

Report No: JYTSZB-R12-2100776

# FCC REPORT

| Applicant:              | SKY PHONE LLC                                        |
|-------------------------|------------------------------------------------------|
| Address of Applicant:   | 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |
| Equipment Under Test (E | EUT)                                                 |
| Product Name:           | 4G Smart Phone                                       |
| Model No.:              | Sky Black2                                           |
| Trade mark:             | SKY DEVICES                                          |
| FCC ID:                 | 2ABOSSKYBLACK2                                       |
| Applicable standards:   | FCC CFR Title 47 Part 15 Subpart C Section 15.247    |
| Date of sample receipt: | 10 May, 2021                                         |
| Date of Test:           | 11 May, to 02 Jun., 2021                             |
| Date of report issued:  | 03 Jun., 2021                                        |
| Test Result:            | PASS *                                               |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



#### Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



#### Version 2

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 03 Jun., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by:

Janet Wei

Test Engineer

Date: 03 Jun., 2021

Reviewed by:

Winner Thang

**Project Engineer** 

Date:

03 Jun., 2021

Project No.: JYTSZE2105038



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | cov   | ER PAGE                        | 1    |
| 2 | VER   | SION                           | 2    |
| _ |       |                                |      |
| 3 | CON   | ITENTS                         |      |
| 4 | TES   | T SUMMARY                      | 4    |
| 5 | GEN   | ERAL INFORMATION               | 5    |
|   | 5.1   | CLIENT INFORMATION             |      |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  | -    |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   | 6    |
|   | 5.5   | MEASUREMENT UNCERTAINTY        | 6    |
|   | 5.6   | LABORATORY FACILITY            | 6    |
|   | 5.7   | LABORATORY LOCATION            | 6    |
|   | 5.8   | TEST INSTRUMENTS LIST          | 7    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 8    |
|   | 6.1   | ANTENNA REQUIREMENT:           |      |
|   | 6.2   | CONDUCTED EMISSION             | -    |
|   | 6.3   | CONDUCTED OUTPUT POWER         |      |
|   | 6.4   | OCCUPY BANDWIDTH               |      |
|   | 6.5   | POWER SPECTRAL DENSITY         |      |
|   | 6.6   | BAND EDGE                      | 15   |
|   | 6.6.1 | Conducted Emission Method      | 15   |
|   | 6.6.2 | Radiated Emission Method       | 16   |
|   | 6.7   | SPURIOUS EMISSION              | 21   |
|   | 6.7.1 | Conducted Emission Method      | 21   |
|   | 6.7.2 | Radiated Emission Method       |      |
| 7 | TES   | Т SETUP PHOTO                  |      |
| 8 | FUT   | CONSTRUCTIONAL DETAILS         | 77   |
| 0 | LUI   |                                |      |



# 4 Test Summary

| Test Items                                                                                                                                                                                                                                                                                    | Section in CFR 47    | Test Data         | Result |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------|--|--|
| Antenna requirement                                                                                                                                                                                                                                                                           | 15.203 & 15.247 (b)  | See Section 6.1   | Pass   |  |  |
| AC Power Line Conducted Emission                                                                                                                                                                                                                                                              | 15.207               | See Section 6.2   | Pass   |  |  |
| Conducted Peak Output Power                                                                                                                                                                                                                                                                   | 15.247 (b)(3)        | Appendix A - BLE  | Pass   |  |  |
| 6dB Emission Bandwidth<br>99% Occupied Bandwidth                                                                                                                                                                                                                                              | 15.247 (a)(2)        | Appendix A - BLE  | Pass   |  |  |
| Power Spectral Density                                                                                                                                                                                                                                                                        | 15.247 (e)           | Appendix A - BLE  | Pass   |  |  |
| Conducted Band Edge                                                                                                                                                                                                                                                                           |                      | Appendix A - BLE  | Pass   |  |  |
| Radiated Band Edge                                                                                                                                                                                                                                                                            | 15.247 (d)           | See Section 6.6.2 | Pass   |  |  |
| Conducted Spurious Emission                                                                                                                                                                                                                                                                   | 15.205 & 15.209      | Appendix A - BLE  | Pass   |  |  |
| Radiated Spurious Emission                                                                                                                                                                                                                                                                    | 15.205 & 15.209      | See Section 6.7.2 | Pass   |  |  |
| Remark:         1. Pass: The EUT complies with the essential requirements in the standard.         2. N/A: Not Applicable.         3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).         ANSI C63.10-2013 |                      |                   |        |  |  |
| Test Method: KDB 558074 D01 15.247                                                                                                                                                                                                                                                            | Meas Guidance v05r02 |                   |        |  |  |



# 5 General Information

## 5.1 Client Information

| Applicant:    | SKY PHONE LLC                                        |
|---------------|------------------------------------------------------|
| Address:      | 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |
| Manufacturer: | SKY PHONE LLC                                        |
| Address:      | 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |

## 5.2 General Description of E.U.T.

| Product Name:          | 4G Smart Phone                                                                |
|------------------------|-------------------------------------------------------------------------------|
| Model No.:             | Sky Black2                                                                    |
| Operation Frequency:   | 2402-2480 MHz                                                                 |
| Channel numbers:       | 40                                                                            |
| Channel separation:    | 2 MHz                                                                         |
| Modulation technology: | GFSK                                                                          |
| Data speed :           | 1Mbps                                                                         |
| Antenna Type:          | Internal Antenna                                                              |
| Antenna gain:          | 0.5 dBi                                                                       |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V, 1400mAh                                   |
| AC adapter:            | Model: TPA-97050050UU                                                         |
|                        | Input: AC100-240V, 50/60Hz, 0.15A                                             |
|                        | Output: DC 5.0V, 500mA                                                        |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |

| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |
| Nata                                |           |         |           |         |           |         |           |

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.



## 5.3 Test environment and mode

#### **Operating Environment:**

| Operating Environment. |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation |

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

## 5.4 Description of Support Units

The EUT has been tested as an independent unit.

## 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

## 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

## 5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com



## 5.8 Test Instruments list

| Test Equipment                  | Manufacturer    | Model No.     | Serial No.    | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
|---------------------------------|-----------------|---------------|---------------|-------------------------|-----------------------------|
| 3m SAC                          | ETS             | 9m*6m*6m      | 966           | 01-19-2021              | 01-18-2024                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB9163      | 497           | 03-03-2021              | 03-02-2022                  |
| Biconical Antenna               | SCHWARZBECK     | VUBA9117      | 359           | 06-18-2020              | 06-17-2021                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 916           | 03-03-2021              | 03-02-2022                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 1805          | 06-18-2020              | 06-17-2021                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA 9170     | BBHA9170582   | 11-18-2020              | 11-17-2021                  |
| EMI Test Software               | AUDIX           | E3            | V             | /ersion: 6.110919b      | )                           |
| Pre-amplifier                   | HP              | 8447D         | 2944A09358    | 03-03-2021              | 03-02-2022                  |
| Pre-amplifier                   | CD              | PAP-1G18      | 11804         | 03-03-2021              | 03-02-2022                  |
| Spectrum analyzer               | Rohde & Schwarz | FSP30         | 101454        | 03-03-2021              | 03-02-2022                  |
| Spectrum analyzer               | Rohde & Schwarz | FSP40         | 100363        | 11-18-2020              | 11-17-2021                  |
| EMI Test Receiver               | Rohde & Schwarz | ESRP7         | 101070        | 03-03-2021              | 03-02-2022                  |
| Spectrum Analyzer               | Agilent         | N9020A        | MY50510123    | 11-18-2020              | 11-17-2021                  |
| Signal Generator                | Rohde & Schwarz | SMX           | 835454/016    | 03-03-2021              | 03-02-2022                  |
| Signal Generator                | R&S             | SMR20         | 1008100050    | 03-03-2021              | 03-02-2022                  |
| RF Switch Unit                  | MWRFTEST        | MW200         | N/A           | N/A                     | N/A                         |
| Test Software                   | MWRFTEST        | MTS8200       |               | Version: 2.0.0.0        |                             |
| Cable                           | ZDECL           | Z108-NJ-NJ-81 | 1608458       | 03-03-2021              | 03-02-2022                  |
| Cable                           | MICRO-COAX      | MFR64639      | K10742-5      | 03-03-2021              | 03-02-2022                  |
| Cable                           | SUHNER          | SUCOFLEX100   | 58193/4PE     | 03-03-2021              | 03-02-2022                  |
| DC Power Supply                 | XinNuoEr        | WYK-10020K    | 1409050110020 | 09-25-2020              | 09-24-2021                  |
| Temperature<br>Humidity Chamber | HengPu          | HPGDS-500     | 20140828008   | 11-01-2020              | 10-31-2021                  |
| Simulated Station               | Rohde & Schwarz | CMW500        | 140493        | 07-22-2020              | 07-21-2021                  |
| 10m SAC                         | ETS             | RFSD-100-F/A  | Q2005         | 03-31-2021              | 04-01-2024                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB 9168     | 1249          | 03-31-2021              | 04-01-2022                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB 9168     | 1250          | 03-31-2021              | 04-01-2022                  |
| EMI Test Receiver               | R&S             | ESR 3         | 102800        | 04-06-2021              | 04-07-2022                  |
| EMI Test Receiver               | R&S             | ESR 3         | 102802        | 04-06-2021              | 04-07-2022                  |
| Pre-amplifier                   | Bost            | LNA 0920N     | 2016          | 04-06-2021              | 04-07-2022                  |
| Pre-amplifier                   | Bost            | LNA 0920N     | 2019          | 04-06-2021              | 04-07-2022                  |
| Test Software                   | R&S             | EMC32         |               | Version: 10.50.40       |                             |

| Conducted Emission: |                 |            |                    |                         |                             |  |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|--|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-03-2021              | 03-02-2022                  |  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-03-2021              | 03-02-2022                  |  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-03-2021              | 03-02-2022                  |  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010        | 06-18-2020              | 06-17-2021                  |  |
| Cable               | HP              | 10503A     | N/A                | 03-03-2021              | 03-02-2022                  |  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |  |

| Conducted method:       |                 |            |             |                         |                             |
|-------------------------|-----------------|------------|-------------|-------------------------|-----------------------------|
| Test Equipment          | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| Spectrum Analyzer       | Keysight        | N9010B     | MY60240202  | 11-27-2020              | 11-26-2021                  |
| Vector Signal Generator | Keysight        | N5182B     | MY59101009  | 11-27-2020              | 11-26-2021                  |
| Analog Signal Generator | Keysight        | N5173B     | MY59100765  | 11-27-2020              | 11-26-2021                  |
| Power Detector Box      | MWRF-test       | MW100-PSB  | MW201020JYT | 11-27-2020              | 11-26-2021                  |
| Simulated Station       | Rohde & Schwarz | CMW270     | 102335      | 11-27-2020              | 11-26-2021                  |
| RF Control Box          | MWRF-test       | MW100-RFCB | MW200927JYT | N/A                     | N/A                         |

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2105038



| PDU             | MWRF-test | XY-G10   | N/A              | N/A        | N/A        |  |  |
|-----------------|-----------|----------|------------------|------------|------------|--|--|
| Test Software   | MWRF-tes  | MTS 8310 | Version: 2.0.0.0 |            |            |  |  |
| DC Power Supply | Keysight  | E3642A   | MY60296194       | 11-27-2020 | 11-26-2021 |  |  |

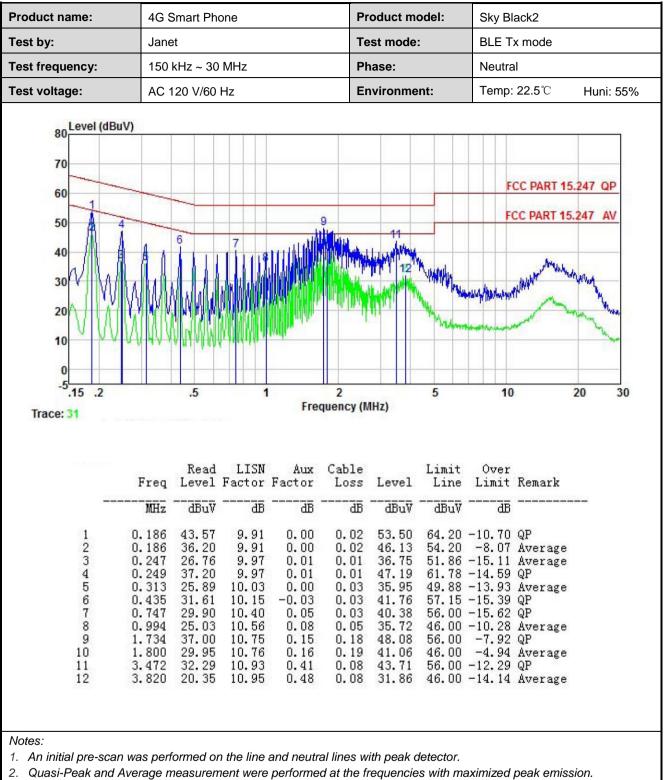
# 6 Test results and Measurement Data

## 6.1 Antenna requirement:

| Standard requirement:                                                                                                                                                                                                                                                                        | FCC Part 15 C Section 15.203 /247(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| responsible party shall be us<br>antenna that uses a unique<br>so that a broken antenna ca<br>electrical connector is prohit<br>15.247(b) (4) requirement:<br>(4) The conducted output po<br>antennas with directional ga<br>section, if transmitting anten<br>power from the intentional ra | be designed to ensure that no antenna other than that furnished by the<br>sed with the device. The use of a permanently attached antenna or of an<br>coupling to the intentional radiator, the manufacturer may design the unit<br>in be replaced by the user, but the use of a standard antenna jack or<br>bited.<br>be the use of the intention of the use of a standard antenna jack or<br>bited.<br>be the use of the use of the use of the use of the use of<br>the use of the use of |  |  |  |  |  |
| E.U.T Antenna:                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.5 dBi.                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |



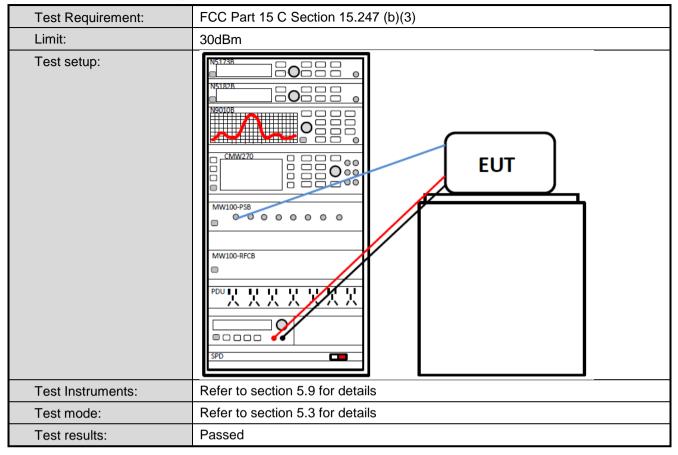
## 6.2 Conducted Emission


| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
|                       | Quasi-peak Average                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                   | 66 to 56*                                                                                                                                                                                                                      | 56 to 46*                                                                                                                                                  |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                             | 46                                                                                                                                                         |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                             | 50                                                                                                                                                         |  |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators<br/>line impedance stabilizati<br/>50ohm/50uH coupling imp</li> <li>The peripheral devices at<br/>LISN that provides a 50ol<br/>termination. (Please refer<br/>photographs).</li> <li>Both sides of A.C. line are<br/>interference. In order to fi<br/>positions of equipment ar<br/>according to ANSI C63.10</li> </ol> | on network (L.I.S.N.), wh<br>pedance for the measuring<br>re also connected to the<br>hm/50uH coupling imped<br>to the block diagram of<br>the checked for maximum<br>and the maximum emission<br>and all of the interface cab | hich provides a<br>ng equipment.<br>main power through a<br>lance with 50ohm<br>the test setup and<br>conducted<br>on, the relative<br>les must be changed |  |  |  |  |
| Test setup:           | Reference                                                                                                                                                                                                                                                                                                                                                  | 80cm<br>Filter<br>EMI<br>Receiver                                                                                                                                                                                              | – AC power                                                                                                                                                 |  |  |  |  |
| Test Instruments:     | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |                                                                                                                                                            |  |  |  |  |



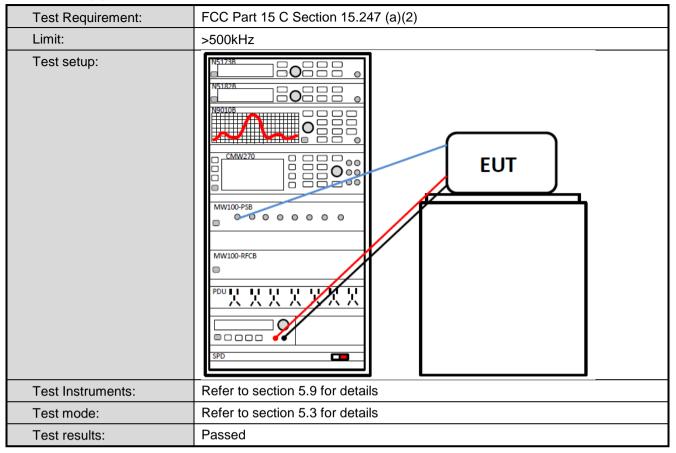
#### Measurement Data:

| Product name:              | 4G Si | 4G Smart Phone |      |                                                                                                                 |                                 | oduct m | odel:              | : Sky Black2 |                 |     |        |
|----------------------------|-------|----------------|------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|---------|--------------------|--------------|-----------------|-----|--------|
| Гest by:                   | Janet |                |      |                                                                                                                 | Те                              | st mode | :                  | BLE Tx mode  |                 |     |        |
| Test frequency:            | 150 k | Hz ~ 30        | MHz  |                                                                                                                 | Ph                              | nase:   |                    | Line         |                 |     |        |
| Fest voltage:              | AC 1  | 20 V/60 I      | Hz   |                                                                                                                 | Er                              | vironme | ent:               | Temp         | : <b>22.5</b> ℃ | Hun | i: 55% |
| 70<br>60<br>50<br>40<br>30 |       | 5              |      | 8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                |                                 |         | had a farmer       |              | CC PART 15      |     |        |
| 20<br>10<br>-5<br>.15 .2   | MMM   | .5             |      | Contraction of the second s | 2<br>quency (N                  | 1Hz)    | 5                  | 10           | )               | 20  | 30     |
|                            | Freq  | Read           | LISN | Free                                                                                                            | 2<br>quency (N<br>Cable<br>Loss | IHZ)    | 5<br>Limit<br>Line | Over         | Remark          | 20  | 30     |
| 10<br>0<br>-5.15 .2        | Freq  | Read           | LISN | Free<br>Aux<br>Factor                                                                                           | quency (N<br>Cable              |         | Limit              | Over         |                 | 20  | 30     |



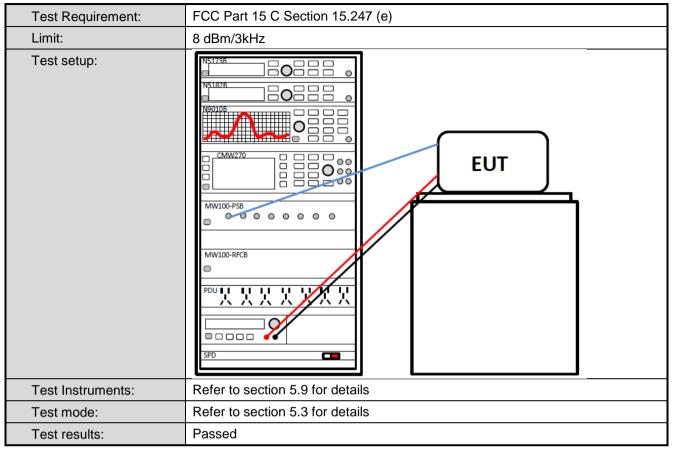



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.




# 6.3 Conducted Output Power






## 6.4 Occupy Bandwidth





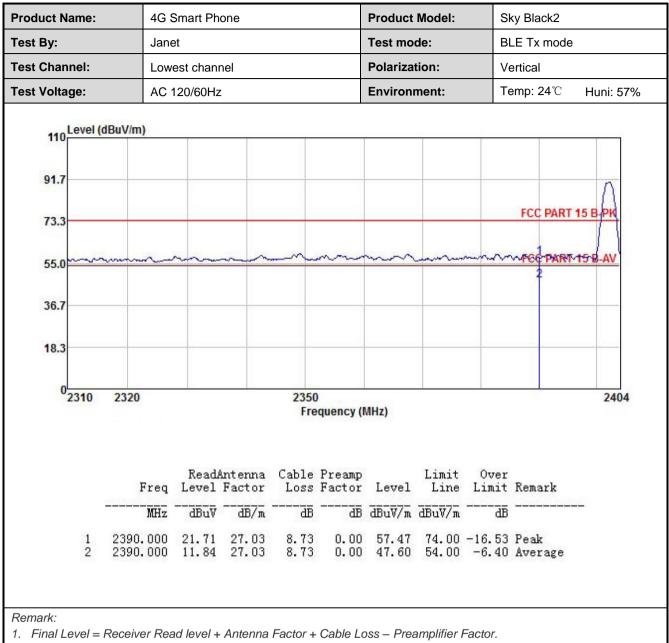
## 6.5 Power Spectral Density



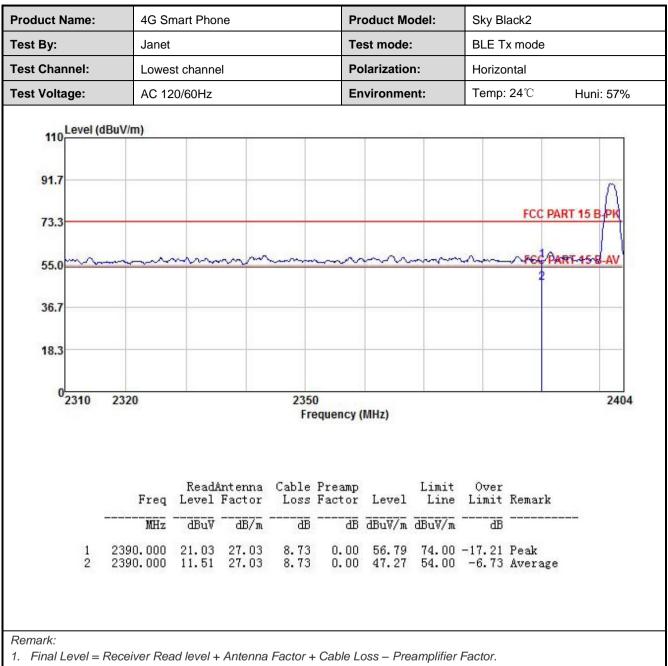


# 6.6 Band Edge

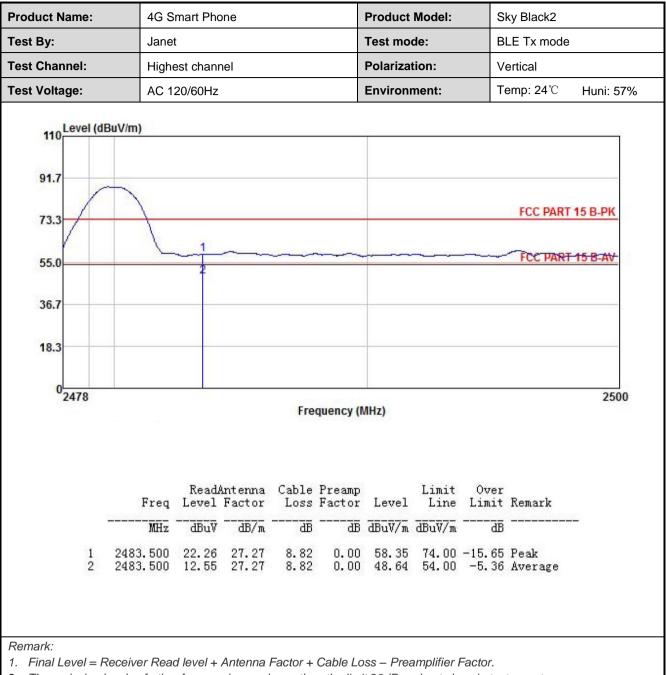
#### 6.6.1 Conducted Emission Method


| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

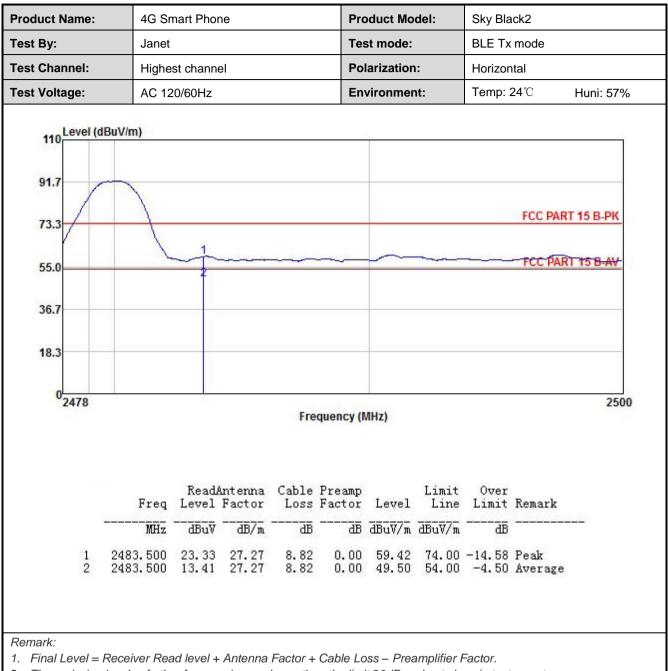



#### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.205 and 15.209                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                     |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Frequency Range: | 2310 MHz to 2                                                                                                                                                                                                                                                                                                                    | 2390 MHz an                                                                                                                                                                                                                                                                                                                    | d 2483.5MHz to 2                                                                                                                                                                                                                                                                                                                                                 | 2500 MH                                                                                                                                                                                          | Iz                                                                                                                                                                                                  |  |  |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                     |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                        | Detector                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                                                              | VBW                                                                                                                                                                                              | V Remark                                                                                                                                                                                            |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                       | Peak                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                             | 3MH                                                                                                                                                                                              |                                                                                                                                                                                                     |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                  | RMS                                                                                                                                                                                                                                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                             | 3MH                                                                                                                                                                                              | U U                                                                                                                                                                                                 |  |  |  |
| Limit:                | Frequen                                                                                                                                                                                                                                                                                                                          | icy                                                                                                                                                                                                                                                                                                                            | <u>Limit (dBuV/m @:</u><br>54.00                                                                                                                                                                                                                                                                                                                                 | 3m)                                                                                                                                                                                              | Remark<br>Average Value                                                                                                                                                                             |  |  |  |
|                       | Above 10                                                                                                                                                                                                                                                                                                                         | GHz –                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  | Peak Value                                                                                                                                                                                          |  |  |  |
| Test Procedure:       | <ul> <li>the groun<br/>to determ</li> <li>2. The EUT<br/>antenna,<br/>tower.</li> <li>3. The anter<br/>the groun<br/>Both horiz<br/>make the</li> <li>4. For each<br/>case and<br/>meters ar<br/>to find the</li> <li>5. The test-r<br/>Specified</li> <li>6. If the emis<br/>the limit s<br/>of the EU<br/>have 10 c</li> </ul> | d at a 3 meter<br>ine the positives was set 3 meters<br>which was meters<br>and height is<br>d to determing<br>contal and very<br>measureme<br>suspected end<br>then the anter<br>d the rota takes<br>maximum re-<br>receiver systers<br>Bandwidth very<br>ssion level of<br>pecified, the<br>T would be rota<br>B margin wood | er camber. The ta<br>ion of the highest<br>eters away from t<br>iounted on the top<br>varied from one in<br>the the maximum<br>entical polarization<br>nt.<br>mission, the EUT<br>enna was tuned to<br>ble was turned fr<br>eading.<br>em was set to Pe<br>with Maximum Ho<br>f the EUT in peak<br>in testing could be<br>eported. Otherwis<br>ould be re-tested | ble was i<br>radiation<br>he interfe<br>o of a var<br>meter to f<br>value of t<br>is of the a<br>was arra<br>o heights<br>om 0 deg<br>ak Detec:<br>Id Mode.<br>stopped<br>se the em<br>one by or | erence-receiving<br>riable-height antenna<br>four meters above<br>the field strength.<br>antenna are set to<br>anged to its worst<br>a from 1 meter to 4<br>grees to 360 degrees<br>et Function and |  |  |  |
| Test setup:           |                                                                                                                                                                                                                                                                                                                                  | EUT<br>urntable)<br>Gro<br>Test Receive                                                                                                                                                                                                                                                                                        | Horn Antenna<br>3m<br>und Reference Plane<br>ar Pre-<br>Amptier Con                                                                                                                                                                                                                                                                                              | Antenna Tower                                                                                                                                                                                    |                                                                                                                                                                                                     |  |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                 | on 5.9 for det                                                                                                                                                                                                                                                                                                                 | ails                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                     |  |  |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                 | on 5.3 for det                                                                                                                                                                                                                                                                                                                 | ails                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                     |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                     |  |  |  |


















## 6.7 Spurious Emission

#### 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |



#### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.205 and 15.209                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Frequency Range: | 9kHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Test Distance:        | 3m & 10m                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                     | Detector                                                                                                                                                                                                                                                                                    | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RBW                                                                                                                                                                                                                                                                                                    | VB                                                                                                                                                                                             | W                                                                                                                                                                 | Remark                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                    | Quasi-pea                                                                                                                                                                                                                                                                                   | ak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120KHz                                                                                                                                                                                                                                                                                                 | 300                                                                                                                                                                                            | КНz                                                                                                                                                               | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1MHz                                                                                                                                                                                                                                                                                                   | ЗM                                                                                                                                                                                             |                                                                                                                                                                   | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                               | RMS                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1MHz                                                                                                                                                                                                                                                                                                   | 3M                                                                                                                                                                                             | Hz                                                                                                                                                                | Average Value                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Limit:                | Frequency                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             | Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nit (dBuV/m @                                                                                                                                                                                                                                                                                          | 10m)                                                                                                                                                                                           |                                                                                                                                                                   | Remark                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       | 30MHz-88M                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.0                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                   | aluasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                       | 88MHz-216M                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.5                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                   | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                       | 216MHz-960<br>960MHz-1G                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>36.0</u><br>44.0                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                                   | ≀uasi-peak Value<br>∖uasi-peak Value                                                                                                                                                                                                                                                                                                                                                                       |  |
|                       | Frequency                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             | Lir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nit (dBuV/m @                                                                                                                                                                                                                                                                                          | 3m)                                                                                                                                                                                            | 6                                                                                                                                                                 | Remark                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54.0                                                                                                                                                                                                                                                                                                   | Silly                                                                                                                                                                                          |                                                                                                                                                                   | Average Value                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | Above 1GF                                                                                                                                                                                                                                                                                                                                                                     | lz –                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.0                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                   | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Test Procedure:       | <ul> <li>/1.5m(abov<br/>1GHz)or 3<br/>degrees to</li> <li>2. The EUT w<br/>away from<br/>on the top of</li> <li>3. The antenr<br/>the ground<br/>Both horize<br/>make the n</li> <li>4. For each s<br/>case and t<br/>meters and<br/>to find the n</li> <li>5. The test-re<br/>Specified E</li> <li>6. If the emiss<br/>the limit sp<br/>of the EUT<br/>have 10 dE</li> </ul> | ve 1GHz) a<br>meter char<br>determine<br>vas set 10 r<br>the interfer<br>of a variable<br>na height i<br>to determ<br>ontal and<br>measureme<br>suspected<br>hen the ar<br>d the rota to<br>maximum r<br>eceiver sy<br>Bandwidth<br>sion level of<br>ecified, the<br>would be<br>B margin w | abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov<br>abov | ve the ground<br>er (above 1GH<br>position of the<br>ers (below 1G<br>ce-receiving a<br>eight antenna<br>aried from of<br>the maximum<br>ical polarization<br>ission, the E<br>ma was turned<br>ding.<br>m was set<br>Maximum H<br>ne EUT in per<br>esting could to<br>ported. Other<br>d be re-tested | at a 1(<br>Iz). The<br>he high<br>GHz) or<br>antenna<br>a tower<br>ne met<br>um val-<br>ions of<br>EUT was<br>d to he<br>from 0<br>to Pea<br>old Mo<br>ak moo<br>be stop<br>wise th<br>d one b | D mete<br>e table<br>est rac<br>3 me<br>a, whic<br>er to f<br>ue of<br>the a<br>as arra<br>eights<br>degre<br>k Det<br>de.<br>de was<br>ped ar<br>e emis<br>y one | <ul> <li>D.8m(below 1GHz)</li> <li>er chamber (below 4 was rotated 360 diation.</li> <li>ters(above 1GHz)</li> <li>th was mounted</li> <li>four meters above the field strength.</li> <li>antenna are set to anged to its worst from 1 meter to 4 wes to 360 degrees</li> <li>tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data</li> </ul> |  |
| Test setup:           |                                                                                                                                                                                                                                                                                                                                                                               | 10m ∢                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                        | S<br>A<br>RF                                                                                                                                                                                   | Antenna To<br>earch<br>untenna<br>Test<br>ceiver —                                                                                                                | ower                                                                                                                                                                                                                                                                                                                                                                                                       |  |

Project No.: JYTSZE2105038



|                   | Above 1GHz                                                                                                                                                                                                                                    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Horn Artianna<br>Horn Artianna<br>Antenna Tower<br>(Turntable)<br>Ground Reference Plane<br>Test Receiver                                                                                                                                     |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                              |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                              |
| Test results:     | Passed                                                                                                                                                                                                                                        |
| Remark:           | <ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found<br/>the Y-axis is the worst case.</li> <li>9 kHz to 30MHz is lower than the limit 20dB, so only shows the data<br/>of above 30MHz in this report.</li> </ol> |



#### Measurement Data (worst case):

#### Below 1GHz:

| Product Name:                                                                          | Proc                                            | oduct Model: Sky Black2    |                  |                  |            |                    |                         |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|------------------|------------------|------------|--------------------|-------------------------|--|--|
| est By:                                                                                | Janet                                           |                            |                  | mode:            |            | BLE Tx mode        |                         |  |  |
| Test Frequency:                                                                        | 30 MHz ~ 1 GHz Polarization: Vertical & Horizon |                            |                  |                  |            |                    | lorizontal              |  |  |
| Test Voltage:                                                                          | AC 120/60Hz                                     |                            | Envi             | ronment:         |            | Temp: 24°C         | Huni: 57                |  |  |
| 4 <del>5</del><br>4 <del>0</del><br>3 <del>0</del><br>1 <del>0</del><br>1 <del>0</del> |                                                 | Fu                         | II S p d         | e c tru          | m<br>*     | F C C P            |                         |  |  |
| 0+<br>3 0 M                                                                            | 50608                                           | 01 0 0 M                   | 2 0              | 0 3 0            | 04 0       | <del>6</del> 00    | 800G                    |  |  |
|                                                                                        |                                                 | F                          | reque            | ency             | in F       | l z                |                         |  |  |
| ■ Frequency<br>(MHz)                                                                   | ل MaxPeak<br>(dB ዞ V/m)،                        | Limit↓<br>(dB ዞ            | Margin↓<br>(dB)↩ | Height↓<br>(cm)₊ | Pol₊∋      | Azimuth↓<br>(deg)↩ | Corr.↓<br>(dB/m)₽       |  |  |
| <ul> <li>56.67500</li> </ul>                                                           |                                                 | 30.00¢                     | 8.31÷            |                  | H₽         | 142.0∉             | -16.5                   |  |  |
|                                                                                        |                                                 | 30.00↔                     | 17.31            |                  | H₽         | 192.0              | -20.0+3                 |  |  |
|                                                                                        | )0el 12.69el                                    | JU.UU                      |                  |                  |            |                    |                         |  |  |
| 77.53000                                                                               |                                                 |                            |                  | <b>100.0</b> ₽   | V          | 71.0⊬              | - <b>17.6</b> ↔         |  |  |
| <ul> <li>77.53000</li> <li>30.77600</li> </ul>                                         | 00↩ 18.91↩                                      | 30.00↔<br>30.00↔<br>36.00↔ | 11.09∉<br>9.50∉  |                  | V.∂<br>V.∂ | 71.0≓<br>192.0≓    | <u>-17.6</u> ⊷<br>-0.5⊷ |  |  |
| 77.53000                                                                               | 00¢ 18.91¢<br>00¢ 26.50¢                        | <b>30.00</b> ∉             | <b>11.09</b> ₽   | <b>100.0</b> ↔   |            |                    |                         |  |  |

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.



#### Above 1GHz

|                        |                         |                             | Te                    |                       | el: Lowest cl            |                   |                           |                       |              |
|------------------------|-------------------------|-----------------------------|-----------------------|-----------------------|--------------------------|-------------------|---------------------------|-----------------------|--------------|
|                        |                         |                             |                       | Detecto               | or: Peak Valu            | le                |                           |                       |              |
| Frequency<br>(MHz)     | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00                | 56.77                   | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 54.98             | 74.00                     | -19.02                | Vertical     |
| 4804.00                | 55.89                   | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 54.10             | 74.00                     | -19.90                | Horizontal   |
|                        | 1                       | 1                           |                       | Detector:             | Average Va               | alue              |                           | 1                     |              |
| Frequency<br>(MHz)     | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00                | 48.90                   | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 47.11             | 54.00                     | -6.89                 | Vertical     |
| 4804.00                | 49.10                   | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 47.31             | 54.00                     | -6.69                 | Horizontal   |
|                        |                         |                             |                       |                       |                          |                   |                           |                       |              |
|                        |                         |                             |                       |                       | el: Middle ch            |                   |                           |                       |              |
|                        | Deed                    | Antonno                     | Cabla                 |                       | or: Peak Val             | Je                | Lineit                    | Over                  | [            |
| Frequency<br>(MHz)     | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00                | 57.00                   | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 55.45             | 74.00                     | -18.55                | Vertical     |
| 4884.00                | 56.05                   | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 54.50             | 74.00                     | -19.50                | Horizontal   |
|                        |                         |                             |                       | Detector:             | Average Va               | alue              |                           |                       |              |
| Frequency<br>(MHz)     | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00                | 48.84                   | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 47.29             | 54.00                     | -6.71                 | Vertical     |
| 4884.00                | 48.65                   | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 47.10             | 54.00                     | -6.90                 | Horizontal   |
|                        |                         |                             | Τe                    | est channe            | el: Highest c            | hannel            |                           |                       |              |
|                        |                         |                             |                       | Detecto               | or: Peak Val             | he                |                           |                       |              |
| Frequency<br>(MHz)     | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00                | 56.62                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 55.26             | 74.00                     | -18.74                | Vertical     |
| 4960.00                | 56.49                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 55.13             | 74.00                     | -18.87                | Horizontal   |
|                        |                         |                             |                       | Detector:             | Average Va               | alue              |                           |                       |              |
| Frequency<br>(MHz)     | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00                | 48.56                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 47.20             | 54.00                     | -6.80                 | Vertical     |
| 4960.00                | 48.57                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 47.21             | 54.00                     | -6.79                 | Horizontal   |
| Remark:<br>1. Final Le | vel =Receiv             | ver Read leve               | el + Anteni           | na Factor +           | Cable Loss               | + Aux Factor      | – Preamplifie             | r Factor.             |              |

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366