RF TEST REPORT

Report No.: SET2016-01098

Product Name: Wearable $\mathrm{SpO}_{2} /$ ECG Monitor
FCC ID: 2ABOGCMS50K
Model No. : CMS50K
Applicant: Contec Medical Systems Co., Ltd.
No. 112 Qinhuang West Street, Economic \& Technical
Address: Development Zone, Qinhuangdao, Hebei
Province, PEOPLE'S REPUBLIC OF CHINA
Dates of Testing: 01/18/2016 - 01/20/2016

Issued by: CCIC-SET
Lab Location: Building 28/29, East of Shigu, Xili Industrial Zone, Xili Road, Nanshan District, Shenzhen, Guangdong, China
Tel: 8675526627338 Fax: 8675526627238

This test report consists of 33 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 20 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report	
Product Name : Wearable $\mathrm{SpO}_{2} / \mathrm{ECG}$ Monitor	
Brand Name :	N/A
Trade Name : CONTEC ${ }^{\text {c }}$	
Applicant........................... : Contec Medical Systems Co., Ltd.	
Applicant Address.............. :	No. 112 Qinhuang West Street, Economic \& Technical Development Zone, Qinhuangdao, Hebei Province, PEOPLE'S REPUBLIC OF CHINA
Manufacturer...................... : Contec Medical Systems Co., Ltd.	
Manufacturer Address :	No. 112 Qinhuang West Street, Economic \& Technical Development Zone, Qinhuangdao, Hebei Province, PEOPLE'S REPUBLIC OF CHINA
Test Standards................... :	47 CFR Part 15 Subpart C: Radio Frequency Devices ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices
	KDB 558074D01 v03r03
Test Result :	PASS
Tested by :	creir 2016.01.21
	Lu Lei, Test Engineer
Reviewed by....................... :	Zhe Qi: 2016.01.21
	Zhu Qi, Senior Egineer
Approved by :	$\text { Nw (iom } 2016.01 .21$
	Wu Li'an, Manager

TABLE OF CONTENTS

1. GENERAL INFORMATION 4
1.1. EUT Description 4
1.2. Test Standards and Results 5
1.3. Facilities and Accreditations 7
2. 47 CFR PART 15C REQUIREMENTS 8
2.1. Antenna requirement 8
2.2. Peak Output Power 9
2.3. 6 dB Bandwidth 10
2.4. Conducted Band Edges and Spurious Emissions 13
2.5. Power spectral density (PSD) 18
2.6. Radiated Band Edge and Spurious Emission 21
2.7. Conducted Emission 29
3. LIST OF MEASURING EQUIPMENT 33

Change History		
Issue	Date	Reason for change
1.0	2016.01 .21	First edition

1. General Information

1.1. EUT Description

EUT Type	Wearable $\mathrm{SpO}_{2} /$ ECG Monitor
Hardware Version	LSD4BT0408-01D0
Software Version	0×05
EUT supports Radios application	Bluetooth V4.0LE
Frequency Range	$2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Channel Number	40
Bit Rate of Transmitter	1 Mbps
Modulation Type	GFSK
Antenna Type	PCB antenna
Antenna Gain	2.0 dBi

Note 1: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4 GHz ISM band radiators) for the EUT FCC Certification:

No.	Identity	Document Title
1	47 CFR Part 15 Subpart C 2013	Radio Frequency Devices
2	ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Result
1	15.203	Antenna Requirement	PASS
2	$15.247(\mathrm{~b})$	Peak Output Power	PASS
3	$15.247(\mathrm{a})$	Bandwidth	PASS
4	$15.247(\mathrm{~d})$	Conducted Band Edges and Spurious Emission	PASS
5	$15.247(\mathrm{e})$	Power spectral density (PSD)	PASS
6	15.207	Conducted Emission	PASS
7	$15.20915 .247(\mathrm{~d})$	Radiated Band Edges and Spurious Emission	PASS

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10-2009.

These RF tests were performed according to the method of measurements prescribed in KDB 558074D01 v03r03.

40 channels are provided for Bluetooth LE 4.0

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466

13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

	Test Items	Modulation	Channel
	Peak Conducted Output Power Power Spectral Density 6dB Bandwidth	GFSK	$0 / 20 / 39$
	Conducted and Spurious Emission Radiated and Spurious Emission	Band Edge	GFSK
	B.0	$0 / 39$	

1.3. Table for Supporting Units

No.	Equipment	Brand Name	Model Name	Manufacturer	Serial No.	Note
1	Notebook	DELL	PP11L	DELL	H5914A03	FCC DOC

1.4. Facilities and Accreditations

1.4.1. Facilities

CNAS-Lab Code: L1659
CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. A 12.8*6.8*6.4 (m) fully anechoic chamber was used for the radiated spurious emissions test.
FCC-Registration No.: 406086
CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 406086, valid time is until October 28, 2017.

IC-Registration No.: 11185A-1

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on July. 15, 2013, valid time is until July. 15, 2016.

1.4.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature $\left({ }^{\circ} \mathrm{C}\right):$	$15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
Relative Humidity $(\%):$	$30 \%-60 \%$
Atmospheric Pressure $(\mathrm{kPa}):$	$86 \mathrm{KPa}-106 \mathrm{KPa}$

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

And according to FCC 47 CFR Section 15.247(c), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

2.1.2. Antenna Information

Antenna Category: Internal antenna
An Internal antenna was soldered to the antenna port of EUT via an adaptor cable, can't be removed.

Antenna General Information:

No.	EUT	Ant. Type	Gain(dBi)
1	Wearable $\mathrm{SpO}_{2} /$ ECG Monitor	PCB	2

2.1.3. Result: comply

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power

2.2.1. Limit of Peak Output Power

For systems using digital modulation in the $2400-2483.5 \mathrm{MHz}$, the limit for peak output power is 30 dBm . If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi . In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

2.2.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.2.3. Test Setup

2.2.4. Test Procedures

1. The testing follows the Measurement Procedure of FCC KDB 558074D01 v03r03.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power and record the results in the test report.

2.2.5. Test Result

Channel	Frequency (MHz)	RF Power(dBm)	$\begin{gathered} \text { Limit } \\ (\mathrm{dBm}) \end{gathered}$	Verdict
		GFSK/1Mbps		
0	2402	-1.95	30	PASS
20	2442	-2.46		PASS
39	2480	-2.75		PASS

2.3. 6dB Bandwidth

2.3.1. Limit of $\mathbf{6 d B}$ Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz .

2.3.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.3.3. Test Setup

2.3.4. Test Procedures

1. The testing follows FCC KDB 558074D01 v03r03.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Make the measurement with the spectrum analyzer's resolution bandwidth $($ RBW $)=100 \mathrm{kHz}$. Set the Video bandwidth $(V B W)=300 \mathrm{kHz}$. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz .
5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30 kHz and set the Video bandwidth $(\mathrm{VBW})=100 \mathrm{kHz}$.
6. Measure and record the results in the test report.

2.3.5. Test Results of 6dB Bandwidth

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (MHz)	Result
0	2402	0.69	≥ 0.5	PASS
20	2442	0.70	≥ 0.5	PASS
39	2480	0.69	≥ 0.5	PASS

2.3.6. Test Results (plots) of 6dB Bandwidth

6 dB Bandwidth Plot on channel 0

6 dB Bandwidth Plot on channel 20

6 dB Bandwidth Plot on channel 39

2.4. Conducted Band Edges and Spurious Emissions

2.4.1. Limit of Conducted Band Edges and Spurious Emissions

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

2.4.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.4.3. Test Setup

2.4.4. Test Procedure

1. The testing follows FCC KDB 558074D01 v03r03.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247 (d).
5. Measure and record the results in the test report.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

2.4.5. Test Results of Conducted Band Edges

Low Band Edge Plot on Channel 0

High Band Edge Plot on Channel 39

2.4.6. Test Result of Conducted Spurious Emission

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Channel $=0,30 \mathrm{MHz}$ to 1 GHz

Channel $=0,1 \mathrm{GHz}$ to 25 GHz

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Channel $=20,30 \mathrm{MHz}$ to 1 GHz

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Channel $=39,30 \mathrm{MHz}$ to 25 GHz

2.5. Power spectral density (PSD)

2.5.1. Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

2.5.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.5.3. Test Setup

2.5.4. Test Procedures

1. The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB 558074D01 v03r03.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Make the measurement with the spectrum analyzer's resolution bandwidth $(R B W)=3 \mathrm{kHz}$. Video bandwidth VBW $=10 \mathrm{kHz}$ In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
5. Detector $=$ peak, Sweep time $=$ auto couple, Trace mode $=\max$ hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
6. Measure and record the results in the test report.
7. The Measured power density $(\mathrm{dBm}) / 100 \mathrm{kHz}$ is a reference level and used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

2.5.5. Test Results of Power spectral density

Spectral power density (dBm)				
Channel	Frequency (MHz)	$\mathrm{PSD} / 3 \mathrm{kHz}(\mathrm{dBm})$	Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Verdict
0	2402	-14.75	8	PASS
20	2442	-14.98	8	PASS
39	2480	-14.93	8	PASS
Measurement uncertainty: $\pm 1.3 \mathrm{~dB}$				

Note:

1. Measured power density (dBm) has offset with cable loss.

2.5.6. Test Results (plots) of Power spectral density

PSD Plot on Channel 0

PSD Plot on Channel 20

PSD Plot on Channel 39

2.6. Radiated Band Edge and Spurious Emission

2.6.1. Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB . In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Note: Wireless charger configuration was evaluated.

Frequency (MHz)	Field Strength $(\mu \mathrm{V} / \mathrm{m})$	Measurement Distance (m)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

2.6.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.6.3. Test Setup

For radiated emissions from 9 kHz to 30 MHz

For radiated emissions from 30 MHz to $\mathbf{1 G H z}$

For radiated emissions above $1 \mathbf{G H z}$

2.6.4. Test Procedures

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
3. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported.

Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz .
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1 GHz .
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geqslant 1 / \mathrm{T}$ (Duty cycle $<98 \%$) or 10 Hz (Duty cycle $>98 \%$) for Average detection (AV) at frequency above 1 GHz .
4. All modes of operation were investigated and the worst-case emissions are reported.

2.6.5. Test Results of Radiated Band Edge and Spurious Emission

For 9KHz to $\mathbf{3 0 M H z}$

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

For 30MHz to 1000 MHz

Plot A: 30 MHz to 1 GHz , Antenna Vertical
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Frequency } \\
(\mathrm{MHz})\end{array}
$$ $$
\begin{array}{c}\text { QuasiPeak } \\
(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})\end{array}
$$_{$$
\begin{array}{c}\text { Bandwidth } \\
(\mathrm{kHz})\end{array}
$$}^{$$
\begin{array}{c}\text { Antenna } \\
\text { height } \\
(\mathrm{cm})\end{array}
$$} \begin{array}{c}Limit

(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})\end{array}\right)\) Antenna | Verdict |
| :---: |
| 30.00 |

Plot B: 30 MHz to 1 GHz , Antenna Horizontal

| Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (MHz) |\(\left(\begin{array}{c}QuasiPeak

(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})\end{array} $$
\begin{array}{c}\text { Bandwidth } \\
(\mathrm{kHz})\end{array}
$$ $$
\begin{array}{c}\text { Antenna } \\
\text { height } \\
(\mathrm{cm})\end{array}
$$ $$
\begin{array}{c}\text { Limit } \\
(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})\end{array}
$$\right.\) Antenna $\begin{array}{c}\text { Verdict } \\
\hline 319.06\end{array}$

For 1 GHz to $25 G H z$

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M (0CH_2402MHz)									
No.	Frequency (MHz)	Emss Lev (dBuV		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value ($\mathrm{dBuV} / \mathrm{m}$)	Correction Factor (dB/m)
1	2390.00	57.10	PK	74.0	-16.90	1.01 H	228	24.90	32.20
2	2390.00	43.60	AV	54.0	-10.40	1.01 H	228	11.40	32.20
3	*2402.00	104.70	PK	1	1	1.03 H	112	72.50	32.20
4	*2402.00	103.90	AV	1	1	1.03 H	112	71.70	32.20
5	4804.00	51.60	PK	74.00	-22.40	1.00 H	254	46.30	5.30
6	4804.00	45.80	AV	54.00	-8.20	1.00 H	254	40.50	5.30
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M (0CH_2402MHz)									
No.	Frequency (MHz)	Emss Lev (dBuV		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value ($\mathrm{dBuV} / \mathrm{m}$)	Correction Factor (dB/m)
1	2390.00	56.70	PK	74.0	-17.30	1.11 V	228	24.50	32.20
2	2390.00	44.40	AV	54.0	-9.60	1.11 V	228	12.20	32.20
3	*2402.00	107.10	PK	1	1	1.09 V	112	74.90	32.20
4	*2402.00	104.60	AV	1	1	1.03 V	112	72.40	32.20
5	4804.00	53.40	PK	74.00	-19.60	1.21 V	254	48.10	5.30
6	4804.00	44.70	AV	54.00	-9.30	1.21 V	254	39.40	5.30

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M (20CH_2442MHz)									
No.	Frequency (MHz)	Emss Lev (dBuV		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value ($\mathrm{dBuV} / \mathrm{m}$)	Correction Factor (dB/m)
1	*2442.00	107.60	PK	1	1	1.01 H	210	75.40	32.20
2	*2442.00	104.80	AV	1	1	1.01 H	210	72.60	32.20
3	4884.00	53.50	PK	74.00	-20.50	1.03 H	272	48.20	5.30
4	4884.00	45.90	AV	54.00	-8.10	1.03 H	272	40.60	5.30
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M (20CH_2442MHz)									
No.	Frequency (MHz)	Emss Lev (dBuV		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value ($\mathrm{dBuV} / \mathrm{m}$)	Correction Factor (dB/m)
1	*2442.00	108.60	PK	1	1	1.09 V	112	76.40	32.20
2	*2442.00	105.70	AV	1	1	1.09 V	112	73.50	32.20
3	4884.00	54.80	PK	74.00	-19.20	1.21 V	254	49.50	5.30
4	4884.00	42.50	AV	54.00	-8.50	1.21 V	254	40.20	5.30

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M (39CH_2480MHz)

No.	Frequency (MHz)	Emssion Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Antenna Height (m)	Table Angle $($ Degree $)$	Raw Value $(\mathrm{dBuV} / \mathrm{m})$	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
1	$* 2480.00$	105.80	PK	$/$	$/$	1.05 H	215	73.50	32.30
2	$* 2480.00$	104.70	AV	$/$	$/$	1.05 H	215	72.40	32.30
3	2483.50	56.90	PK	74.0	-17.10	1.05 H	211	24.50	32.40
4	2483.50	44.60	AV	54.0	-9.40	1.05 H	211	12.20	32.40
5	4960.00	52.20	PK	74.0	-11.80	1.45 H	320	46.70	5.50
6	4960.00	46.90	AV	54.0	-7.10	1.45 H	320	41.40	5.50

ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M (39CH_2480MHz)

No.	Frequency (MHz)	Emssion Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Antenna Height (m)	Table Angle $($ Degree $)$	Raw Value $(\mathrm{dBuV} / \mathrm{m})$	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
1	$* 2480.00$	107.40	PK	$/$	$/$	1.05 V	174	75.10	32.30
2	$* 2480.00$	106.80	AV	$/$	$/$	1.05 V	174	74.50	32.30
3	2483.50	56.80	PK	74.0	-17.20	1.05 V	177	24.40	32.40
4	2483.50	45.40	AV	54.0	-8.60	1.05 V	177	13.00	32.40
5	4960.00	55.60	PK	74.0	-18.40	1.45 V	201	50.10	5.50
6	4960.00	45.60	AV	54.0	-8.40	1.45 V	201	40.10	5.50

REMARKS:

1. Emission Level $(\mathrm{dBuV} / \mathrm{m})=\operatorname{Raw} \operatorname{Value}(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB)

> - Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level - Limit value
5. " * ": Fundamental frequency.

2.7. Conducted Emission

2.7.1. Limit of Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency range (MHz)	Conducted Limit $(\mathrm{dB} \mu \mathrm{V})$	
	Quai-peak	Average
$0.15-0.50$	66 to 56	56 to 46
$0.50-5$	56	46
$5-30$	60	50

2.7.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.7.3. Test Setup

2.7.4. Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a $50 \mathrm{ohm}, 50$ microhenry LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth $=$ 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

2.7.5. Test Result

1. The EUT configuration of the emission tests is Bluetooth Link + USB Cable (Charging from Adapter) + Earphone.
2. The power adapter support ($100 \sim 240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$), the EUT was tested at the both available voltages ($120,240 \mathrm{~V}$ AC), and 60 Hz . Only the worst-case mode $(120 \mathrm{~V} / 60 \mathrm{~Hz}$) was record in this report.

FCC Voltage Test

(Plot A: L Phase)

Conducted Disturbance at Mains Terminals					
L Test Data					
QP					
Frequency $\mathbf{(M H z)}$	Limits $(\mathbf{d B} \mu \mathbf{V})$	Measurement Value $(\mathbf{d B} \mu \mathbf{V})$	Frequency $(\mathbf{M H z})$	Limits $(\mathbf{d B} \mu \mathbf{V})$	Measurement Value $(\mathbf{d B} \mu \mathbf{V})$
0.523500	56.0	47.244	0.523500	46.0	37.038
0.436650	57.1	42.365	0.604500	46.0	33.496
0.920000	56.0	42.931	0.685500	46.0	31.031

FCC Voltage Test

(Plot B: N Phase)

Conducted Disturbance at Mains Terminals											
N Test Data											
QP $(\mathbf{M H z})$							Limits $(\mathbf{d B} \mu \mathbf{V})$	Measurement Value $(\mathbf{d B} \mu \mathbf{V})$	Frequency $(\mathbf{M H z})$	Limits $(\mathbf{d B} \mu \mathbf{V})$	Measurement Value $(\mathbf{d B} \mu \mathbf{V})$
0.514500	56.0	46.065	0.492000	46.1	36.018						
0.802500	56.0	40.998	0.568500	46.0	34.746						
4.105500	56.0	41.211	0.726000	46.0	31.805						

Test Result: PASS

3. List of measuring equipment

Description	Manufacturer	Model	Serial No.	Test Date	Due Date	Remark
EMI Test Receiver	R\&S	ESIB26	A0304218	2015.06.02	2016.06.01	Radiation
Full-Anechoic Chamber	Albatross	$\begin{gathered} 12.8 \mathrm{~m} * 6.8 \mathrm{~m} \\ * 6.4 \mathrm{~m} \end{gathered}$	A0412372	2015.01.05	2016.01.04	Radiation
Loop Antenna	Schwarz beck	HFH2-Z2	100047	2015.06.02	2016.06.01	Radiation
Bilog Antenna	Schwarzbeck	VULB 9163	9163-274	2015.06.02	2016.06.01	Radiation
Double ridge horn antenna	R\&S	HF906	100150	2015.06.02	2016.06.01	Radiation
Ultra-wideband antenna	R\&S	HL562	100089	2015.06.02	2016.06.01	Radiation
Test Antenna Horn (18-26.5GHz)	ETS	3160-09	A0902607	2015.06.02	2016.06.01	Radiation
$\begin{gathered} \text { Amplifier } \\ 20 \mathrm{M} \sim 3 \mathrm{GHz} \end{gathered}$	R\&S	PAP-0203H	22018	2015.06.02	2016.06.01	Radiation
Ampilier $1 \mathrm{G} \sim 18 \mathrm{GHz}$	R\&S	$\begin{gathered} \text { MITEQ } \\ \text { AFS42-0010 } \\ 1800 \end{gathered}$	25-S-42	2015.06.02	2016.06.01	Radiation
$\begin{gathered} \text { Ampilier } \\ 18 \mathrm{G} \sim 40 \mathrm{GHz} \end{gathered}$	R\&S	$\begin{gathered} \text { JS42-180026 } \\ 00-28-5 \mathrm{~A} \end{gathered}$	12111.0980.00	2015.06.02	2016.06.01	Radiation
Spectrum Analyzer	R\&S	FSP40	1164.4391 .40	2015.07.07	2016.07.06	Conducted
Power Meter	R\&S	NRVS	1020.1809 .02	2015.06 .02	2016.06.01	Conducted
Power Sensor	R\&S	NRV-Z4	823.3618 .03	2015.06.02	2016.06.01	Conducted
LISN	ROHDE\&SC HWARZ	ESH2-Z5	A0304221	2015.06.02	2016.06.01	Conducted
Test Receiver	R\&S	ESCS30	A0304260	2015.06.02	2016.06.01	Conducted
Cable	SUNHNER	$\begin{gathered} \text { SUCOFLEX } \\ 100 \end{gathered}$	1	2015.06.02	2016.06.01	Radiation
Cable	SUNHNER	$\begin{gathered} \text { SUCOFLEX } \\ 104 \end{gathered}$	1	2015.06.02	2016.06.01	Radiation

[^0]
[^0]: ** END OF REPORT *

