

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 118 of 191 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCCID: 2ABNA-P9IIHH

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2018	Jes
Checked by :	Jérôme LUC	Product Manager	10/14/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2018	thim nuthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing
	Laboratory Ltd.

Issue	Date	Modifications
А	10/14/2018	Initial release

Page: 2/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

TABLE OF CONTENTS

1	Intro	duction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment	

Page: 3/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID750			
Serial Number	SN 07/14 DIP 0G750-302			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

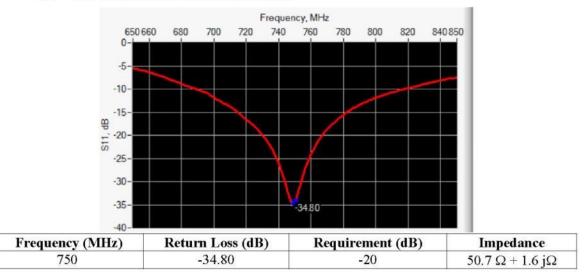
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

Report No.: LCS181224032AE



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8±1%.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.	_	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8±1%.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.	<	26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 123 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

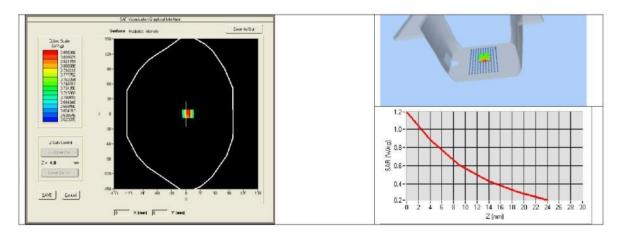
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 42.1 sigma : 0.89
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

Report No.: LCS181224032AE



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	8.38 (0.84)	5.55	5.53 (0.55
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Lta. Page 125 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

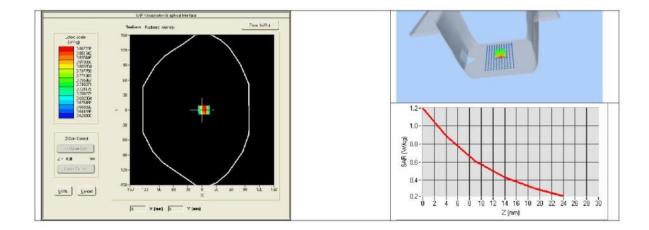
Frequency MHz Relative permittivity (s		mittivity (ɛ,')	Conductiv	ivity (σ) S/m	
	required	measured	required	measured	
150	61.9 ±5 %		0.80 ±5 %		
300	58.2 ±5 %		0.92 ±5 %	2	
450	56.7 ±5 %		0.94 ±5 %		
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS	
835	55.2 ±5 %		0.97 ±5 %		
900	55.0 ±5 %		1.05 ±5 %		
915	55.0 ±5 %		1.06 ±5 %		
1450	54.0 ±5 %		1.30 ±5 %		
1610	53.8 ±5 %		1.40 ±5 %		
1800	53.3 ±5 %		1.52 ±5 %		
1900	53.3 ±5 %		1.52 ±5 %		
2000	53.3 ±5 %		1.52 ±5 %		
2100	53.2 ±5 %		1.62 ±5 %		
2450	52.7 ±5 %		1.95 ±5 %		
2600	52.5 ±5 %		2.16 ±5 %		
3000	52.0 ±5 %		2.73 ±5 %		
3500	51.3 ±5 %		3.31 ±5 %		
5200	49.0 ±10 %		5.30 ±10 %		
5300	48.9 ±10 %		5.42 ±10 %		
5400	48.7 ±10 %		5.53 ±10 %		
5500	48.6 ±10 %		5.65 ±10 %		
5600	48.5 ±10 %		5.77 ±10 %		
5800	48.2 ±10 %		6.00 ±10 %		

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 56.6 sigma : 0.99
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Page: 9/11

|--|


Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
750	8.77 (0.88)	5.78 (0.58)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in jull, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 127 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2018	02/20121	
Calipers	Carrera	CALIPER-01	12/2018	12/2021	
Reference Probe	Satimo	EPG122 SN 18/11	10/2018	10/2019	
Multimeter	Keithley 2000	1188656	12/2018	12/2021	
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2018	12/2021	
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2018	8/2021	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in jull, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 128 of 191

5.3 SID835Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.4.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. 1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 07/14 DIP 0G835-303

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 129 of 191 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCCID: 2ABNA-P9IIHH

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2018	Jes
Checked by :	Jérôme LUC	Product Manager	10/14/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2018	fum nuthowski

Customer Name	
Shenzhen LCS	
Compliance Testing Laboratory Ltd.	

Date	Modifications	
10/14/2018	Initial release	

Page: 2/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 131 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID835	
Serial Number	SN 07/14 DIP 0G835-303	
Product Condition (new / used) New		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

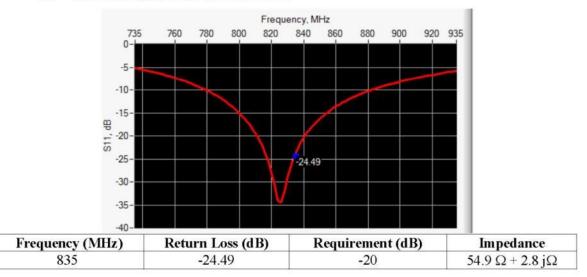
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

Report No.: LCS181224032AE



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	Lmm		h mm		nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

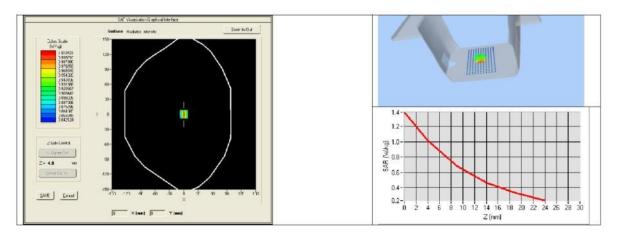
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid Head Liquid Values: eps' : 42.3 sigma : 0.92	
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

Report No.: LCS181224032AE



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

1 nis report shall not be reproduced except in juli, without the written approval of Shenzhen LCS Compliance 1 esting Laboratory Lta. Page 136 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

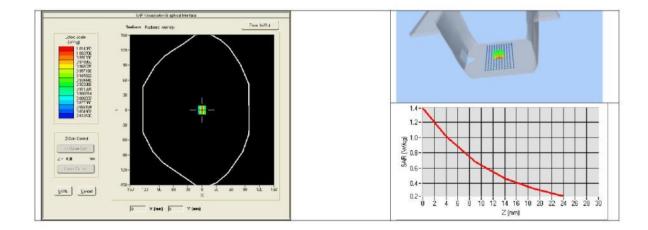
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps' : 54.1 sigma : 0.97		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	835 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 137 of 191

|--|


Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.90 (0.99)	6.39 (0.64)

Page: 10/11

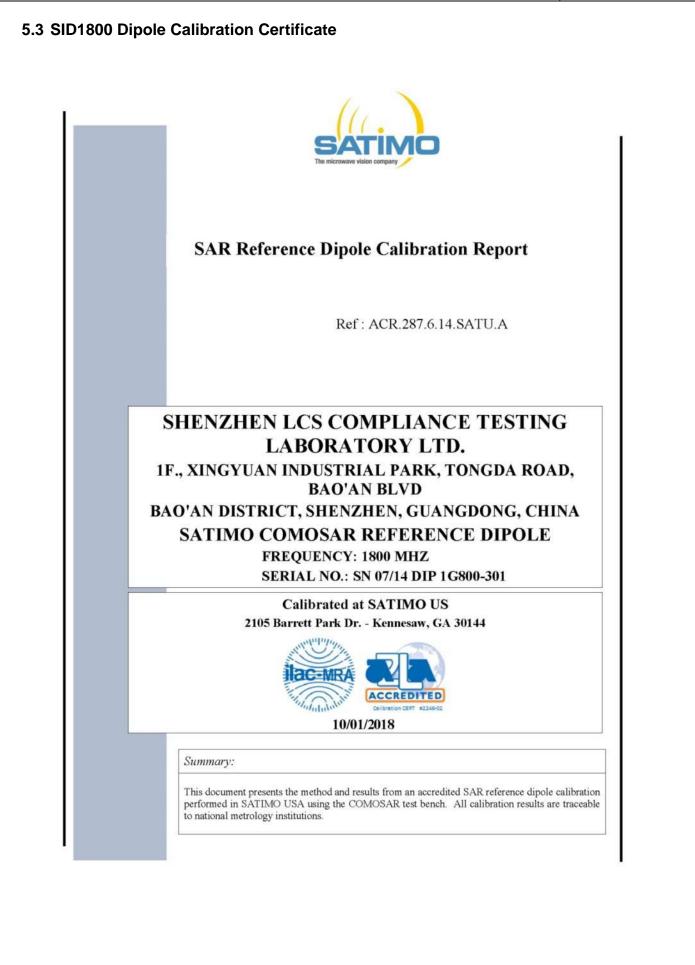
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 138 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A


8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Calipers	Carrera	CALIPER-01	12/2016	12/2019		
Reference Probe	Satimo	EPG122 SN 18/11	10/2018	10/2019		
Multimeter	Keithley 2000	1188656	12/2016	12/2019		
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	그는 제품에서는 문화가 있는 것은 것이 같은 것은 것은 것이 같이 많이 많이 없다. 같이 많이 많이 많이 많이 많이 없다.		
Power Meter	HP E4418A	US38261498	12/2016	12/2019		
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2016	8/2019		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in jull, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 139 of 191

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 140 of 191 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCCID: 2ABNA-P9IIHH

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2018	Jes
Checked by :	Jérôme LUC	Product Manager	10/14/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2018	fum nuthowski

Customer Name	
Shenzhen LCS	
Compliance Testing Laboratory Ltd.	

Initial release

Page: 2/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment 11	

Page: 3/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID1800			
Serial Number	SN 07/14 DIP 1G800-301			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

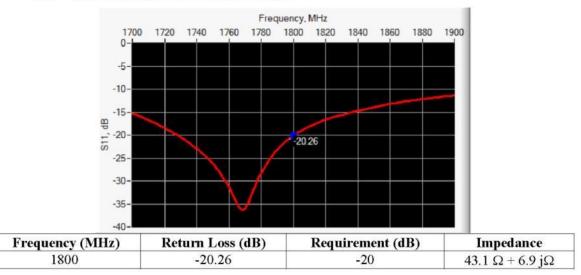
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

Report No.: LCS181224032AE



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	im	d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8±1%.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.	_	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0±1%.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PASS
1900	68.0±1%.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6±1%.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8±1%.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative ner		Relative nermittivity is 'l	Conductiv	ity (σ) S/m
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %		
835	41.5 ±5 %		0.90 ±5 %		
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %		
1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS	
1900	40.0 ±5 %		1.40 ±5 %		
1950	40.0 ±5 %		1.40 ±5 %		
2000	40.0 ±5 %		1.40 ±5 %		
2100	39.8 ±5 %		1.49 ±5 %		
2300	39.5 ±5 %		1.67 ±5 %		
2450	39.2 ±5 %		1.80 ±5 %		
2600	39.0 ±5 %		1.96 ±5 %		
3000	38.5 ±5 %		2.40 ±5 %		
3500	37.9 ±5 %		2.91 ±5 %		

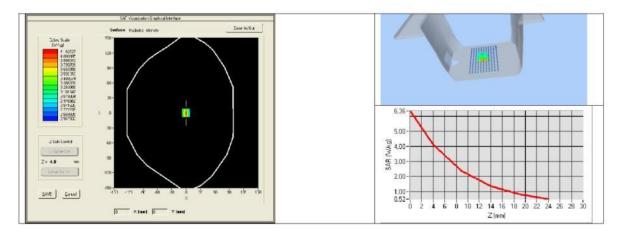
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.3 sigma : 1.38
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

Report No.: LCS181224032AE



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	1800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	38.13 (3.81)	20.1	20.20 (2.02
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in jull, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 147 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

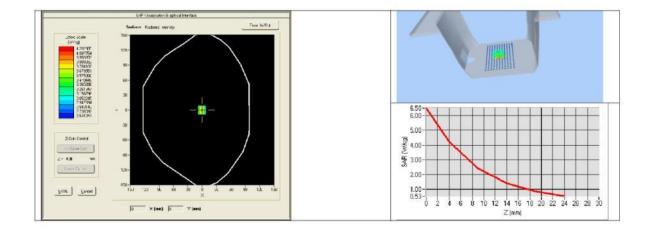
Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps': 53.3 sigma: 1.51	
Distance between dipole center and liquid	10.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	1800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Page: 9/11

|--|


Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1800	39.03 (3.90)	20.65 (2.07)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 149 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A


8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Calipers	Carrera	CALIPER-01	12/2016	12/2019		
Reference Probe	Satimo	EPG122 SN 18/11	10/2018	10/2019		
Multimeter	Keithley 2000	1188656	12/2016	12/2019		
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2016	12/2019		
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2016	8/2019		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in jull, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 150 of 191

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 151 of 191

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCCID: 2ABNA-P9IIHH

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2018	Jes
Checked by :	Jérôme LUC	Product Manager	9/19/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2018	him nuthoushi

Customer Name	
Shenzhen LCS	
Compliance Testing Laboratory Ltd.	

Issue	Date	Modifications	
A	9/19/2018	Initial release	

Page: 2/11

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test4	
3	Pro	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in jull, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 153 of 191

Report No.: LCS181224032AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID1900	
Serial Number	SN 30/14 DIP1G900-333	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11