

Report No: JYTSZB-R12-2100783

FCC REPORT

Applicant:	SKY PHONE LLC		
Address of Applicant:	1348 Washington Av. Suite 350, Miami Beach, FL 33139		
Equipment Under Test (E	EUT)		
Product Name:	Tablet		
Model No.:	Elite Octa		
Trade mark:	SKY Devices		
FCC ID:	2ABOSSKYELIOCTA		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	10 May, 2021		
Date of Test:	11 May, to 03 Jun., 2021		
Date of report issued:	08 Jun., 2021		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 Jun., 2021	Original

Janet Wei

Tested by:

Test Engineer

Date: 08 Jun., 2021

Reviewed by:

Winner Thang

Project Engineer

Date: 08 Jun., 2021

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
_			
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	-
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	-
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	15
	6.6.1	Conducted Emission Method	15
	6.6.2	Radiated Emission Method	
	6.7	SPURIOUS EMISSION	21
	6.7.1	Conducted Emission Method	21
	6.7.2	Radiated Emission Method	22
7	TES	Т SETUP PHOTO	
8	FUT	CONSTRUCTIONAL DETAILS	37
0	LUI		

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass		
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass		
Conducted Band Edge		Appendix A - BLE	Pass		
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass		
Conducted Spurious Emission	15.205 & 15.209	Appendix A - BLE	Pass		
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Not Applicable. 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). ANSI C63.10-2013					
Test Method: KDB 558074 D01 15.247	Meas Guidance v05r02				

General Information 5

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	Elite Octa
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 4000mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 1500mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	
Note:								

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2105040

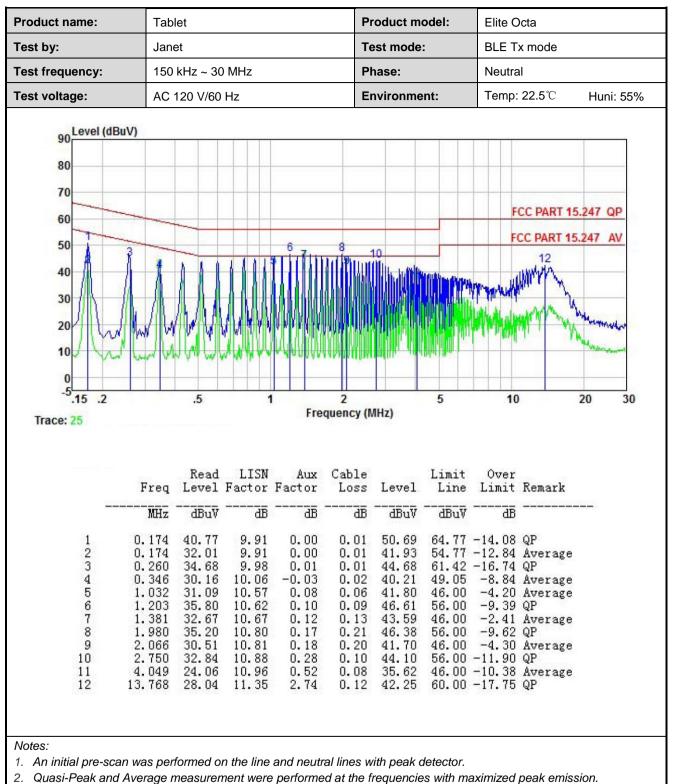
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0		
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement:

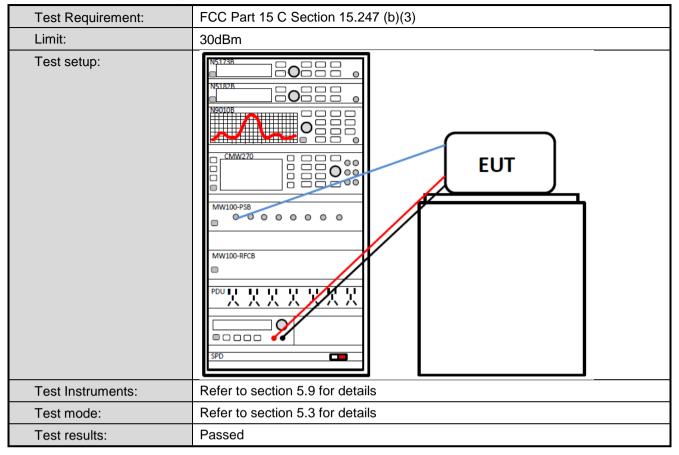
Standard requirement:	FCC Part 15 C Section 15.203 /247(b)					
responsible party shall be us antenna that uses a unique of so that a broken antenna car electrical connector is prohib 15.247(b) (4) requirement: (4) The conducted output por antennas with directional gai section, if transmitting antenn power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the					
E.U.T Antenna:						
E.U.T Antenna: The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.5 dBi.						

6.2 Conducted Emission

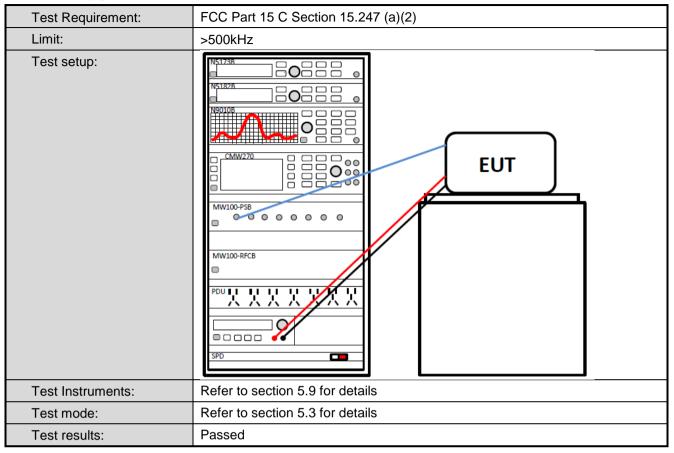

Test Requirement:	FCC Part 15 C Section 15.207						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (,				
	Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46 0.5-5 56 46						
	0.5-5	46					
	5-30 * Decreases with the logarithm	60	50				
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	s are connected to the ma on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of to the block diagram of e checked for maximum and the maximum emission and all of the interface cab	hich provides a ng equipment. main power through a lance with 500hm the test setup and conducted on, the relative les must be changed				
Test setup:	Reference	80cm Filter EMI Receiver	– AC power				
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data:

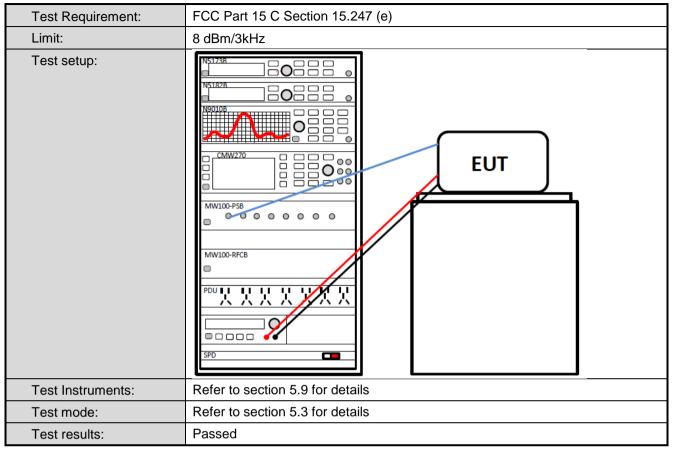
Product name:	Table	Tablet			Tablet Product model:			odel:	Elite Octa			
Гest by:	Janet			Те	st mode:	:	BLE Tx mode					
Test frequency:	150 k	Hz ~ 30 MHz		Ph	ase:		Line	Line				
Test voltage:	AC 12	AC 120 V/60 Hz		En	vironme	nt:	Temp:	22.5 ℃	Huni: 55%			
90 Level (dBu 80 70 60 50 40 30 20 10 0			5					CC PART 15.				
-5.15 .2 Trace: 27		.5	1 Freq	2 uency (M	Hz)	5	10		20 30			
15 .2	Freq MHz	.5 Read LIS Level Facto dBuV d	Freq N Aux r Factor		Hz) Level dBuV	5 Limit Line dBuV	Over	Remark	20 30			



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power

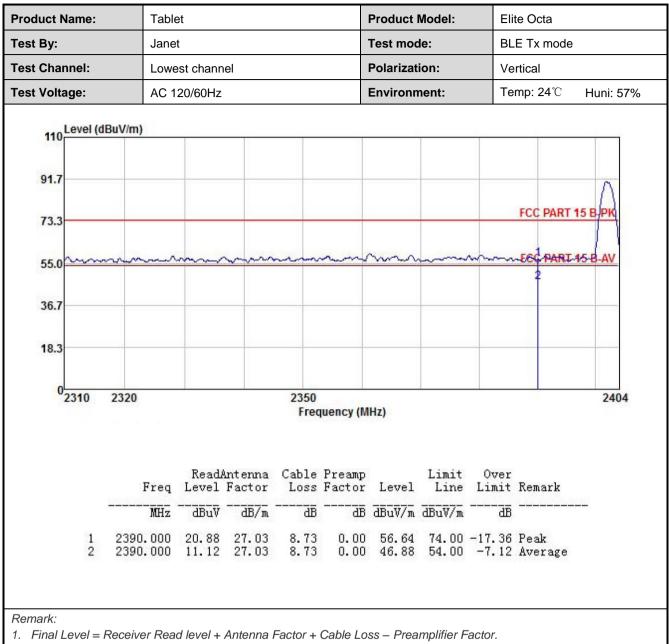


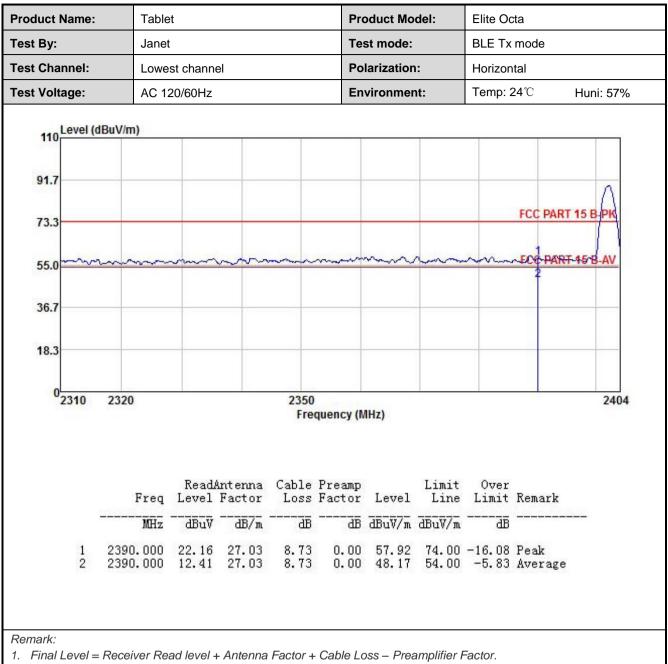
6.4 Occupy Bandwidth

6.5 Power Spectral Density

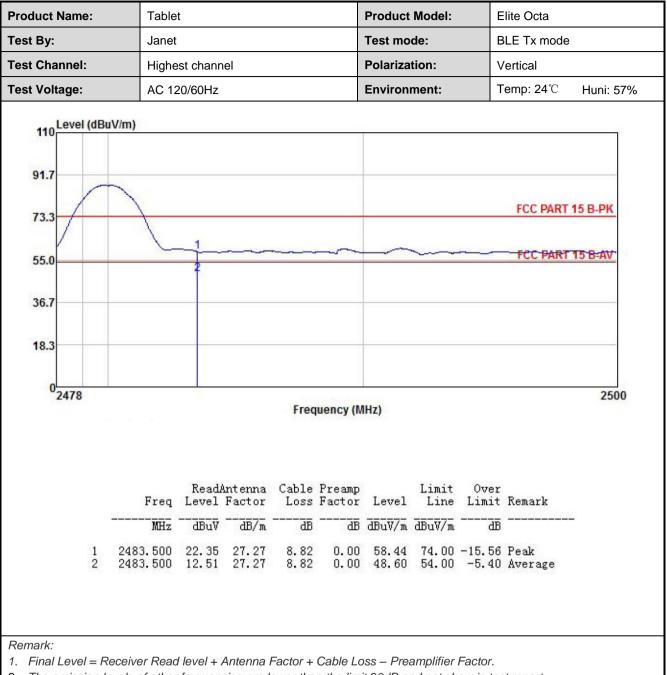
6.6 Band Edge

6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	2390 MHz an	d 2483.5MHz to 2	2500 MI	Hz			
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	W Remark			
	Above 1GHz	Peak	1MHz	3MI				
		RMS	1MHz	3MI	U U			
Limit:	Frequen	icy I	<u>imit (dBuV/m @:</u> 54.00	3m)	Remark Average Value			
	Above 10	GHz —	74.00		Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data 							
Test setup:		LEUT urntable) Gro Test Receive	Horn Antenna Horn Antenna 3m und Reference Plane	Antenna Towe	ar Ar			
Test Instruments:	Refer to sectio	on 5.9 for det	ails					
Test mode:	Refer to section	on 5.3 for det	ails					
Test results:	Passed							



6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	tor RBW		W	Remark	
·····	30MHz-1GHz	Quasi-peak	120KHz	300K	КНz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MF	Ηz	Peak Value	
	7,0070 10112	RMS	1MHz	3MI	Ηz	Average Value	
Limit:	Frequency		mit (dBuV/m @	10m)		Remark	
	30MHz-88M		30.0			luasi-peak Value	
	88MHz-216M		33.5			luasi-peak Value	
	216MHz-960		36.0			luasi-peak Value	
	960MHz-1G Frequency		44.0 .imit (dBuV/m @	(3m)	Q	uasi-peak Value Remark	
	Frequency	/	<u>ווווו (משטיאוו ש</u> 54.0	:511)		Average Value	
	Above 1GH	lz 📃	74.0			Peak Value	
	 (below 1G rotated 36 radiation. 2. The EUT w away from on the top of 3. The antenr the ground Both horizo make the m 4. For each s case and t meters and to find the r 5. The test-re Specified B 6. If the emiss the limit sp of the EUT have 10 dE 	Hz)or 3 me of degrees vas set 10 m the interference of a variable- the height is to determine to determine to determine to determine suspected en then the ante the rota tab maximum rease eceiver syste andwidth wire sion level of ecified, then would be rease margin wou	eter chamber(to determine eters(below 10 ence-receiving height antenna varied from o ne the maximum rtical polarization mission, the E enna was tuned ading. em was set th Maximum H the EUT in pe testing could the ported. Other ild be re-tested	above the p GHz) or antenr a tower. ne mete um valu ions of EUT wa d to he from 0 to Peal old Mod ak mod pe stopp wise the d one by	1GHz) position 3 me ha, wh er to f the a is arra- ights degree k Det de le was ped an e emis y one	10 meter chamber). The table was in of the highest eters(above 1GHz) hich was mounted four meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 es to 360 degrees ect Function and a 10 dB lower than hd the peak values ssions that did not using peak, quasi- reported in a data	
Test setup:		3m <		RF	Antenna [*] Search Antenna Fest eiver —		

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2105040

	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

duct Name:	Tablet	Tablet			:	Elite Octa	Elite Octa		
t By:	Janet		Test	mode:		BLE Tx mode			
t Frequency:	30 MHz ~ 1 GHz	30 MHz ~ 1 GHz Polarization:			Polarization:		lorizontal		
t Voltage:	ge: AC 120/60Hz			ironment:		Temp: 24 ℃	Huni: 57		
		Full Sr	pectrum						
45						FCC PART 15	247.10m		
45 T							Γ		
40 +									
30									
_ ≥ 0							. **		
Level in dBμV	*					Ŧ	and the second second		
·= 20						T			
eve		*	(a dan barren			
1 1	*			a. Ind	d al de la la	. Jacob Martin			
10-			Pillond J	the full de la de la de	L HAR				
		The state of the state of the state of the		a distant and the second					
	and the second se								
0 30M	50 60 80) 100M	200	300	400	500	800 1G		
30141	50 60 80				400	500			
		Frec	uency in H	1Z					
)									
J									
r									
 Frequency 	y↓ MaxPeak↓	Limit↓	Margin↓	Height↓	Polℯ	Azimuth↓	Corr.↓ ₁		
■ Frequency (MHz)+	y↓ MaxPeak↓ (dB म V/m)∛	Limit↓ (dB µ	Margin↓ (dB)₊	Height↓ (cm)↩	Polℯ	Azimuth↓ (deg)⊷	Corr.↓ (dB/m)↩		
	(dB ^µ V/m)⊮				Pole He	(deg)⊮ 0.0⊬			
(MHz)∉	(dB ዞ V/m)₊ ↓ 24.84₊	(dB	(dB)	(cm)∉		(deg)∉	(dB/m)↩ -16.4↩ -19.8↩		
(MHz) ■ 55.996000 ■ 76.754000 ■ 30.776000	(dB ዞ V/m)∂ ∂ 24.84∂ ∂ 13.34∂ ∂ 13.60∂	(dB µ 30.004 30.004 30.0042	(dB).₀ 5.17.₀ 16.66.₀ 16.40.₀	(cm). 100.0. 100.0. 100.0.	H H H	(deg). 0.0⊷ 27.0⊷ 335.0⊷	(dB/m) (d		
(MHz)↔ 55.996000 76.754000 30.776000 562.530000	(dB µ V/m). 0.0 24.84.0 0.0 13.34.0 0.0 13.60.0 0.0 22.07.0	(dB µ 30.00.0 30.00.0 30.00.0 36.00.0	(dB). 5.17. 16.66. 16.40. 13.93.	(cm). 100.0. 100.0. 100.0. 100.0.	H H H V	(deg). 0.0↔ 27.0↔ 335.0↔ 42.0↔	(dB/m)⊸ -16.4⊸ -19.8⊸ -17.2⊸ -7.5⊸		
(MHz) ■ 55.996000 ■ 76.754000 ■ 30.776000	(dB µ V/m). 0.0 24.84.0 0.0 13.34.0 0.0 13.60.0 0.0 22.07.0 0.0 27.17.0	(dB µ 30.004 30.004 30.0042	(dB).₀ 5.17.₀ 16.66.₀ 16.40.₀	(cm). 100.0. 100.0. 100.0.	H H H	(deg). 0.0⊷ 27.0⊷ 335.0⊷	(dB/m) (d		

Remark:

1. MaxPeak= Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

		Test ch	annel: Lowest ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	54.47	-10.39	44.08	74.00	29.92	Vertical
4804.00	55.08	-10.39	44.69	74.00	29.31	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	47.02	-10.39	36.63	54.00	17.37	Vertical
4804.00	46.84	-10.39	36.45	54.00	17.55	Horizontal
			annel: Middle ch			
		Det	tector: Peak Valu		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	54.02	-10.18	43.84	74.00	30.16	Vertical
4884.00	55.04	-10.18	44.86	74.00	29.14	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	46.61	-10.18	36.43	54.00	17.57	Vertical
4884.00	47.29	-10.18	37.11	54.00	16.89	Horizontal
			annel: Highest cl			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	tector: Peak Valu Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	53.79	-10.12	43.67	74.00	30.33	Vertical
4960.00	54.82	-10.12	44.70	74.00	29.30	Horizontal
1000100	0 1102		ctor: Average Va		20.00	Tionzonitai
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	47.04	-10.12	36.92	54.00	17.08	Vertical
4960.00	46.94	-10.12	36.82	54.00	17.18	Horizontal
	Receiver Read level levels of other frequ		er than the limit 200	dB and not show in te	est report.	