

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100778

FCC REPORT (WIFI)

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: 4G Smart Phone

Model No.: Sky Black2

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYBLACK2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 10 May, 2021

Date of Test: 11 May, to 02 Jun., 2021

Date of report issued: 03 Jun., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	03 Jun., 2021	Original

Tanet Wei
Test Engineer
Winner Mang Tested by: Date: 03 Jun., 2021

Reviewed by: Date: 03 Jun., 2021

Project Engineer

Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4		T SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Radiated Emission Method	31
7	TES	T SETUP PHOTO	37
8	EUT	CONSTRUCTIONAL DETAILS	38
_		~~··~·································	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass		
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass		
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass		
Radiated Band Edge	15.247 (d)	15.247 (d) See Section 6.6.2			
Conducted Spurious Emission	45 205 8 45 200	Appendix A – 2.4G Wi-Fi	Pass		
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass		

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC	
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139	
Manufacturer:	SKY PHONE LLC	
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139	

5.2 General Description of E.U.T.

Product Name:	4G Smart Phone			
Model No.:	Sky Black2			
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)			
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 72.2Mbps			
Antenna Type:	Internal Antenna			
Antenna gain:	0.5 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V, 1400mAh			
AC adapter:	Model: TPA-97050050UU			
	Input: AC100-240V, 50/60Hz, 0.15A			
	Output: DC 5.0V, 500mA			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

- <u></u>	
Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32	Version: 10.50.40		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021	
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A	

PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0			
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

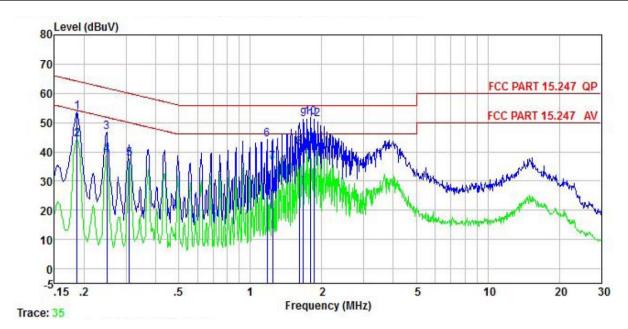
15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.

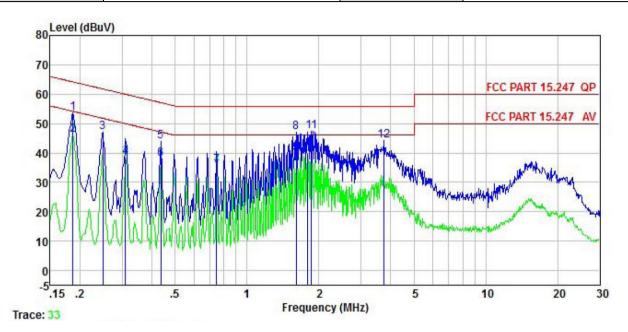
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


6.2 Conducted Emission

			-			
Test Requirement:	FCC Part 15 C Section 15.2	207				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarit	hm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 					
Test setup:	LISN	st	er — AC power			
Test Instruments:	Refer to section 5.9 for deta	ails				
Test mode:	Refer to section 5.3 for deta	nils				
Test results:	Passed					

Measurement Data:

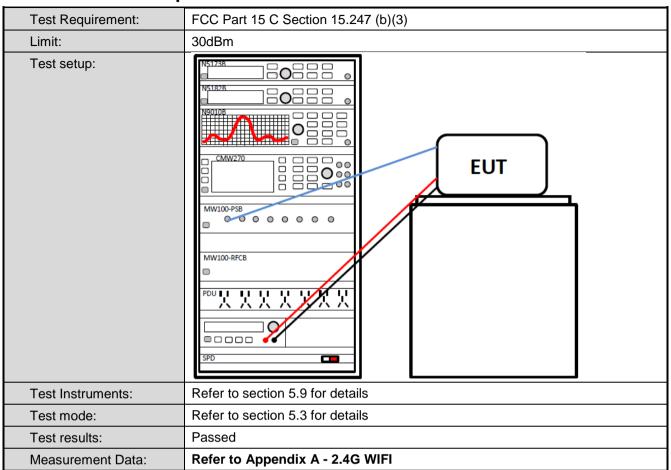
Product name:	4G Smart Phone	Product model:	Sky Black2
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∜	<u>dB</u>	<u>dB</u>		dBu₹	dBu∜	dB	
1	0.186	43.48	10.14	-0.13	0.02	53.51	64.20	-10.69	QP
2	0.186	34.10	10.14	-0.13	0.02	44.13	54.20	-10.07	Average
3	0.249	36.75	10.18	-0.22	0.01	46.72	61.78	-15.06	QP
2 3 4 5 6 7	0.249	28.86	10.18	-0.22	0.01	38.83	51.78	-12.95	Average
5	0.310	27.74	10.22	-0.18	0.03	37.81	49.97	-12.16	Average
6	1.178	33.54	10.49	0.28	0.09	44.40	56.00	-11.60	QP
7	1.242	25.70	10.50	0.22	0.10	36.52	46.00	-9.48	Average
8	1.610	30.69	10.52	-0.07	0.16	41.30	46.00	-4.70	Average
9	1.671	40.56	10.52	-0.12	0.17	51.13	56.00	-4.87	QP
10	1.800	41.10	10.53	-0.20	0.19	51.62	56.00	-4.38	QP
11	1.800	32.45	10.53	-0.20	0.19	42.97	46.00	-3.03	Average
12	1.858	40.61	10.53	-0.24	0.19	51.09	56.00	-4.91	

Notes:

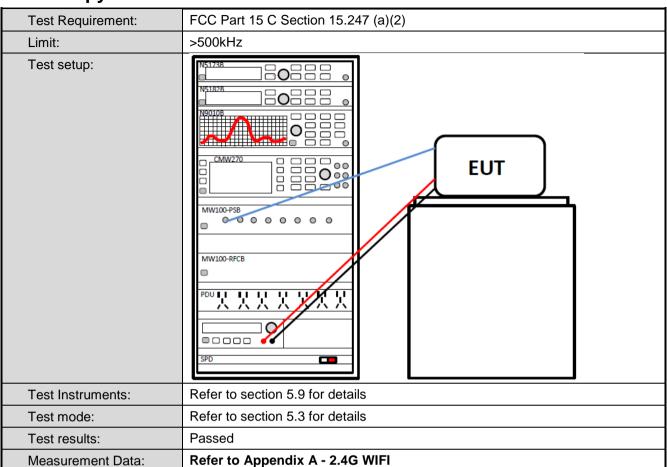
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	4G Smart Phone	Product model:	Sky Black2
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

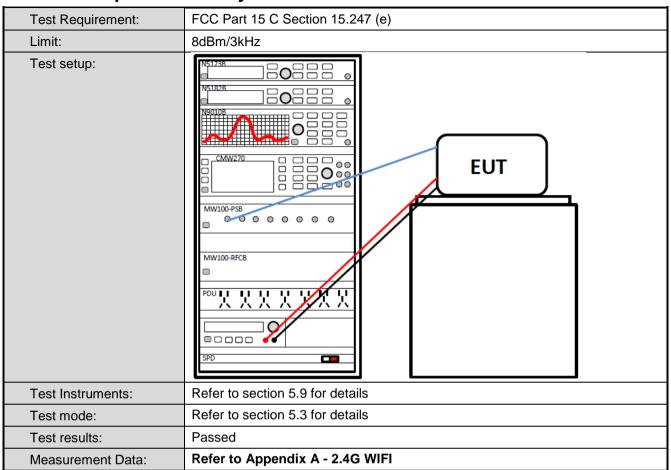

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu₹	<u>dB</u>	<u>dB</u>	<u>ap</u>	dBu∜	dBu∜	<u>dB</u>	
1	0.186	43.62	9.91	0.00	0.02	53.55	64.20	-10.65	QP
2	0.186	36.23	9.91	0.00	0.02	46.16	54.20	-8.04	Average
3	0.249	37.17	9.97	0.01	0.01	47.16	61.78	-14.62	QP
1 2 3 4 5 6 7 8 9	0.310	28.47	10.02	0.00	0.03	38.52	49.97	-11.45	Average
5	0.435	33.63	10.15	-0.03	0.03	43.78	57.15	-13.37	QP
6	0.435	27.87	10.15	-0.03	0.03	38.02	47.15	-9.13	Average
7	0.747	25.44	10.40	0.05	0.03	35.92	46.00	-10.08	Average
8	1.610	35.92	10.72	0.14	0.16	46.94	56.00	-9.06	QP
9	1.610	28.69	10.72	0.14	0.16	39.71	46.00	-6.29	Average
10	1.800	28.62	10.76	0.16	0.19	39.73	46.00	-6.27	Average
11	1.858	36.37	10.77	0.16	0.19	47.49	56.00	-8.51	QP
12	3.759	32.63	10.95	0.47	0.08	44.13	56.00	-11.87	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



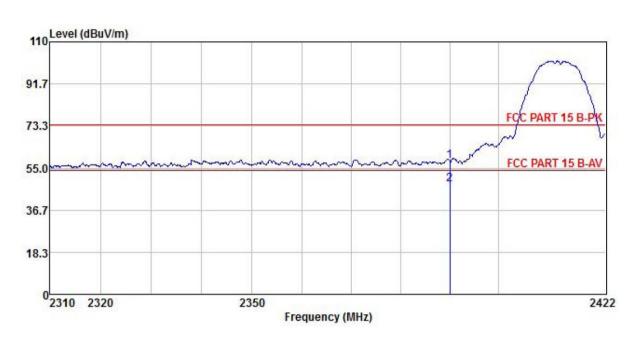
6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

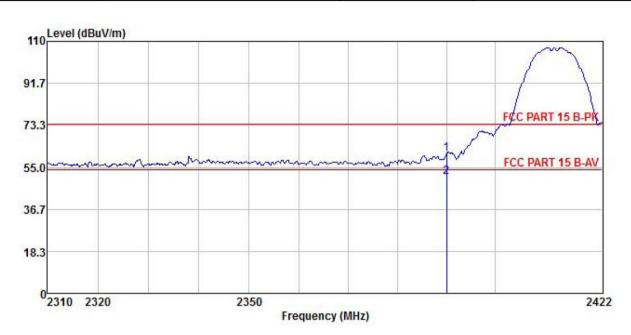
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS182R NS18R N					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit:	Frequency	RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark			
LIIIII.			54.00		Average Value			
	Above 1GH		74.00		Peak Value			
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable of the EUT would hold margin.	t a 3 meter can be position of the position of the set 3 meters of was mount to the position of the position o	amber. The take he highest radices away from the ted on the top ed from one maximum value arizations of the tuned to heigh ned from 0 deg was set to Peak Maximum Hold EUT in peak no could be stop d. Otherwise the	ole was rotal ation. The interference interf	le-height antenna meters above the I strength. Both are set to make the ed to its worst case neter to 4 meters O degrees to find the unction and I OdB lower than the e peak values of as that did not have beak, quasi-peak or			
	150cm	(Turntable)	Ground Reference Plane	Antenna Antenna Controller	Tower			
Test Instruments:	Refer to section 5	.9 for details						
Test mode:	Refer to section 5	.3 for details						
Test results:	Passed							

802.11b mode:

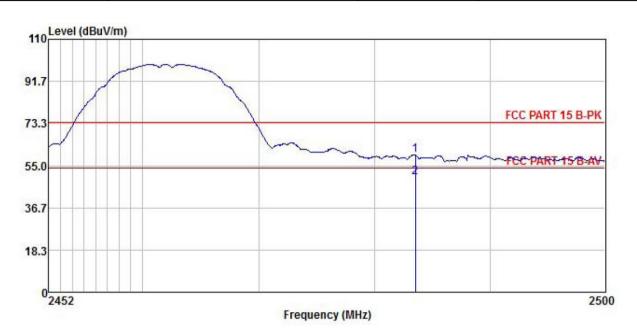
Product Name:	4G Smart Phone	Product Model:	Sky Black2
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∇		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

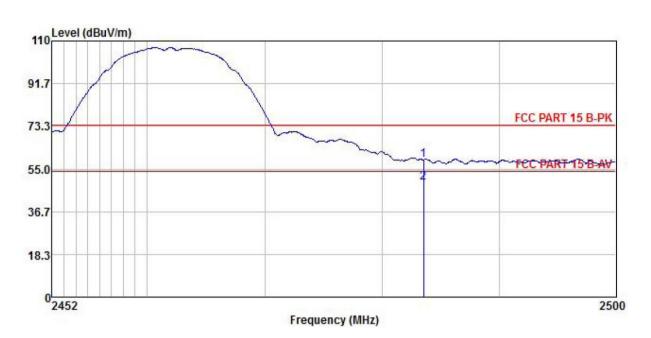
Product Name:	4G Smart Phone	Product Model:	Sky Black2
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq								
MHz	dBu∇	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>d</u> B	
	MHz 2390.000	Freq Level MHz dBuV 2390.000 25.04	Freq Level Factor MHz dBuV dB/m 2390.000 25.04 27.03	Freq Level Factor Loss MHz dBuV dB/m dB 2390.000 25.04 27.03 8.73	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 2390.000 25.04 27.03 8.73 0.00	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2390.000 25.04 27.03 8.73 0.00 60.80	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 2390.000 25.04 27.03 8.73 0.00 60.80 74.00	ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Sky Black2
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor							
	MHz	dBu₹	dBuV dB/m	₫B	<u>ab</u> <u>ab</u> a	dBuV/m	dBuV/m	₫B	š	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Sky Black2
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

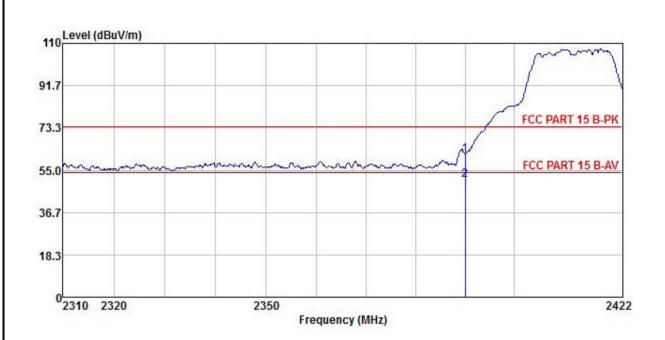
	Freq		Antenna Factor						
	MHz	MHz dBuV	dB/m	iB/m dB	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 21 of 38

802.11g mode:

Product Name:	4G Smart Phone	Product Model:	Sky Black2
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

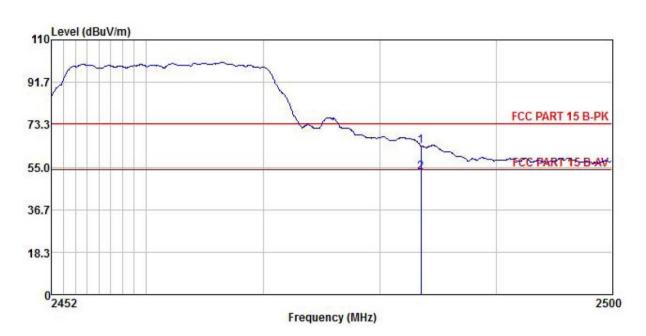

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∀	$\overline{dB/m}$	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	·
1 2	2390,000 2390,000					58.85 48.79			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Sky Black2
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

			Antenna Factor					Over Limit	
		dBu∇	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000								

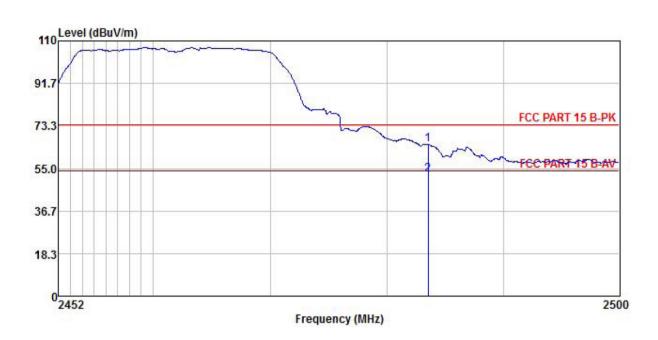

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 23 of 38

Project No.: JYTSZE2105038

Product Name:	4G Smart Phone	Product Model:	Sky Black2		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

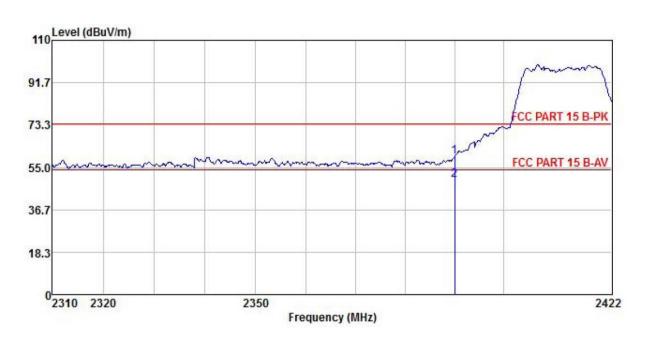
	Freq		Antenna Factor						
	MHz	dBu∜	7 <u>dB</u> /m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500								


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 38

Product Name:	4G Smart Phone	Product Model:	Sky Black2		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

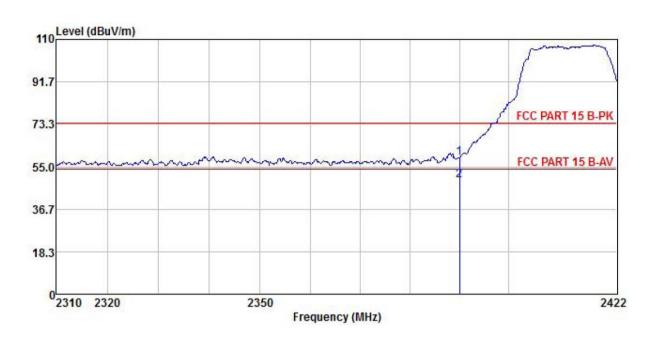

	Freq MHz		Antenna Factor						
		dBu∜		dB	₫B	dBuV/m	$\overline{dB}u\overline{V}/\overline{m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20):

Product Name:	4G Smart Phone	Product Model:	Sky Black2		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

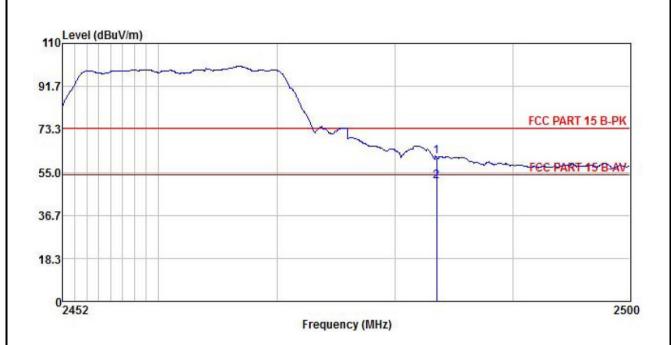
	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000								


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

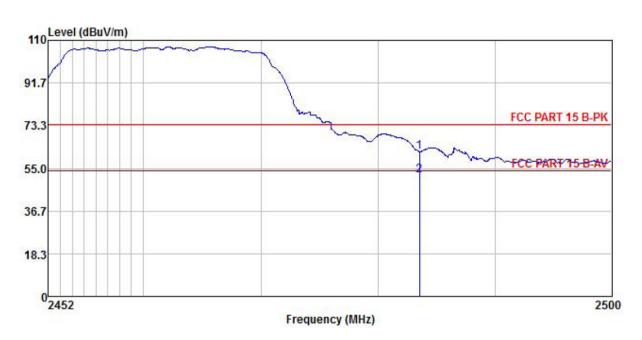
Product Name:	4G Smart Phone	Product Model:	Sky Black2		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		



		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∇		<u>ab</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	2390.000									
2	2390.000	13.22	27.03	8.73	0.00	48.98	54.00	-5.02	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Sky Black2	
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	


	Freq		Antenna Factor					
	MHz	dBu∜	— <u>d</u> B/m	 dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	4G Smart Phone	Product Model:	Sky Black2	
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

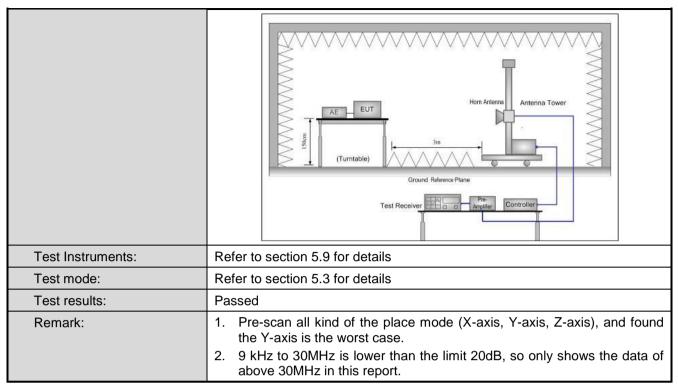
	Freq		Antenna Factor					Over Limit	
	MHz	dBu∜	$\overline{dB/m}$	<u>ā</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

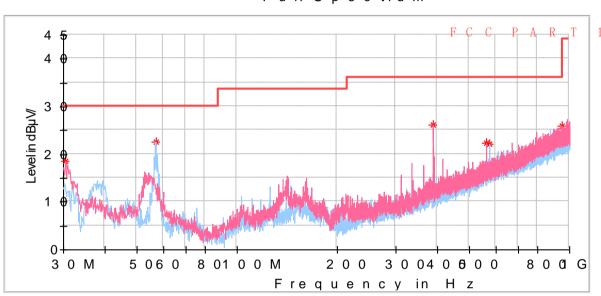
6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS182R NS182R NS182R NS100P NS					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7.2 Radiated Emission Method							
Test Requirement:	FCC Part 15 C Se	ction 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detec	tor	RBW	VI	BW	Remark
	30MHz-1GHz	Quasi-p		120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peal		1MHz		ЛHz	Peak Value
		RMS		1MHz		ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH	lz		30.0		Qı	uasi-peak Value
	88MHz-216MH	-lz		33.5		Qı	uasi-peak Value
	216MHz-960MHz 36.0 Quasi-pe						uasi-peak Value
	960MHz-1GH	z		44.0		Qı	uasi-peak Value
	Frequency		Limit	: (dBuV/m @3i	m)		Remark
	Above 1GHz	<u>.</u>		54.0		,	Average Value
			-d -n +	74.0	totio	a toblo	Peak Value
Test Procedure:	 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 10 meter chamber (below 1GHz)or 3 meter chamber(above 1GHz). The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 10 meters(below 1GHz) or 3 meters(above 1GHz) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						
Test setup:	Below 1GHz EUT Turn Table Ground Pla Above 1GHz	0.8m	4m		<i></i>	Searc Anter	nna :



Measurement Data (worst case):

Below 1GHz:

Product Name:	4G Smart Phone	Product Model:	Sky Black2		
Test By:	Janet	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

•	Frequency↓ (MHz)₽	MaxPeak↓	Limit↓ (dB.II	Margin↓ (dB)∂	Height↓ (cm)∂	Pol₽	Azimuth↓ (deg)√	Corr.↓ (dB/m)∂
	, ,	(dB µ V/m)∂	(dBµ	. ,	` '			
	56.869000₽	22.64∉	30.00₽	7.36₽	100.0₽	H₽	8.0₽	-16.5₽
•	574.558000₽	22.25₽	36.00₽	13.75₽	100.0₽	H ₽	228.0₽	-7.2 ₽
•	389.967000₽	26.22₽	36.00₽	9.78₽	100.0₽	V₽	67.0₽	-11.4₽
•	562.530000₽	22.49₽	36.00₽	13.51∂	100.0₽	V₽	86.0₽	-7.5₽
•	946.165000₽	26.06₽	36.00₽	9.94₽	100.0₽	V₽	119.0₽	-0.1∂
•	30.485000₽	18.61₊	30.00₽	11.39₽	100.0₽	V₽	312.0↩	-17.6₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

802.11b										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	56.23	30.81	6.81	2.46	41.82	54.49	74.00	-19.51	Vertical	
4824.00	57.74	30.81	6.81	2.46	41.82	56.00	74.00	-18.00	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	50.48	30.81	6.81	2.46	41.82	48.74	54.00	-5.26	Vertical	
4824.00	52.98	30.81	6.81	2.46	41.82	51.24	54.00	-2.76	Horizontal	
Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	56.61	30.93	6.85	2.47	41.84	55.02	74.00	-18.98	Vertical	
4874.00	58.04	30.93	6.85	2.47	41.84	56.45	74.00	-17.55	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	50.30	30.93	6.85	2.47	41.84	48.71	54.00	-5.29	Vertical	
4874.00	53.20	30.93	6.85	2.47	41.84	51.61	54.00	-2.39	Horizontal	
			Te	st channel	: Highest c	hannel				
				Detector	: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	

rest channel. Highest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	57.00	31.05	6.89	2.48	41.86	55.56	74.00	-18.44	Vertical		
4924.00	58.26	31.05	6.89	2.48	41.86	56.82	74.00	-17.18	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	50.06	31.05	6.89	2.48	41.86	48.62	54.00	-5.38	Vertical		
4924.00	53.16	31.05	6.89	2.48	41.86	51.72	54.00	-2.28	Horizontal		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	57.43	30.81	6.81	2.46	41.82	55.69	74.00	-18.31	Vertical		
4824.00	58.36	30.81	6.81	2.46	41.82	56.62	74.00	-17.38	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	50.25	30.81	6.81	2.46	41.82	48.51	54.00	-5.49	Vertical		
4824.00	53.09	30.81	6.81	2.46	41.82	51.35	54.00	-2.65	Horizontal		

Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	57.42	30.93	6.85	2.47	41.84	55.83	74.00	-18.17	Vertical	
4874.00	58.78	30.93	6.85	2.47	41.84	57.19	74.00	-16.81	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	49.92	30.93	6.85	2.47	41.84	48.33	54.00	-5.67	Vertical	
4874.00	52.77	30.93	6.85	2.47	41.84	51.18	54.00	-2.82	Horizontal	

Test channel: Highest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	57.54	31.05	6.89	2.48	41.86	56.10	74.00	-17.90	Vertical	
4924.00	59.25	31.05	6.89	2.48	41.86	57.81	74.00	-16.19	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	50.11	31.05	6.89	2.48	41.86	48.67	54.00	-5.33	Vertical	
4924.00	53.05	31.05	6.89	2.48	41.86	51.61	54.00	-2.39	Horizontal	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	57.05	30.81	6.81	2.46	41.82	55.31	74.00	-18.69	Vertical	
4824.00	58.75	30.81	6.81	2.46	41.82	57.01	74.00	-16.99	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	50.41	30.81	6.81	2.46	41.82	48.67	54.00	-5.33	Vertical	
4824.00	53.14	30.81	6.81	2.46	41.82	51.40	54.00	-2.60	Horizontal	
İ										
Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	57.08	30.93	6.85	2.47	41.84	55.49	74.00	-18.51	Vertical	
4874.00	58.40	30.93	6.85	2.47	41.84	56.81	74.00	-17.19	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	50.10	30.93	6.85	2.47	41.84	48.51	54.00	-5.49	Vertical	
4874.00	53.25	30.93	6.85	2.47	41.84	51.66	54.00	-2.34	Horizontal	
			Te	st channel	: Highest o	hannel				
					: Peak Val					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	57.36	31.05	6.89	2.48	41.86	55.92	74.00	-18.08	Vertical	
4924.00	58.80	31.05	6.89	2.48	41.86	57.36	74.00	-16.64	Horizontal	
		,		Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	50.25	31.05	6.89	2.48	41.86	48.81	54.00	-5.19	Vertical	
4924.00	53.62	31.05	6.89	2.48	41.86	52.18	54.00	-1.82	Horizontal	
D										

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.