

Report No: JYTSZB-R12-2101266

FCC REPORT

Applicant:	SKY PHONE LLC			
Address of Applicant:	1348 Washington Av. Suite 350, Miami Beach, FL 33139			
Equipment Under Test (E	EUT)			
Product Name:	4G Smart Phone			
Model No.:	Sky BlackMax			
Trade mark:	SKY DEVICES			
FCC ID:	2ABOSSKYBLACKMX			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of sample receipt:	02 Jul., 2021			
Date of Test:	03 Jul., to 27 Jul., 2021			
Date of report issued:	27 Jul., 2021			
Test Result:	PASS*			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	27 Jul., 2021	Original

Tested by:

Janet Wei Test Engineer

Date: 27 Jul., 2021

Reviewed by:

Winner Mang

Project Engineer

Date: 27 Jul., 2021

Project No.: JYTSZE2107006

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
	_
4 TEST SUMMARY	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T	5
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 MEASUREMENT UNCERTAINTY	
5.6 LABORATORY FACILITY	6
	6
5.8 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREME	NT DATA8
6.1 ANTENNA REQUIREMENT	
6.2 CONDUCTED EMISSION	9
6.3 CONDUCTED OUTPUT POWER	
6.4 OCCUPY BANDWIDTH	
6.5 POWER SPECTRAL DENSITY	
6.6 BAND EDGE	
6.6.1 Conducted Emission Method	
6.6.2 Radiated Emission Method	
6.7 Spurious Emission	
6.7.1 Conducted Emission Method	
6.7.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge		Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission		Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass
Remark:	1	1	1

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	4G Smart Phone
Model No.:	Sky BlackMax
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 72.2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 1400mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 500mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			
Note:								

1. For 802.11n-HT40 mode, the channel number is from 3 to 9;

2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	6.5Mbps

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Biconical Antenna	SCHWARZBECK	VUBASTIT	309	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Hom Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\ \	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Circulate d Otation	Dahda 8 Cabwarn		1 40 402	07-22-2020	07-21-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2021	07-21-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32	Version: 10.50.40		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	9429624/040	06-18-2020	06-17-2021
LISIN	Ronde & Schwarz	ESH3-20	8438621/010	06-18-2021	06-17-2022
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2107006

Report No: JYTSZB-R12-2101266

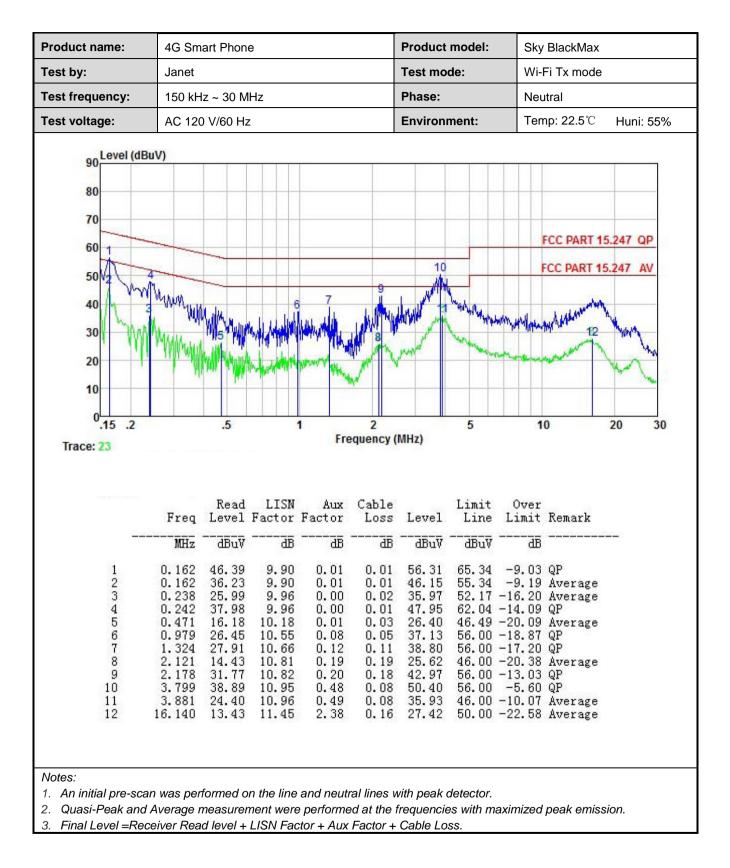
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

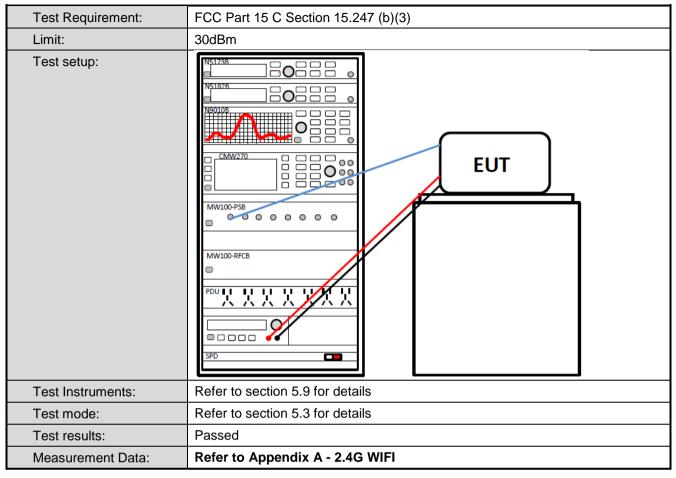
6.1 Antenna requirement

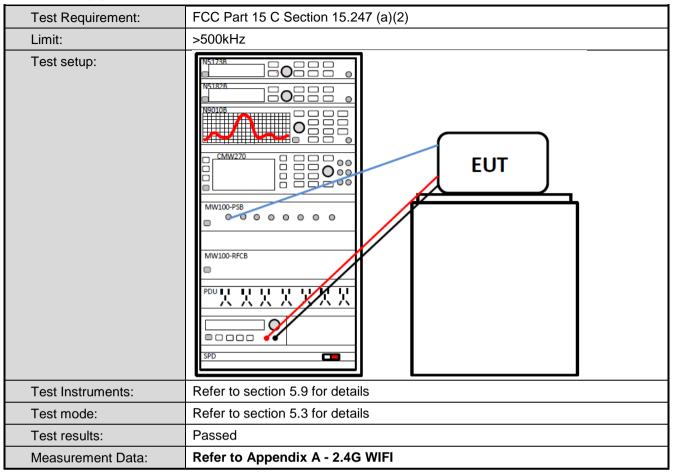
Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Wi-Fi antenna is an Inter antenna is 0.5 dBi.	nal antenna which cannot replace by end-user, the best case gain of the

6.2 Conducted Emission

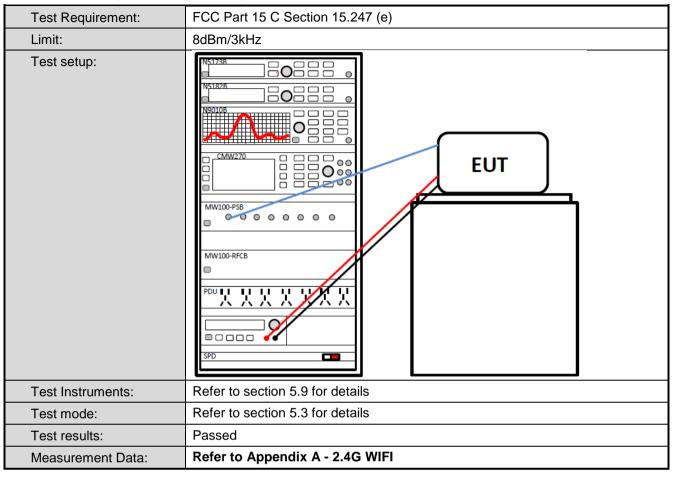

Test Requirement:	FCC Part 15 C Section 15.2	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz		
Limit:	Frequency range (MHz)	Limit (c	dBuV)
	,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarit		
Test procedure	 line impedance stabiliza 50ohm/50uH coupling i The peripheral devices LISN that provides a 50 termination. (Please ref photographs). Both sides of A.C. line a interference. In order to positions of equipment 	brs are connected to the mation network (L.I.S.N.), with mpedance for the measure are also connected to the Dohm/50uH coupling imperferent to the block diagram of are checked for maximum of find the maximum emission and all of the interface call. 10(latest version) on control of the second control of the se	hich provides a ing equipment. main power through a dance with 500hm the test setup and conducted on, the relative oles must be changed
Test setup:		st	er — AC power
Test Instruments:	Refer to section 5.9 for deta	ils	
Test mode:	Refer to section 5.3 for deta	ils	
Test results:	Passed		

Measurement Data:


	4G Smar	THONE			Product	model:	Sky	BlackMax	
Test by:	Janet				Test mod	de:	Wi-F	-i Tx mode	
Test frequency:	150 kHz	~ 30 MHz			Phase:		Line	;	
Test voltage:	AC 120 \	V/60 Hz			Environr	nent:	Tem	np: 22.5℃	Huni: 55%
80 70 60 50 20 40 20	3 MMMM MMM MMMMMMM		15 Martin	M.		10 hele how how	FI	CC PART 15	
10 0.15 .2 Trace: 21		.5	1 Fre	2 equency (f	MHz)	5	10)	20 30
		Read LISN Level Factor	Fre Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	20 30
0.15 .2	MHz	Read LISN	Aux Factor 	equency(N Cable		Limit	Over Limit dB	Remark	20 30



6.3 Conducted Output Power



6.4 Occupy Bandwidth

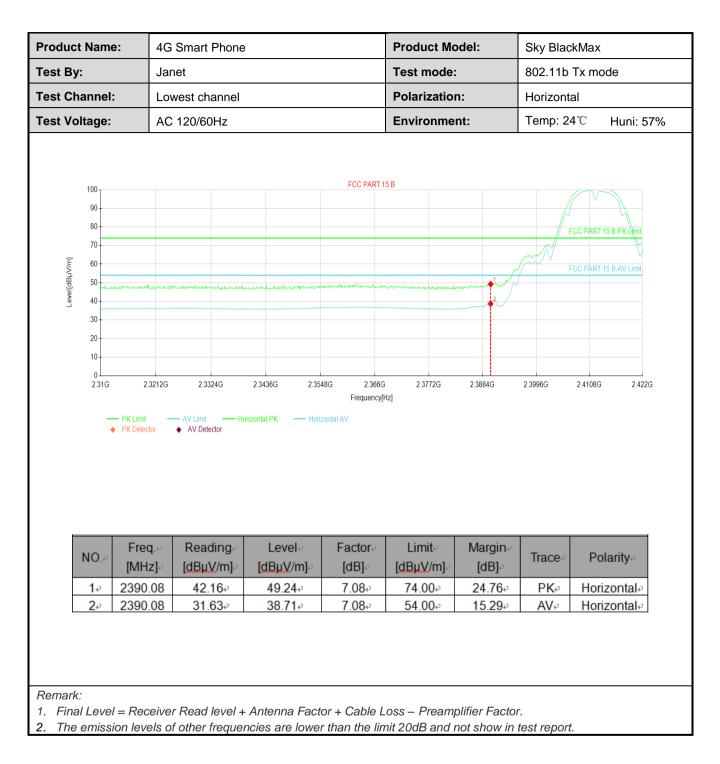
6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

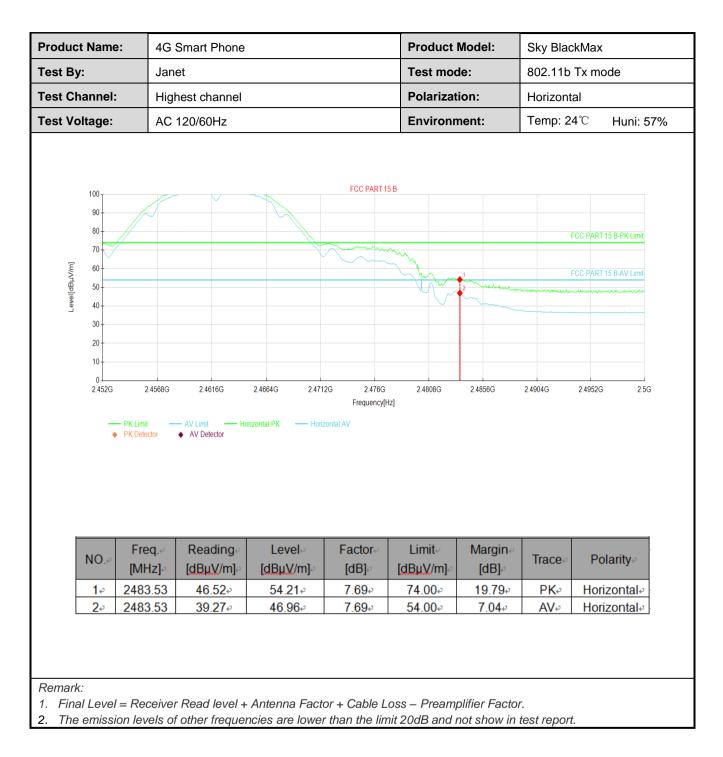
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - 2.4G WIFI

6.6.2 Radiated Emission Method

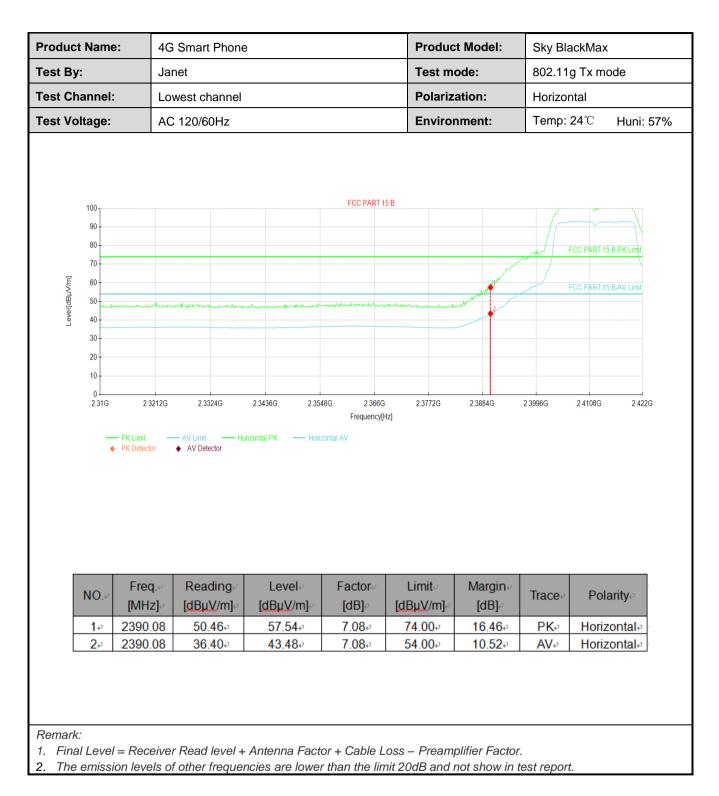

Test Requirement:	FCC Part 15 C Se	ection 15.209	and 15.205		
Test Frequency Range:	2310 MHz to 2390) MHz and 24	83.5 MHz to 2	500 MHz	
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Frequency	RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark
Limit:			54.00	,	Average Value
	Above 1GH		74.00		Peak Value
Test Procedure:	 the ground at determine the 2. The EUT was antenna, whit tower. 3. The antenna ground to det horizontal an measuremen 4. For each sus and then the and the rota to maximum rea 5. The test-rece Specified Bat 6. If the emission limit specified the EUT wou 10dB margin 	t a 3 meter ca e position of t s set 3 meters ch was moun height is vari- termine the m d vertical pola t. pected emiss antenna was table was turr ading. viver system v ndwidth with I on level of the d, then testing Id be reported would be re-	imber. The tak he highest radi s away from the ted on the top ed from one m aximum value arizations of the ion, the EUT w tuned to heigh ned from 0 deg was set to Peal Maximum Hold EUT in peak r could be stop d. Otherwise th	ble was rotati iation. e interferenc of a variable eter to four r of the field s e antenna ar vas arranged its from 1 me rees to 360 of k Detect Fun I Mode. node was 10 ped and the ne emissions one using pe	-height antenna neters above the strength. Both e set to make the l to its worst case eter to 4 meters degrees to find the ction and dB lower than the peak values of that did not have ak, quasi-peak or
Test setup:	150cm	AE EUT (Turntable)	Horn	Antenna To	wer
Test Instruments:	Refer to section 5	.9 for details			
Test mode:	Refer to section 5	.3 for details			
Test results:	Passed				

802.11b mode:

est By: est Channe		4G S	mart Phone			Product	Model:	Sky Blac	kMax
est Channe		Janet	:			Test mod	le:	802.11b	Tx mode
	el:	Lowe	st channel			Polarizat	ion:	Vertical	
est Voltage	:	AC 1	20/60Hz			Environm	nent:	Temp: 24	4℃ Huni: 57
	← PK Lin ♦ PK De	tector •	AV Detector	23436G 2354	Frequency[H:	2.3772G	2.3884G		CC PART 15 B-PK Limit
	L De	eq.⊬	Reading	Level↩ [dBµV/m]↩	Factor⊷ [dB]୶	Limit⊭ [dBµV/m]∉	Margin√ [dB]₀	Trace₽	Polarity
NO.4	3	Hz]∉	[dBµV/m]∉	[accactor,].					
NO.4	² [M 239	Hz] <i>.</i> 0.08 0.08	[dBµV/m]∂ 40.38₽ 29.78₽	47.46+ 36.86+	7.08₽ 7.08₽	74.00₽ 54.00₽	26.54₽ 17.14₽	PK₽ AV₽	Vertical.

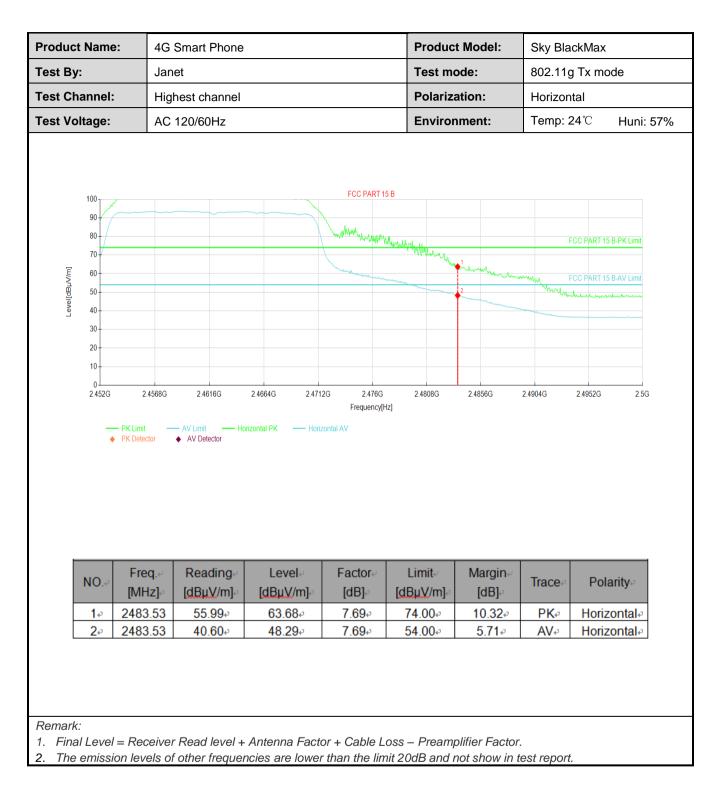


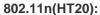
est By:	e: 4G	Smart Phone			Product I	Nodel:	Sky Black	kMax
-	Jar	iet			Test mod	e:	802.11b	Tx mode
est Channel	: Hig	hest channel			Polarizati	on:	Vertical	
est Voltage:	AC	120/60Hz			Environm	nent:	Temp: 24	ା℃ Huni: 57%
100 90 80 70 60 50 40 30 20 10				FCC PART 1	B	2		CC PART 15 B-PK Limit
0 2.452G -		2.4616G AV Limit Vert AV Detector	2.4664G 2.4711 tical PK — Vertical	Frequency[H	2.4808G z]	2.4856G	2.4904G	2.4952G 2.5G
2.452G	— PK Limit —	— AV Limit — Verl		Frequency[H		2.4856G Margin - [dB]	2.4904G	2.4952G 2.5G Polarity≓
2.452G	PK Limit PK Detector -	AV Limit Vert AV Detector	lical PK — Vertical	Frequency[H AV Factor-	z] Limite	Margin∉		



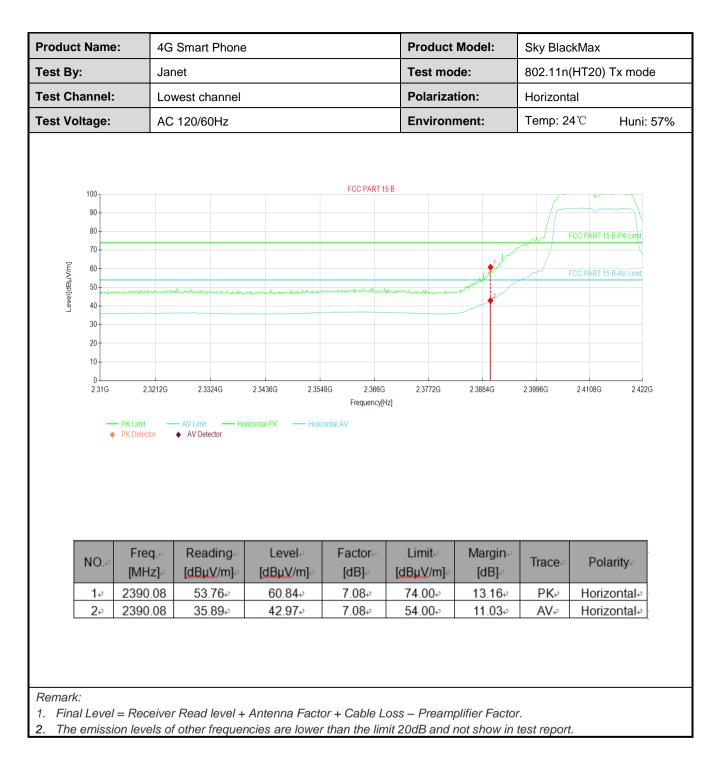
802.11g mode:

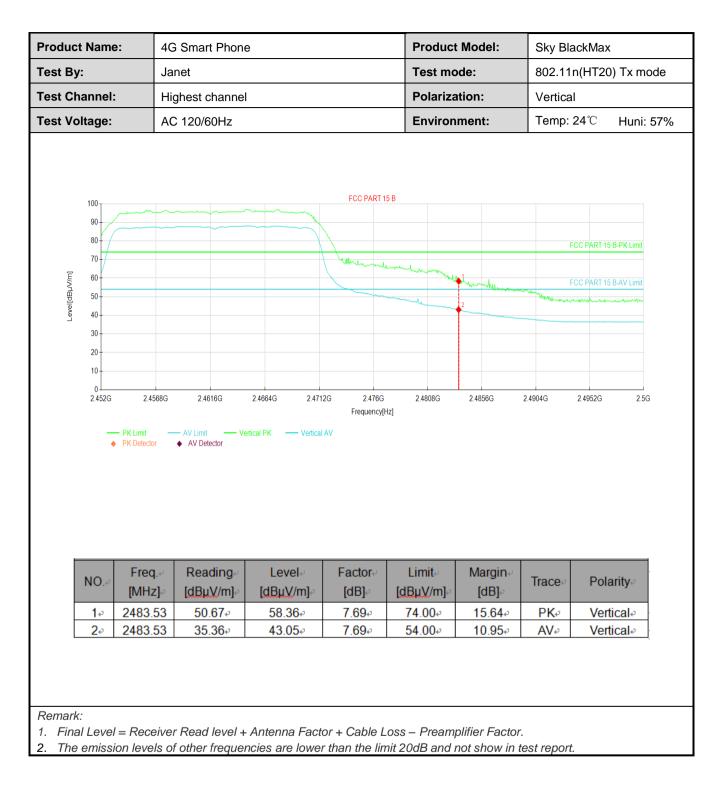
Гest By:	lame	- 40	Smart Pho	one		Product	Model:	Sky Blac	ckMax	
est by.		Ja	net			Test mo	de:	802.11g	Tx mode	
Fest Chan	nnel:	Lo	west chanr	el		Polariza	tion:	Vertical		
Fest Volta	age:	AC	C 120/60Hz			Environ	ment:	Temp: 2	4℃ Huni:	57%
9 8 7 [Lu///T(tep) 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 90 70 60 40 20 10 0 2,31G	232126	233246	23436G 2.35	FCC PART 15	B	2.3884G	and the second	CC PART 15 B-PK Limit	G
_	•		AV Limit AV Detector	– Vertical PK – Vertica	Frequency[H	2			2.41003 2.422	1
Ν	÷ ا0.«			ون Level		Limit⊬ [dBµV/m]⊮	Margin⊮ [dB]₽	Trace	Polarity	
		PK Detector	AV Detector	ون Level	IAV	Limite	_			



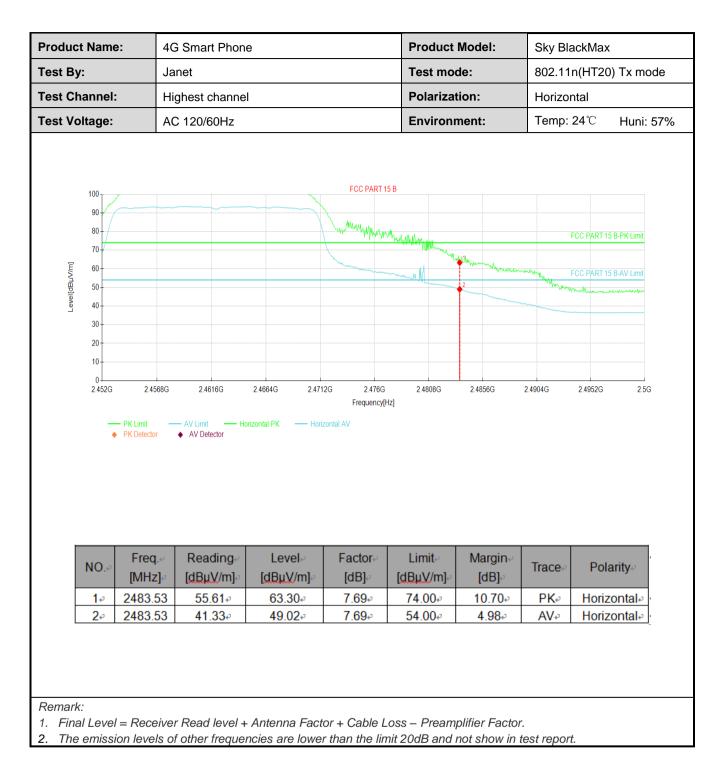


	Name	e: 4	IG Sm	art Pho	one					Pro	duct	Mode	el:	Sky	Black	Max		
est By:	:		lanet							Tes	st mo	de:		802	.11g T>	x mo	de	
est Ch	annel	: 1	lighes	t chan	nel					Pol	arizat	tion:		Vert	ical			
est Vo	tage:	/	AC 12)/60Hz						Env	/iron r	nent:		Terr	າp: 24 ໃ	CI	Huni	: 57%
Level(dBhV/m]	100 90 80 70 60 50 40 30 20							F	CC PART 1	5B		* ^{la} \h.m.	A.A.		FCC PA	\RT 15 B-		
	10 0 2.452G	2.4568 — PK Limit • PK Detector	— AV	2.4616G imit — / Detector	2 – Vertic	4664G al PK —	2.471	I	2.476G Frequency[ł		808G	2.48	56G	2.4904G	2.495	52G	2	5G
	0 2.452G	- PK Limit	AVI AVI	.imit —	– Vertic		– Vertical	Fa			nit⊷	Ma	56G argin⊷ dB]₽	2.4904G		Polar		.5G
	0 2.452G	PK Limit PK Detector	- AV AV AV AV AV AV AV AV AV AV	imit – I Detector	– Vertic	al PK —	– Vertical !I⊷ /m]⊷ 1⊷	AV Fa [d	Frequency(F	Lin	nit⊎ (/m]⊎)0₽	Ma [4	argin≓		e. F		rity.₀ cal.₀	.5G





	e: 4G	Smart Phone			Product N	lodel:	Sky Blac	kMax	
fest By:	Jan	et			Test mod	e:	802.11n((HT20) Tx m	ode
Fest Channel	: Low	est channel			Polarizati	on:	Vertical		
Fest Voltage:	AC	120/60Hz			Environm	ent:	Temp: 24	4°C Hur	ni: 57%
100 90 80 70 60 50 40 30 20 10				FCC PART 15	B		mm	CC PART 15 B-PK Lin	ţ
0 2.31G	2.3212G		23436G 2:354	Frequency[H	2.3772G z]	2.3884G	2.3996G	2.4108G 2	.422G
2.31G	PK Limit PK Detector	— AV Limit — Ve		Frequency[H		2.3884G Margin⊮ [dB]-∂	2.3996G	2 4108G 2	
2316	PK Limit ◆ PK Detector	AV Limit Ve AV Detector Ve Reading [dBµV/m] 44.03+ ³	ertical PK — Vertical	Frequency[H AV Factor⊷	z] Limit	Margin∉			



Project No.: JYTSZE2107006

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - 2.4G WIFI

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ction 15	.209 ar	nd 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Dete	ctor	RBW	V	BW	Remark
	30MHz-1GHz	Quasi	-peak	120KHz	300KHz		Quasi-peak Value
		Pea	ak	1MHz	3MHz		Peak Value
	Above 1GHz	RM	IS	1MHz	31	ЛНz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH	z		30.0		Q	uasi-peak Value
	88MHz-216MH	Ηz		33.5			uasi-peak Value
	216MHz-960M			36.0			uasi-peak Value
	960MHz-1GH	z		44.0		Q	uasi-peak Value
	Frequency		Limi	t (dBuV/m @3	m)		Remark
	Above 1GHz	<u>.</u>		54.0			Average Value
				74.0			Peak Value
Test Procedure:							table 0.8m(below
							0 meter chamber table was rotated
	360 degrees						
							ters(above 1GHz)
	away from th	e interfe	erence-	receiving ant	enna,	which	was mounted on
	the top of a v						
							neters above the
	ground to det						
	horizontal and vertical polarizations of the antenna are set to make the						
	4. For each suspected emission, the EUT was arranged to its worst case						
	and then the antenna was tuned to heights from 1 meter to 4 meters						
							legrees to find the
	maximum rea			U			J
	5. The test-rece						ction and
	Specified Bar						
							dB lower than the peak values of
							that did not have
		•					ak, quasi-peak or
	average meth	nod as s	pecified	and then rep	oortec	d in a d	ata sheet.
Test setup:	Below 1GHz						
·							
						— Ante	enna Tower
	Search						
	EUT						
	4m RF Test						
			1 -			Receive	
					\geq		1
	Turn	0.8m	1m				
	Table		1				
	min	diin	mm	mmm		777	
			1				
	Ground Plane						
	Above 1GHz						

Project No.: JYTSZE2107006

Report No: JYTSZB-R12-2101266

	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	4G Smart Phone	Product Model:	Sky BlackMax	
Гest By:	Janet	net Test mode: Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal	
Fest Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	
	Full Spectrun	1		
45 		FC	C PART 15.247 10m	
40				
_ 30				
BµV		*		
Pevel in dBµV		**		
Leve	****			
10-		And the state of the second		
		All a provide a second se		
o+				
30M			500 800 1G	
	Frequency	in Hz		

-	i requency *	Maxi Cak*	Enne*	iniai gii i ∗	neight			C011.*	
	(MHz)⊬	(dB	(dB	(dB)⊬	(cm)⊬		(deg)⊬	(dB/m)⊬	
•	30.00000042	20.10 ₽	30.00₽	<mark>9.90</mark> ₽	100.0 ₽	V ₽	205.0 ⊷	-17.7 ₽	4
-	53.765000 ₽	14.53 ₽	30.00↩	15.47₽	100.0 ₽	V	53.0 ₽	-15.9 ₽	4
-	363.971000~	20.90 ₽	36.00↩	15.10 ₽	100.0 <i>₽</i>	V	334.0⊷	-12.3 ₽	4
-	389.967000 ₽	20.66 ₽	36.00↩	15.34 ₽	100.0 <i>₽</i>	V ₽	3.0 ₽	- 11.4 ~	4
•	415.963000 ₽	24.20 ₽	36.00↩	11.80 ₽	100.0 ₽	V	326.0 ₽	-10.6 ↩	4
-	933.652000 ₽	26.68 ₽	36.00∉	<mark>9.32</mark> ₽	100.0 ₽	V ₽	34.0⊷	-0.3 ₽	4

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

			802.11b			
			annel: Lowest ch tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4824.00	57.69	-9.46	48.23	74.00	25.77	Vertical
4824.00	59.41	-9.46	49.95	74.00	24.05	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4824.00	52.43	-9.46	42.97	54.00	11.03	Vertical
4824.00	54.53	-9.46	45.07	54.00	8.93	Horizonta
			annel: Middle ch			
	T	Det	tector: Peak Valu		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4874.00	58.13	-9.11	49.02	74.00	24.98	Vertical
4874.00	59.31	-9.11	50.20	74.00	23.80	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4874.00	52.05	-9.11	42.94	54.00	11.06	Vertical
4874.00	54.99	-9.11	45.88	54.00	8.12	Horizonta
		Toot ob	annal: Highaat a			
			annel: Highest cł tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	57.73	-8.74	48.99	74.00	25.01	Vertical
4924.00	59.49	-8.74	50.75	74.00	23.25	Horizonta
		Dete	ctor: Average Va	llue	1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	52.39	-8.74	43.65	54.00	10.35	Vertical
	1	-8.74	45.41	54.00	8.59	Horizonta

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11g			
		Test ch	annel: Lowest cł	nannel		
		De	tector: Peak Valu	Ie	1	-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	58.00	-9.46	48.54	74.00	25.46	Vertical
4824.00	58.92	-9.46	49.46	74.00	24.54	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4824.00	52.33	-9.46	42.87	54.00	11.13	Vertical
4824.00	54.37	-9.46	44.91	54.00	9.09	Horizontal
			annel: Middle ch			
	T	Det	tector: Peak Valu	le	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4874.00	58.40	-9.11	49.29	74.00	24.71	Vertical
4874.00	58.95	-9.11	49.84	74.00	24.16	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4874.00	52.27	-9.11	43.16	54.00	10.84	Vertical
4874.00	54.18	-9.11	45.07	54.00	8.93	Horizontal
			annel: Highest cl tector: Peak Valu			
Frequency	Read Level		Level	Limit Line	Margin	1
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
4924.00	58.52	-8.74	49.78	74.00	24.22	Vertical
4924.00	59.12	-8.74	50.38	74.00	23.62	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	51.82	-8.74	43.08	54.00	10.92	Vertical
4924.00	54.64	-8.74	45.90	54.00	8.10	Horizontal
	Receiver Read level levels of other frequ		er than the limit 200	dB and not show in te	est report.	

			802.11n(HT20)			
			annel: Lowest ch			
F	Des 11 a st	De	tector: Peak Valu		Manaia	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4824.00	58.26	-9.46	48.80	74.00	25.20	Vertical
4824.00	58.64	-9.46	49.18	74.00	24.82	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4824.00	52.52	-9.46	43.06	54.00	10.94	Vertical
4824.00	54.76	-9.46	45.30	54.00	8.70	Horizonta
		Test ch	annel: Middle ch	annel		
			tector: Peak Valu			
Frequency	Read Level	Del	Level	Limit Line	Margin	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4874.00	58.51	-9.11	49.40	74.00	24.60	Vertical
4874.00	58.78	-9.11	49.67	74.00	24.33	Horizonta
	-	Dete	ctor: Average Va	lue		-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4874.00	52.53	-9.11	43.42	54.00	10.58	Vertical
4874.00	54.51	-9.11	45.40	54.00	8.60	Horizonta
		Test cha	annel: Highest ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	58.47	-8.74	49.73	74.00	24.27	Vertical
4924.00	59.27	-8.74	50.53	74.00	23.47	Horizonta
		Dete	ctor: Average Va	lue	•	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	52.16	-8.74	43.42	54.00	10.58	Vertical
4924.00	54.68	-8.74	45.94	54.00	8.06	Horizonta

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.