

FCC EMI TEST REPORT

FCC ID	:	2ABOF-G1RN3AHB012
Equipment	:	Remote Node (RN)
Brand Name	:	Tarana Wireless
Model Name	:	G1RN3AHB012
Marketing Name	:	G1RN3AHB012
Applicant	:	Tarana Wireless
		590 Alder Drive, Milpitas, CA 95035
Manufacturer	:	Tarana Wireless
		590 Alder Drive, Milpitas, CA 95035
Standard	:	FCC 47 CFR FCC Part 15 Subpart B Class B

The product was received on Jan. 30, 2023 and testing was performed from Feb. 02, 2023 to Feb. 09, 2023. We, Sporton International (USA) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International (USA) Inc., the test report shall not be reproduced except in full.

Lance Tang

Approved by: Lance Tang

Sporton International (USA) Inc.

1175 Montague Expressway, Milpitas, CA 95035

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	v of Test Result	.4
1.	Gene	ral Description	
	1.1. 1.2. 1.3. 1.4.	Product Feature of Equipment Under Test Modification of EUT Test Location Applicable Standards	.5 .5
2.	Test	Configuration of Equipment Under Test	.6
	2.1. 2.2. 2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	.6 .7 .7
3.	Test	Result	.8
	3.1. 3.2.	Test of AC Conducted Emission Measurement Test of Radiated Emission Measurement	10
4.	List o	f Measuring Equipment	13
5.	Unce	rtainty of Evaluation	14
		A. AC Conducted Emission Test Result B. Radiated Emission Test Result	

Appendix C. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FC230126002	01	Initial issue of report	Feb. 28, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.107	AC Conducted Emission	Pass	12.35 dB under the limit at 0.151 MHz
3.2	15.109	Radiated Emission	Pass	1.52 dB under the limit at 403.450 MHz for Quasi-Peak

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. Please refer to the section " Uncertainty of Evaluation " for measurement uncertainty.

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1. Product Feature of Equipment Under Test

Category B CBSD with Tarana Wireless proprietary operating in the band subject to Part 96.

Product Feature				
Antenna Type	Fixed External Antenna			
Device Serial Number	M150M1224800001			

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

Specification of Accessories				
PoE Adapter Brand Name Phihong Part Number POE60U-1BTE				

1.2. Modification of EUT

No modifications made to the EUT during the testing.

1.3. Test Location

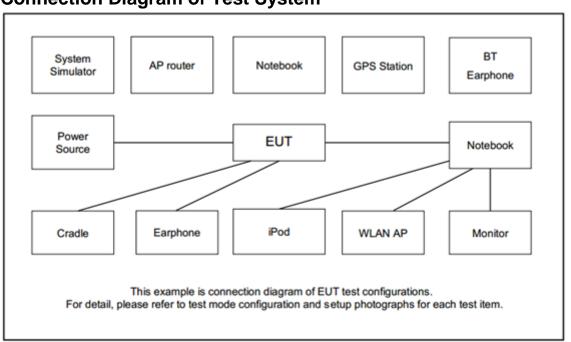
Test Site	Sporton International (USA) Inc.		
Test Site Location1175 Montague Expressway, Milpitas, CA 95035 TEL : 408 9043300			
Test Site No.	Sporton Site No.		
	CO01-CA, 03CH01-CA		

FCC Designation No.: US1250

1.4. Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B Class B
- ANSI C63.4-2014
- **Remark:** All test items were verified and recorded according to the standards and without any deviation during the test.


2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT is tested along with the peripherals, operating under possible configurations in compliant with normal operation. The maximum emissions can be identified by a pre-scan carried out in different orientations of placement pursuant to ANSI C63.4-2014. Frequency range covered: Conduction Emission (150 kHz to 30 MHz), Radiation Emission (30 MHz to the 5th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Functions Enabled			
AC Conducted Emission	Mode 1: CBRS radio On + RJ45 LAN Link + PoE Adaptor			
Radiated Emissions	Mode 1: CBRS radio On + RJ45 LAN Link + PoE Adaptor			
Remark: As requested by the manufacturer the entire testing was performed using shielded cables, the guidance to end users will be included in the user manual.				

2.2. Connection Diagram of Test System

2.3. Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude3400	FCC DoC		AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.4. EUT Operation Test Setup

The EUT link with Notebook via RJ-45 Cable and execute "Ping".

The EUT connected to the Notebook and executed "Putty" to transfer data continuously by using the commands.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

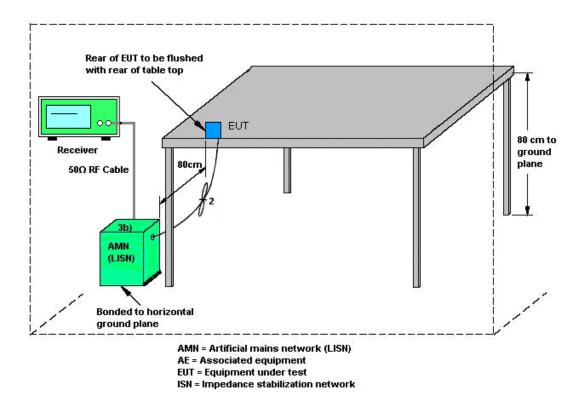
3.1.1. Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted limit (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.1.2. Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.1.3. Test Procedure

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (If Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4. Test Setup

3.1.5. Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL : 408 9043300	Page Number	: 9 of 14
Report Template No.: BU5-FD15B Version 2.5	Issue Date	: Feb. 28, 2023
	Report Version	: 01

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

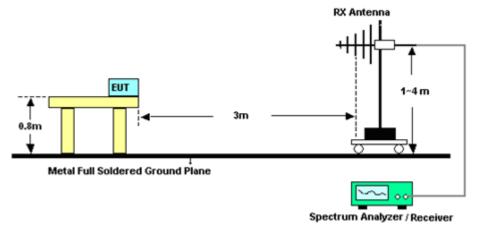
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B>

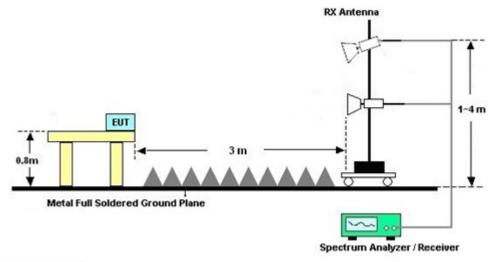
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

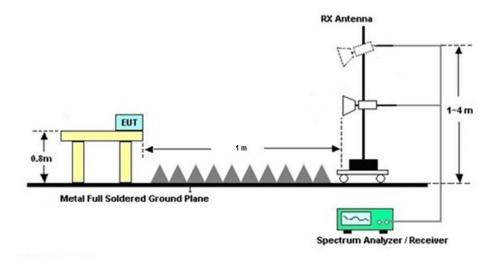
Please refer to the measuring equipment list in this test report.


3.2.3. Test Procedures

- 1. The EUT is placed on a turntable with 0.8 meter above ground.
- 2. The EUT is set 3 meters from the interference receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. The table is rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120 kHz/VBW=300 kHz for frequency below 1 GHz; RBW=1 MHz VBW=3 MHz (Peak), RBW=1 MHz/VBW=10 Hz (Average) for frequency above 1 GHz).
- 7. If the emission level of the EUT in peak mode is 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.



3.2.4. Test Setup of Radiated Emission


For Radiated Emissions from 30 MHz to 1 GHz

For Radiated Emissions from 1GHz to 18GHz

For Radiated Emissions above 18GHz

3.2.5. Test Result of Radiated Emission

Please refer to Appendix B.

4. List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LISN	TESEQ	NNB51	47407	N/A	May 10, 2022	Feb. 07, 2023	May 09, 2023	Conduction (CO01-CA)
LISN	TESEQ	NNB51	47415	N/A	May 10, 2022	Feb. 07, 2023	May 09, 2023	Conduction (CO01-CA)
EMI Test Receiver	R&S	ESR7	102177	9kHz~7GHz	May 31, 2022	Feb. 07, 2023	May 30, 2023	Conduction (CO01-CA)
Pulse limiter with 10dB attenuation	R&S	VTSD 9561-F N	9561-F- N00412	N/A	Jul. 05, 2022	Feb. 07, 2023	Jul. 04, 2023	Conduction (CO01-CA)
Test Software	R&S	EMC32 V10.30.0	N/A	N/A	N/A	Feb. 07, 2023	N/A	Conduction (CO01-CA)
Bilog Antenna	TESEQ	6111D	50392	30MHz~1GHz	Jul. 11, 2022	Feb. 02, 2023~ Feb. 09, 2023	Jul. 10, 2023	Radiation (03CH01-CA)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	02115	1GHz~18GHz	Aug. 16, 2022	Feb. 02, 2023~ Feb. 09, 2023	Aug. 15, 2023	Radiation (03CH01-CA)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00842	18GHz~40GHz	Aug. 16, 2022	Feb. 02, 2023~ Feb. 09, 2023	Aug. 15, 2023	Radiation (03CH01-CA)
Preamplifier	EMEC	EMC18G40G	060725	18GHz~40GHz	May 10, 2022	Feb. 02, 2023~ Feb. 09, 2023	May 09, 2023	Radiation (03CH01-CA)
Preamplifier	SONOMA	310N	372241	9kHz~1GHz	May 09, 2022	Feb. 02, 2023~ Feb. 09, 2023	May 08, 2023	Radiation (03CH01-CA)
Preamplifier	E-instrument	ERA-100M-18 G-56-01-A70	EC1900252	1GHz~18GHz	May 09, 2022	Feb. 02, 2023~ Feb. 09, 2023	May 08, 2023	Radiation (03CH01-CA)
Preamplifier	Keysight	83017A	MY53270323	1GHz~26.5GHz	May 11, 2022	Feb. 02, 2023~ Feb. 09, 2023	May 10, 2023	Radiation (03CH01-CA)
Spectrum Analyzer	R&S	FW43	104042	2Hz~43GHz	Dec. 11, 2022	Feb. 02, 2023~ Feb. 09, 2023	Dec. 10, 2023	Radiation (03CH01-CA)
EMI Test Receiver	R&S	ESU26	100049	20Hz~26.5GHz	Jun. 01, 2022	Feb. 02, 2023~ Feb. 09, 2023	May 31, 2023	Radiation (03CH01-CA)
RF Cable	HUBER+SUH NER	SUCOFLEX 102	8015932/2, 8015762/2, 6015772/2	N/A	Aug. 08, 2022	Feb. 02, 2023~ Feb. 09, 2023	Aug. 07, 2023	Radiation (03CH01-CA)
Hygrometer	TESTO	608-H1	45141354	N/A	Jul. 27, 2022	Feb. 02, 2023~ Feb. 09, 2023	Jul. 26, 2023	Radiation (03CH01-CA)
Controller	Chaintek	EM-1000	060881	Control Turn Table & Antenna Mast	N/A	Feb. 02, 2023~ Feb. 09, 2023	N/A	Radiation (03CH01-CA)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Feb. 02, 2023~ Feb. 09, 2023	N/A	Radiation (03CH01-CA)
Test Software	Audix E3	E6.2009-8-24d	PK-002093	N/A	N/A	Feb. 02, 2023~ Feb. 09, 2023	N/A	Radiation (03CH01-CA)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7 dB
of 95% (U = 2Uc(y))	2.7 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

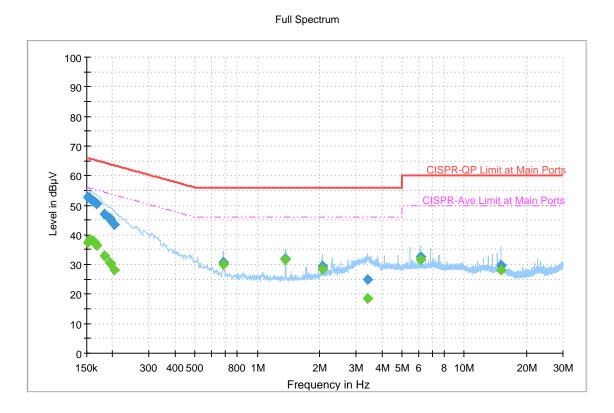
Measuring Uncertainty for a Level of Confidence	4.6 dB
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.1 dB
--	--------

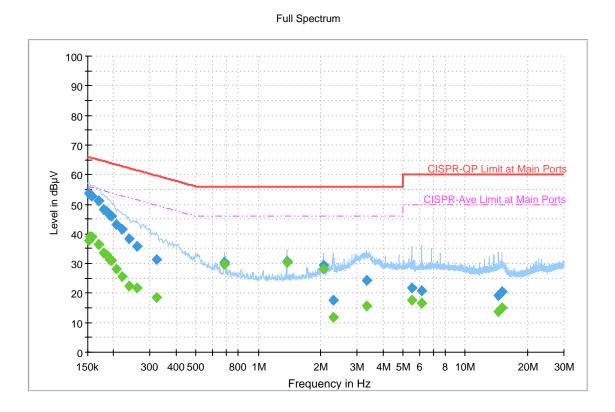


Appendix A. AC Conducted Emission Test Results

Test Engineer :	Daniel I ee	Temperature :	20~22 ℃
Test Engineer.	Daniel Lee	Relative Humidity :	41~43%

EUT Information Site: Power: Project Mode

CO01-CA 120Vac/60Hz 230126002 1


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.151863		37.48	55.90	18.42	L1	OFF	20.3
0.151863	52.84		65.90	13.06	L1	OFF	20.3
0.154554		38.48	55.75	17.27	L1	OFF	20.3
0.154554	52.40		65.75	13.35	L1	OFF	20.3
0.159819		38.07	55.47	17.40	L1	OFF	20.3
0.159819	51.44		65.47	14.03	L1	OFF	20.3
0.164004		37.39	55.26	17.87	L1	OFF	20.3
0.164004	51.05		65.26	14.21	L1	OFF	20.3
0.168036		36.37	55.06	18.69	L1	OFF	20.3
0.168036	50.38		65.06	14.68	L1	OFF	20.3
0.181878		32.87	54.40	21.53	L1	OFF	20.3
0.181878	47.07		64.40	17.33	L1	OFF	20.3
0.192597		30.65	53.92	23.27	L1	OFF	20.3
0.192597	45.69		63.92	18.23	L1	OFF	20.3
0.195216		30.23	53.81	23.58	L1	OFF	20.3
0.195216	45.16		63.81	18.65	L1	OFF	20.3
0.203676		28.09	53.46	25.37	L1	OFF	20.3
0.203676	43.30		63.46	20.16	L1	OFF	20.3
0.684771		29.91	46.00	16.09	L1	OFF	20.3
0.684771	30.72		56.00	25.28	L1	OFF	20.3
1.370301		31.57	46.00	14.43	L1	OFF	20.3

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
1.370301	32.00		56.00	24.00	L1	OFF	20.3
2.055534		28.48	46.00	17.52	L1	OFF	20.3
2.055534	29.36		56.00	26.64	L1	OFF	20.3
3.423102		18.45	46.00	27.55	L1	OFF	20.3
3.423102	24.78		56.00	31.22	L1	OFF	20.3
6.164286		31.56	50.00	18.44	L1	OFF	20.4
6.164286	32.66		60.00	27.34	L1	OFF	20.4
15.070317		28.13	50.00	21.87	L1	OFF	20.5
15.070317	29.82		60.00	30.18	L1	OFF	20.5

EUT Information Site: Power: Project Mode

CO01-CA 120Vac/60Hz 230126002 1

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.151472		37.84	55.92	18.08	N	OFF	20.3
0.151472	53.57		65.92	12.35	Ν	OFF	20.3
0.153717		38.82	55.80	16.98	Ν	OFF	20.3
0.153717	53.34		65.80	12.46	Ν	OFF	20.3
0.157308		38.87	55.61	16.73	Ν	OFF	20.3
0.157308	52.68		65.61	12.92	Ν	OFF	20.3
0.168279	51.11		65.05	13.93	Ν	OFF	20.3
0.168279		36.33	55.05	18.71	Ν	OFF	20.3
0.169206	51.06		65.00	13.94	Ν	OFF	20.3
0.169206		36.27	55.00	18.73	Ν	OFF	20.3
0.179574		33.47	54.51	21.04	Ν	OFF	20.3
0.179574	48.31		64.51	16.20	Ν	OFF	20.3
0.184245		32.94	54.29	21.35	Ν	OFF	20.3
0.184245	47.54		64.29	16.75	Ν	OFF	20.3
0.191643		31.43	53.97	22.54	Ν	OFF	20.3
0.191643	46.48		63.97	17.49	Ν	OFF	20.3
0.195252		30.88	53.81	22.93	Ν	OFF	20.3
0.195252	45.86		63.81	17.95	Ν	OFF	20.3
0.205926		28.12	53.37	25.25	Ν	OFF	20.3
0.205926	43.16		63.37	20.21	Ν	OFF	20.3
0.219939		25.71	52.82	27.11	Ν	OFF	20.3

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.219939	41.44		62.82	21.38	Ν	OFF	20.3
0.237723		22.39	52.18	29.79	Ν	OFF	20.3
0.237723	38.42		62.18	23.76	Ν	OFF	20.3
0.260133		21.61	51.43	29.82	Ν	OFF	20.3
0.260133	35.89		61.43	25.54	Ν	OFF	20.3
0.320955		18.51	49.68	31.17	Ν	OFF	20.3
0.320955	31.26		59.68	28.42	Ν	OFF	20.3
0.685446		29.58	46.00	16.42	Ν	OFF	20.3
0.685446	30.23		56.00	25.77	Ν	OFF	20.3
1.372758		30.31	46.00	15.69	Ν	OFF	20.3
1.372758	30.82		56.00	25.18	Ν	OFF	20.3
2.056101		28.24	46.00	17.76	Ν	OFF	20.3
2.056101	29.24		56.00	26.76	Ν	OFF	20.3
2.313267		11.85	46.00	34.15	Ν	OFF	20.3
2.313267	17.71		56.00	38.29	Ν	OFF	20.3
3.333138		15.72	46.00	30.28	Ν	OFF	20.3
3.333138	24.27		56.00	31.73	Ν	OFF	20.3
5.489628		17.68	50.00	32.32	Ν	OFF	20.4
5.489628	21.61		60.00	38.39	Ν	OFF	20.4
6.175788		16.57	50.00	33.43	Ν	OFF	20.4
6.175788	20.85		60.00	39.15	Ν	OFF	20.4
14.426079		13.83	50.00	36.17	Ν	OFF	20.5
14.426079	19.31		60.00	40.69	Ν	OFF	20.5
15.111303		14.89	50.00	35.11	Ν	OFF	20.5
15.111303	20.36		60.00	39.64	Ν	OFF	20.5

Appendix B. Radiated Emission Test Result

T / F .					Temp	erature	e :	21~	23°C		
Test Engineer :	Leo Liu	and Da	aniel L	ee	-		midity :	40~	42%		
Test Distance :	3m (30 1m (180		,		Polar	ization	:	Hor	izontal		
Remark :	#9 is CI			nal whi	ch can	he ian	ored				
 Emission level (v			•	orea.				
Factor(dB) = Ar			-				Preamr) Facto	r		
 Corrected Read 							rioump	1 000	51		
	vel (dBuV/m)	()			0				Da	ite: 2023-02-09	
120	9										
105.0											
90.0											
75.0										FCC CLASS-B -6dB	
										-oub	
60.0	7		10	14	16				FCC C	LASS-B (AVG)	
45 0 40	a a 1	01	12		17					20dB	
45.0 <mark>5</mark>			13	15	18			19			
30.0											
0010											
15.0											
0 <mark>30</mark>	3000.500	0.7000.90	00. 1	3000. 1	17000.	21000.	25000.	29000.	33000.	37000.4000	0
					Freque	ncy (MHz)					
Site		CH01-C/									
Conditi Project		C CLASS 0126002		HF_HO	RN_842	_220816	HORIZ	ONTAL			
Power	1 .23										
rower	: 12	0Vac/60	Hz								
rower		-	0ver	Limit			A/Pos	T/Pos			
Power		UVac/60	0ver			Factor	A/Pos	T/Pos	Remark		
-	Freq	-	Over Limit			Factor dB/m	A/Pos cm	T/Pos deg	Remark	_	
Power - 1	Freq MHz	Level	Over Limit 	Line dBuV/m	Level dBuV	dB/m		deg	Remark Peak	_	
- 1 2	Freq MHz 63.95 102.75	Level dBuV/m 32.31 36.62	Over Limit dB -7.69 -6.88	Line dBuV/m 40.00 43.50	Level dBuV 51.58 51.11	dB/m -19.27 -14.49	cm	deg	Peak Peak	_	
-	Freq MHz 63.95 102.75 375.32	Level dBuV/m 32.31	Over Limit dB -7.69 -6.88 -3.41	Line dBuV/m 40.00 43.50	Level dBuV 51.58 51.11 51.19	dB/m -19.27 -14.49 -8.60		deg 80	Peak	_	
1 2 3 4 5	Freq MHz 63.95 102.75 375.32 403.45 716.76	Level dBuV/m 32.31 36.62 42.59 44.48 38.51	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49	Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Level dBuV 51.58 51.11 51.19 51.90 40.08	dB/m -19.27 -14.49 -8.60 -7.42 -1.57	cm 101 101 	deg 80 63	Peak Peak QP QP Peak	_	
1 2 3 4 5 6	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.50	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86	cm 101 101 101 100	deg 80 63 207	Peak Peak QP QP Peak QP	_	
1 2 3 4 5	Freq MHz 63.95 102.75 375.32 403.45 716.76	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00 74.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.50 56.80	dB/m -19.27 -14.49 -8.60 -7.42 -1.57	cm 101 101 	deg 80 63 207 205	Peak Peak QP QP Peak		
1 2 3 4 5 6 7 8 9 *	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 1290.00 3595.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 45.08 110.95	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 54.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.50 56.80 46.90 103.27	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 -1.82 7.68	cm 101 101 100 109 109	deg 80 63 207 205 205 	Peak Peak QP QP Peak QP Peak Average Peak		
1 2 3 4 5 6 7 8 9 * 10	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 1290.00 3595.00 5325.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 45.08 110.95 47.72	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.50 56.80 46.90 103.27 34.31	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 -1.82 7.68 13.41	cm 101 101 100 109 109 	deg 80 63 207 205 205 	Peak Peak QP QP Peak QP Peak Average Peak Peak	_	
1 2 3 4 5 6 7 8 9 * 10 11 12	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 3595.00 5325.00 5825.00 11316.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 110.95 47.72 47.95 51.24	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28 -26.05 -22.76	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.50 56.80 46.90 103.27 34.31 32.89 63.49	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 -1.82 7.68 13.41 15.06 -12.25	cm 101 101 100 109 109	deg 80 63 207 205 205 	Peak Peak QP QP Peak QP Peak Average Peak		
1 2 3 4 5 6 7 8 9 * 10 11 12 13	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 3595.00 5325.00 5325.00 5825.00 11316.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 110.95 47.72 47.95 51.24 40.08	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28 -26.05 -22.76 -13.92	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 54.00 74.00 74.00 54.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.08 40.50 56.80 46.90 103.27 34.31 32.89 63.49 52.33	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 7.68 13.41 15.06 -12.25 -12.25	cm 101 101 100 109 109 109 	deg 80 63 207 205 205 	Peak Peak QP QP Peak QP Peak Average Peak Peak Peak Peak Peak Average		
1 2 3 4 5 6 7 8 9 * 10 11 12 13 14	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 3595.00 5325.00 5325.00 5325.00 11316.00 11316.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 110.95 47.72 47.95 51.24 40.08 53.50	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28 -26.05 -22.76 -13.92 -20.50	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 54.00 74.00 74.00 54.00 74.00 74.00 74.00 74.00 74.00	Level dBuV 51.58 51.11 51.19 51.90 40.08 40.50 56.80 46.90 103.27 34.31 32.89 63.49 52.33 62.09	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 7.68 13.41 15.06 -12.25 -12.25 -8.59	cm 101 101 100 109 109 109 	deg 80 63 207 205 205 205 	Peak Peak QP QP Peak QP Peak Average Peak Peak Peak Peak Peak Average Peak		
1 2 3 4 5 6 7 8 9 * 10 11 12 13 14 15 16	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 3595.00 5325.00 5325.00 5325.00 11316.00 11316.00 14556.00 14556.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 45.08 110.95 47.72 47.95 51.24 40.08 53.50 40.49 57.32	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28 -26.05 -22.76 -13.92 -20.50 -13.51 -16.68	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 54.00 74.00 74.00 54.00 74.00 54.00 74.00 54.00 74	Level dBuV 51.58 51.11 51.90 40.08 40.50 56.80 40.50 103.27 34.31 32.89 63.49 52.33 62.09 49.08 61.69	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 7.68 13.41 15.06 -12.25 -12.25 -8.59 -8.59 -4.37	cm 101 101 100 109 109 109 	deg 80 63 205 205 205 	Peak Peak QP QP Peak QP Peak Average Peak Peak Peak Peak Peak Average		
1 2 3 4 5 6 7 8 9 * 10 11 12 13 14 15 16 17	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 3595.00 5325.00 5325.00 1316.00 11316.00 11316.00 14556.00 17988.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 45.08 110.95 51.24 40.08 53.50 40.49 57.32 43.71	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28 -26.05 -22.76 -13.92 -20.50 -13.51 -16.68 -10.29	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 54.00 74.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00	Level dBuV 51.58 51.11 51.90 40.08 40.50 56.80 40.50 103.27 34.31 32.89 63.49 52.33 62.09 49.08 61.69 48.08	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 7.68 13.41 15.06 -12.25 -8.59 -8.59 -4.37 -4.37	cm 101 101 109 109 109 	deg 80 63 205 205 205 	Peak Peak QP QP Peak QP Peak Peak Peak Peak Peak Peak Average Peak Average Peak Average		
1 2 3 4 5 6 7 8 9 * 10 11 12 13 14 15 16 17 18	Freq MHz 63.95 102.75 375.32 403.45 716.76 940.83 1290.00 3595.00 5325.00 5325.00 5325.00 11316.00 11316.00 14556.00 14556.00	Level dBuV/m 32.31 36.62 42.59 44.48 38.51 44.36 54.98 45.08 110.95 51.24 40.08 53.50 40.49 57.32 43.71 40.71	Over Limit dB -7.69 -6.88 -3.41 -1.52 -7.49 -1.64 -19.02 -8.92 -26.28 -26.05 -22.76 -13.92 -20.50 -13.51 -16.68 -10.29 -13.29	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00 54.00 54.00	Level dBuV 51.58 51.11 51.99 40.08 40.50 56.80 46.90 103.27 34.31 32.89 63.49 52.33 62.09 49.08 61.69 48.08 45.08	dB/m -19.27 -14.49 -8.60 -7.42 -1.57 3.86 -1.82 7.68 13.41 15.06 -12.25 -12.25 -8.59 -8.59 -4.37	cm 101 101 109 109 109 	deg 80 63 207 205 205 205 	Peak Peak QP QP Peak QP Peak Average Peak Peak Peak Peak Average Peak Average Peak	_	

Test Engineer :	Leo Liu and Daniel Lee			Temp	erature	e :	21~	23°C				
				Relative Humidity :				40~42%				
Test Distance :	3m (30MHz~18GHz) 1m (18GHz~40GHz)				Polarization :			Vert	Vertical			
Remark :	#10 is CBRS radio signal whic					ch can be ignored.						
Emission level (•		·						
 Factor(dB) = Ar Corrected Read 							Preamp	Facto	or			
	evel (dBuV/m) Date: 2023-02-09											
120	10											
105.0												
90.0												
75.0										FCC CLASS-B -6dB		
60.0	8				17				Tee (CLASS-B (AVG)		
	9 11	12	13	15					ruu (-020B		
45.0			14	16	18			19				
30.0												
15.0												
0 <mark></mark>	3000.500	0.7000.90	00. 1	3000. 1	17000.	21000.	25000.	29000.	33000.	37000.4000	0	
					Freque	ncy (MHz)						
Site	:030 ion :FCC	H01-CA			NI 042	220016						
Project		126002			N_042_	220010	VENTER					
Power		Vac/60										
	Enog	Loval	Over Limit	Limit			A/Pos	T/Pos	Remark			
-										_		
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	cm	deg				
1						-7.93			QP			
2			-9.92			-10.02 -16.54	101 102	320 121				
4	100.81	34.51	-8.99	43.50	49.19	-14.68	101	359	·			
5			-9.09				101	145	-			
6 7			-1.62 -3.94			-7.42 3.86	158 115	214 201	-			
8	1285.00						114		Peak			
9	1285.00	46.33			47.81	-1.48	114		Average			
10 *	3585.00		26.50	74 00	103.98				Peak			
		4/.41	-26.59	/4.00	34.03				Peak Peak			
11		17 80	-26 11	74 00	32 61	15 39			I Edk			
12	5890.00											
12 13		50.98	-23.02	74.00	63.32	-12.34			Peak Average			
12 13 14	5890.00 11280.00	50.98 39.76	-23.02 -14.24	74.00 54.00	63.32 52.10	-12.34 -12.34			Peak			
12 13 14 15 16	5890.00 11280.00 11280.00 14604.00 14604.00	50.98 39.76 53.36 39.44	-23.02 -14.24 -20.64 -14.56	74.00 54.00 74.00 54.00	63.32 52.10 61.78 47.86	-12.34 -12.34 -8.42 -8.42			Peak Average Peak Average			
12 13 14 15 16 17	5890.00 11280.00 11280.00 14604.00 14604.00 17940.00	50.98 39.76 53.36 39.44 58.17	-23.02 -14.24 -20.64 -14.56 -15.83	74.00 54.00 74.00 54.00 74.00	63.32 52.10 61.78 47.86 63.24	-12.34 -12.34 -8.42 -8.42 -5.07		 	Peak Average Peak Average Peak			
12 13 14 15 16 17 18	5890.00 11280.00 11280.00 14604.00 14604.00	50.98 39.76 53.36 39.44 58.17 43.87	-23.02 -14.24 -20.64 -14.56 -15.83 -10.13	74.00 54.00 74.00 54.00 74.00 54.00	63.32 52.10 61.78 47.86 63.24 48.94	-12.34 -12.34 -8.42 -8.42 -5.07		 	Peak Average Peak Average			