FCC Report (Bluetooth)

Applicant:
Sky Phone LLC
Address of Applicant: \(\begin{aligned} \& 1348 Washington Av. Suite 350 Miami Beach, Florida 33139
\& United States\end{aligned}\)
\section*{Equipment Under Test (EUT)}
Product Name:
Model No.:
Trade mark:
\section*{FCC ID:}
Applicable standards:
Date of sample receipt:
Date of Test:
Date of report issued:
Test Result :
Smart Phone
Elite 5.5L
Sky Devices
2ABOSELITE55L
FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014
November 24, 2015
November 25 - December 01, 2015
December 02, 2015
PASS *
* In the configuration tested, the EUT complied with the standards specified above.

Robinson Lo
Laboratory Manager
This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.
This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.
This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	December 02, 2015	Original

Prepared By:	Folward. Pan	Date:	December 02, 2015
	Project Engineer		
Check By:	hante yan	Date:	December 02, 2015
	Reviewer		

3 Contents
Page
1 COVER PAGE 1
2 VERSION 2
3 CONTENTS 3
4 TEST SUMMARY 4
5 GENERAL INFORMATION 5
5.1 CLIENT Information 5
5.2 General Description of EUT 5
5.3 TESt MODE 7
5.4 Description of Support Units 7
5.5 Test Facility, 7
5.6 Test Location 7
6 TEST INSTRUMENTS LIST. 8
7 TEST RESULTS AND MEASUREMENT DATA 9
7.1 ANTENNA REQUIREMENT 9
7.2 Conducted Emissions 10
7.3 Conducted Output Power 13
7.4 Channel Bandwidth 15
7.5 Power Spectral Density 17
7.6 BAND EDGES 19
7.6.1 Conducted Emission Method 19
7.6.2 Radiated Emission Method 20
7.7 Spurious Emission 22
7.7.1 Conducted Emission Method 22
7.7.2 Radiated Emission Method 24
8 TEST SETUP PHOTO 30
9 EUT CONSTRUCTIONAL DETAILS 31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	$15.203 / 15.247(\mathrm{c})$	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	$15.247(\mathrm{~b})(3)$	Pass
Channel Bandwidth	$15.247(\mathrm{a})(2)$	Pass
Power Spectral Density	$15.247(\mathrm{e})$	Pass
Band Edge	$15.247(\mathrm{~d})$	Pass
Spurious Emission	$15.205 / 15.209$	Pass

Pass: The EUT complies with the essential requirements in the standard.
Remark: Test according to ANSI C63.4:2009

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	$\pm 4.34 \mathrm{~dB}$	(1)
Radiated Emission	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	$\pm 4.24 \mathrm{~dB}$	(1)
Radiated Emission	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$	$\pm 4.68 \mathrm{~dB}$	(1)
AC Power Line Conducted Emission	$0.15 \mathrm{MHz} \sim 30 \mathrm{MHz}$	$\pm 3.45 \mathrm{~dB}$	(1)

Note (1): The measurement uncertainty is for coverage factor of $k=2$ and a level of confidence of 95%.

5 General Information

5.1 Client Information

Applicant:	Sky Phone LLC
Address of Applicant:	1348 Washington Av. Suite 350 Miami Beach, Florida 33139 United States
Manufacturer/Factory:	Shenzhen Konka Telecommunications Technology Co., Ltd.
Address of	No.9008 Shennan Road,Overseas Chinese Town, ShenZhen, Guangdong, China
Manufacturer/Factory:	

5.2 General Description of EUT

Product Name:	Smart Phone
Model No.:	Elite 5.5L
Operation Frequency:	$2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Channel Numbers:	40
Channel Separation:	2 MHz
Modulation Type:	GFSK
Antenna Type:	PIFA antenna
Antenna Gain:	1.0dBi
Power Supply:	Adapter Model No.: U0B2E0A050100 Input: AC 100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1.0A or DC 3.7V Li-ion Battery

Report No.: GTSE15110214004

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
\vdots	\vdots	$\cdot \vdots$	\vdots	$\cdot \vdots$	\cdot	\cdot	\vdots
\vdots	\cdot	\vdots		\vdots			
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:
In section $15.31(\mathrm{~m})$, regards to the operating frequency range over 10 MHz , the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402 MHz
The middle channel	2440 MHz
The Highest channel	2480 MHz

Report No.: GTSE15110214004

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Remark: During the test, the dutycycle >98\%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.	

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

- Industry Canada (IC) —Registration No.: 9079A-2

The 3 m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:
Global United Technology Services Co., Ltd.
Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone,Xixiang Road, Baoan District, Shenzhen 518102
Tel: 0755-27798480
Fax: 0755-27798960

6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	$\begin{gathered} \text { Cal.Date } \\ \text { (mm-dd-yy) } \end{gathered}$	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 032015	July. 022020
2	Control Room	ZhongYu Electron	$6.2(\mathrm{~L}) * 2.5(\mathrm{~W}) * 2.4(\mathrm{H})$	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jun. 302015	Jun. 292016
4	EMI Test Receiver	Rohde \& Schwarz	ESU26	GTS203	Jun. 302015	Jun. 292016
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jun. 302015	Jun. 292016
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	Jun. 262015	Jun. 252016
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 272015	Mar. 262016
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 282015	Mar. 272016
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 282015	Mar. 272016
11	Coaxial cable	GTS	N/A	GTS210	Mar. 282015	Mar. 272016
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 282015	Mar. 272016
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jun. 302015	Jun. 292016
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jun. 302015	Jun. 292016
15	Amplifier (18-26GHz)	Rohde \& Schwarz	$\begin{aligned} & \text { AFS33-18002 } \\ & 650-30-8 P-44 \end{aligned}$	GTS218	Jun. 262015	Jun. 252016
16	Band filter	Amindeon	82346	GTS219	Mar. 282015	Mar. 272016

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	$7.0(\mathrm{~L}) \times 3.0(\mathrm{~W}) \times 3.0(\mathrm{H})$	GTS264	Jun. 302015	Jun. 292016
2	EMI Test Receiver	Rohde \& Schwarz	ESCS30	GTS223	Jun. 302015	Jun. 292016
3	10dB Pulse Limita	Rohde \& Schwarz	N/A	GTS224	Jun. 302015	Jun. 292016
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jun. 302015	Jun. 292016
5	LISN	SCHWARZBECK	NSLK 8127	GTS226	Jun. 302015	Jun. 292016
6	Coaxial Cable	MESS-ELEKTRONIK	GTS	N/A	GTS227	Jun. 302015
7	EMI Test Software	AUDIX 292016				

General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	July 072015	July 06 2016

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: \quad FCC Part15 C Section $15.203 / 247(c)$

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the $2400-2483.5 \mathrm{MHz}$ band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is 1 dBi

7.2 Conducted Emissions

GTS

Measurement data

Line:

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL
Job No. : 2140RF
Test mode : Bluetooth 4.0 mode
Test Engineer: Rong
Read LISN Cable Limit Over

Fre	Read	LISN	Cable	Level	Limit	Over Limit	
Freq	Level	Factor	Loss	Level			Remark
MHz	dBuV	dB	dB	dBuV	dBuV		

1	0.164	36.20	0.07	0.12	36.39	65.25	-28.86 QP	
2	0.343	34.63	0.06	0.10	34.79	59.13	-24.34 QP	
3	0.452	35.36	0.06	0.11	35.53	56.85	-21.32 QP	
4	0.573	42.44	0.07	0.12	42.63	56.00	-13.37 QP	
5	4.874	42.37	0.15	0.15	42.67	56.00	-13.33 QP	
6	19.021	36.77	0.47	0.22	37.46	60.00	-22.54	QP

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Final Level =Receiver Read level + LISN Factor + Cable Loss
4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03
Limit:	30dBm
Test setup:	
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.91		
Middle	-5.85	30.00	
Highest	-5.57		

GTS

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03
Limit:	$>500 \mathrm{KHz}$
Test setup:	
Test Instruments:	
Test mode:	Refer to section 6.0 for details
Test results:	Refer to section 5.3 for details

Measurement Data

Test channel	Channel Bandwidth (MHz)	$\operatorname{Limit(KHz)}$	Result
Lowest	1.206		
Middle	1.206		Pass
Highest	1.203		

GTS

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03	
Limit:	8dBm/3kHz	
Test setup:	Spectrum Analyzer	E.U.T
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-6.78		
Middle	-6.78	8.00	Pass
Highest	-6.19		

GTS

Test plot as follows:

Lowest channel

Middle channel

Highest channel

GTS

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	

Test plot as follows:

Lowest channel

Highest channel

Report No.: GTSE15110214004

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4:2009				
Test Frequency Range:	All of the restrict bands were tested, only the worst band's $(2310 \mathrm{MHz}$ to 2500 MHz) data was showed.				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above 1GHz	Peak	1 MHz	3 MHz	Peak
		RMS	1 MHz	3 MHz	Average
Limit:	Frequency		Limit (dBuV/m @3m)		Value
	Above 1GHz		54.00		Average
			74.00		Peak
Test setup:					
Test Procedure:	1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:
Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:	Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Polarization
2390.00	41.70	27.59	5.38	30.18	44.49	74.00	-29.51	Horizontal
2400.00	58.32	27.58	5.39	30.18	61.11	74.00	-12.89	Horizontal
2390.00	42.13	27.59	5.38	30.18	44.92	74.00	-29.08	Vertical
2400.00	60.23	27.58	5.39	30.18	63.02	74.00	-10.98	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Polarization
2390.00	32.51	27.59	5.38	30.18	35.30	54.00	-18.70	Horizontal
2400.00	43.68	27.58	5.39	30.18	46.47	54.00	-7.53	Horizontal
2390.00	32.37	27.59	5.38	30.18	35.16	54.00	-18.84	Vertical
2400.00	45.22	27.58	5.39	30.18	48.01	54.00	-5.99	Vertical

Test channel:

Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Polarization
2483.50	43.66	27.53	5.47	29.93	46.73	74.00	-27.27	Horizontal
2500.00	43.06	27.55	5.49	29.93	46.17	74.00	-27.83	Horizontal
2483.50	44.31	27.53	5.47	29.93	47.38	74.00	-26.62	Vertical
2500.00	43.94	27.55	5.49	29.93	47.05	74.00	-26.95	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Polarization
2483.50	35.33	27.53	5.47	29.93	38.40	54.00	-15.60	Horizontal
2500.00	33.50	27.55	5.49	29.93	36.61	54.00	-17.39	Horizontal
2483.50	36.44	27.53	5.47	29.93	39.51	54.00	-14.49	Vertical
2500.00	33.32	27.55	5.49	29.93	36.43	54.00	-17.57	Vertical

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB558074 D01 DTS Meas Guidance V03
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

GTS

Report No.: GTSE15110214004

Test plot as follows:

Lowest channel

Middle channel

$30 \mathrm{MHz} \sim 10 \mathrm{GHz}$
Highest channel

$30 \mathrm{MHz} \sim 10 \mathrm{GHz}$

$10 \mathrm{GHz} \sim 25 \mathrm{GHz}$

$10 \mathrm{GHz} \sim 25 \mathrm{GHz}$

$10 \mathrm{GHz} \sim 25 \mathrm{GHz}$

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209				
Test Method:	ANSI C63.4:2009				
Test Frequency Range:	30 MHz to 25 GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	30MHz-1GHz	Quasi-peak	120 KHz	300 KHz	Quasi-peak
	Above 1GHz	Peak	1 MHz	3 MHz	Peak
		RMS	1 MHz	3 MHz	Average
Limit:	Frequency		Limit (dBuV/m @3m)		Value
	$30 \mathrm{MHz}-88 \mathrm{MHz}$		40.00		Quasi-peak
	88MHz-216MHz		43.50		Quasi-peak
	$216 \mathrm{MHz}-960 \mathrm{MHz}$		46.00		Quasi-peak
	$960 \mathrm{MHz}-1 \mathrm{GHz}$		54.00		Quasi-peak
	Above 1 GHz		54.00		Average
	Above 1GHz		74.00		Peak
Test setup:	Below 1GHz				
	Ground Plane Above 1GHz			Antenna Tow Search Antenna F Test Receiver \qquad ? 7	

| Test Procedure: | T. The EUT was placed on the top of a rotating table (0.8 meters below
 1G and 1.5 meters above 1G) above the ground at a 3 meter camber.
 The table was rotated 360 degrees to determine the position of the
 highest radiation. |
| :--- | :--- | :--- |
| 2. The EUT was set 3 meters away from the interference-receiving | |
| antenna, which was mounted on the top of a variable-height antenna | |
| tower. | |
| 3. The antenna height is varied from one meter to four meters above the | |
| ground to determine the maximum value of the field strength. Both | |
| horizontal and vertical polarizations of the antenna are set to make the | |
| measurement. | |

Remark:
Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

- Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
34.16	44.21	14.31	0.60	30.08	29.04	40.00	-10.96	Vertical
48.33	46.64	15.35	0.75	30.01	32.73	40.00	-7.27	Vertical
93.11	49.61	14.50	1.14	29.73	35.52	43.50	-7.98	Vertical
174.42	36.53	11.29	1.71	29.30	20.23	43.50	-23.27	Vertical
373.31	26.72	16.54	2.73	29.62	16.37	46.00	-29.63	Vertical
731.92	24.29	21.19	4.20	29.20	20.48	46.00	-25.52	Vertical
64.89	40.45	12.71	0.90	29.89	24.17	40.00	-15.83	Horizontal
87.42	47.57	13.18	1.09	29.76	32.08	40.00	-7.92	Horizontal
104.17	48.84	14.78	1.23	29.67	35.18	43.50	-8.32	Horizontal
143.33	45.91	10.22	1.53	29.44	28.22	43.50	-15.28	Horizontal
183.84	45.75	12.00	1.76	29.26	30.25	43.50	-13.25	Horizontal
684.75	31.80	20.75	4.04	29.21	27.38	46.00	-18.62	Horizontal

Report No.: GTSE15110214004

- Above 1GHz

Test channel:	Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
4804.00	37.57	31.78	8.60	32.09	45.86	74.00	-28.14	Vertical
7206.00	32.01	36.15	11.65	32.00	47.81	74.00	-26.19	Vertical
9608.00	31.63	37.95	14.14	31.62	52.10	74.00	-21.90	Vertical
12010.00	$*$					74.00		Vertical
14412.00	$*$					74.00		Vertical
4804.00	41.91	31.78	8.60	32.09	50.20	74.00	-23.80	Horizontal
7206.00	33.79	36.15	11.65	32.00	49.59	74.00	-24.41	Horizontal
9608.00	31.07	37.95	14.14	31.62	51.54	74.00	-22.46	Horizontal
12010.00	$*$					74.00		Horizontal
14412.00	$*$					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
4804.00	26.34	31.78	8.60	32.09	34.63	54.00	-19.37	Vertical
7206.00	20.66	36.15	11.65	32.00	36.46	54.00	-17.54	Vertical
9608.00	19.72	37.95	14.14	31.62	40.19	54.00	-13.81	Vertical
12010.00	$*$					54.00		Vertical
14412.00	$*$					54.00		Vertical
4804.00	30.59	31.78	8.60	32.09	38.88	54.00	-15.12	Horizontal
7206.00	22.85	36.15	11.65	32.00	38.65	54.00	-15.35	Horizontal
9608.00	19.48	37.95	14.14	31.62	39.95	54.00	-14.05	Horizontal
12010.00	$*$					54.00		Horizontal
14412.00	$*$					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
2. " "", means this data is the too weak instrument of signal is unable to test.

Test channel:	Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
4880.00	36.91	31.85	8.67	32.12	45.31	74.00	-28.69	Vertical
7320.00	31.57	36.37	11.72	31.89	47.77	74.00	-26.23	Vertical
9760.00	31.23	38.35	14.25	31.62	52.21	74.00	-21.79	Vertical
12200.00	$*$					74.00		Vertical
14640.00	$*$					74.00		Vertical
4880.00	41.11	31.85	8.67	32.12	49.51	74.00	-24.49	Horizontal
7320.00	33.29	36.37	11.72	31.89	49.49	74.00	-24.51	Horizontal
9760.00	30.62	38.35	14.25	31.62	51.60	74.00	-22.40	Horizontal
12200.00	$*$					74.00		Horizontal
14640.00	$*$					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
4880.00	25.81	31.85	8.67	32.12	34.21	54.00	-19.79	Vertical
7320.00	20.31	36.37	11.72	31.89	36.51	54.00	-17.49	Vertical
9760.00	19.41	38.35	14.25	31.62	40.39	54.00	-13.61	Vertical
12200.00	$*$					54.00		Vertical
14640.00	$*$					54.00		Vertical
4880.00	29.99	31.85	8.67	32.12	38.39	54.00	-15.61	Horizontal
7320.00	22.45	36.37	11.72	31.89	38.65	54.00	-15.35	Horizontal
9760.00	19.10	38.35	14.25	31.62	40.08	54.00	-13.92	Horizontal
12200.00	$*$					54.00		Horizontal
14640.00	$*$					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
2. ""*", means this data is the too weak instrument of signal is unable to test.

Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
4960.00	35.95	31.93	8.73	32.16	44.45	74.00	-29.55	Vertical
7440.00	30.93	36.59	11.79	31.78	47.53	74.00	-26.47	Vertical
9920.00	30.67	38.81	14.38	31.88	51.98	74.00	-22.02	Vertical
12400.00	$*$					74.00		Vertical
14880.00	$*$					74.00		Vertical
4960.00	39.96	31.93	8.73	32.16	48.46	74.00	-25.54	Horizontal
7440.00	32.56	36.59	11.79	31.78	49.16	74.00	-24.84	Horizontal
9920.00	29.96	38.81	14.38	31.88	51.27	74.00	-22.73	Horizontal
12400.00	$*$					74.00		Horizontal
14880.00	$*$					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	polarization
4960.00	25.06	31.93	8.73	32.16	33.56	54.00	-20.44	Vertical
7440.00	19.80	36.59	11.79	31.78	36.40	54.00	-17.60	Vertical
9920.00	18.96	38.81	14.38	31.88	40.27	54.00	-13.73	Vertical
12400.00	$*$					54.00		Vertical
14880.00	$*$					54.00		Vertical
4960.00	29.15	31.93	8.73	32.16	37.65	54.00	-16.35	Horizontal
7440.00	21.89	36.59	11.79	31.78	38.49	54.00	-15.51	Horizontal
9920.00	18.58	38.81	14.38	31.88	39.89	54.00	-14.11	Horizontal
12400.00	$*$					54.00		Horizontal
14880.00	$*$					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
2. " "*, means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE15110214001

