.</li> </ol>					



#### Measurement Data (worst case):

#### Below 1GHz:

Product	Name:	4G Smart Phone	Prod	luct Model:	Elite E55Max BT Tx mode		
Test By:		Janet	Test	mode:			
Test Fre	quency:	30 MHz ~ 1 GHz	Hz ~ 1 GHz Polarization: Vertical & H		Vertical & Horizontal		
Test Vol	tage:	AC 120/60Hz	Envi	ronment:	Temp: 24°C Huni: 57		
			FullSpectrum				
	⁴⁵ T				FCC PART 15.2	47 10m	
	40						
	> ³⁰						
	Por the second s	*			*	ada ata	
	·= 20+						
					Aladel and a second second		
	10	MANUT IN ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	hi dh' chile. M'		edd ^{gwer}		
		WWW WWWWW Jak					
	T		-11-4-1 -1-4-1				
	0 <del> </del> 30M	50 60 80 100	н на	300 400	<del>       </del> 500 80		
	00141	50 60 60 100	Frequency in I		500 00		
			Trequency ini	112			
_	_					_	
- 1	Frequency↓ (MHz)∂		mit∔ Margin∔ Bµ (dB)∂	Height↓ Polℯ (cm)ℯ		Corr.↓ dB/m)↩	
- 7	57.06300		<u>30.00</u> € 4.38₽	100.0+ H+	137.0	-16.5	
•	86.35700	0↩ 18.56↩	30.00	100.0⊮ V↩	77.0⊷	-20.1₽	
•	562.53000		<b>36.00</b> ₽ <b>12.71</b> ₽	100.0₽ V₽	<b>129.0</b> ₽	<b>-7.5</b> ₽	
•	958.67800		<b>36.00</b> ₽ <b>9.01</b> ₽	100.0⊷ V⊷	195.0⊷	<b>0.0</b> ⊷	
•	265.03100		36.00	100.0⊷ V⊷	322.0₽	-15.5	
	30.00000	0⊷ 28.62⊷	30.00	100.0↩ V↩	<b>338.0</b> ₽	<b>-17.7</b> ₽	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.



#### Above 1GHz:

			annel: Lowest ch			
		De	tector: Peak Valu	Ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	58.83	-10.39	48.44	74.00	25.56	Vertical
4804.00	58.35	-10.39	47.96	74.00	26.04	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.16	-10.39	37.77	54.00	16.23	Vertical
4804.00	49.77	-10.39	39.38	54.00	14.62	Horizonta
		Toot ob	annel: Middle ch			
			tector: Peak Valu			
Frequency	Read Level	De	Level	Limit Line	Margin	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4882.00	58.83	-10.18	48.65	74.00	25.35	Vertical
4882.00	57.86	-10.18	47.68	74.00	26.32	Horizonta
		Dete	ctor: Average Va	alue	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	47.63	-10.18	37.45	54.00	16.55	Vertical
4882.00	49.64	-10.18	39.46	54.00	14.54	Horizonta
			annel: Highest cl tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	59.23	-10.12	49.11	74.00	24.89	Vertical
4960.00	57.87	-10.12	47.75	74.00	26.25	Horizonta
		Dete	ctor: Average Va	alue		
Frequency	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
(MHz)	(UDUV)					
	47.75	-10.12	37.63	54.00	16.37	Vertical

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.