

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15120099101

FCC REPORT

(BLE)

Applicant: ShenZhen RF-STAR Technology CO., LTD

Address of Applicant: 2F, BLDG.8, Zone A, BaoAn Internet Industry Base, BaoYuan

Road, XiXiang, BaoAn DIST, ShenZhen, China

Equipment Under Test (EUT)

Product Name: Bluetooth Module

Model No.: RF-BM-S02A

FCC ID: 2ABN2-RFBMS02A

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Dec., 2015

Date of Test: 23 Dec. to 29 Dec., 2015

Date of report issued: 29 Dec., 2015

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	29 Dec., 2015	Original

Tested by: Date: 29 Dec., 2015

Test Engineer

Reviewed by: (Quen (her Date: 29 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1 6.7.2		
_	· · · · -		
7	TES	T SETUP PHOTO	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	ShenZhen RF-STAR Technology CO.,LTD
Address of Applicant:	2F, BLDG.8, Zone A, BaoAn Internet Industry Base, BaoYuan Road, XiXiang, BaoAn DIST, ShenZhen, China
Manufacturer:	ShenZhen RF-STAR Technology CO., LTD
Address of Manufacturer:	2F, BLDG.8, Zone A, BaoAn Internet Industry Base, BaoYuan Road, XiXiang, BaoAn DIST, ShenZhen, China

5.2 General Description of E.U.T.

Product Name:	Bluetooth Module
Model No.:	RF-BM-S02A
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi
Power supply:	DC 3.3V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15120099101

5.3 Test environment and mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		
Operation mode Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

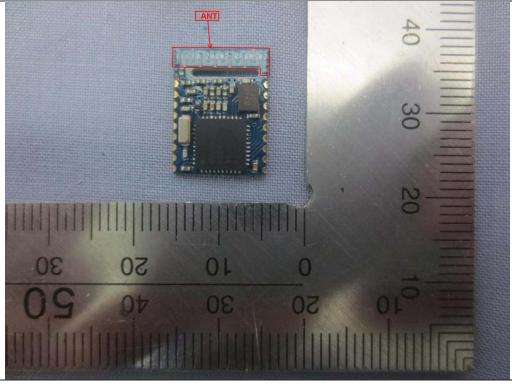
Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

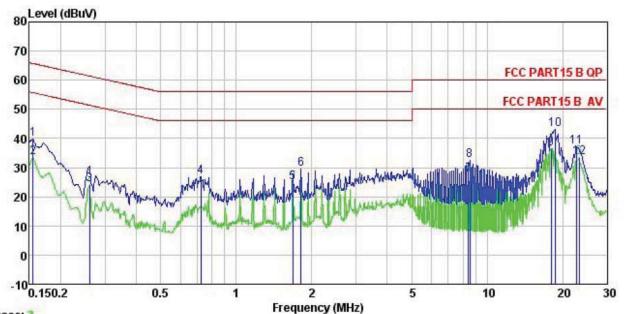
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission


Test Requirement: FCC Part 15 C Section 15.207 Test Method: ANSI C63.4: 2009 Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz	
Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B	
Class / Severity: Class B	
·	
Receiver setup: RBW=9kHz, VBW=30kHz	
Limit: Frequency range (MHz) Limit (d Quasi-peak	BuV) Average
0.15-0.5 66 to 56*	56 to 46*
0.5-5 56	46
5-30 60	50
* Decreases with the logarithm of the frequency.	
measurement.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative
Test setup: Reference Plane LISN 40cm 80cm Filte Equipment Test table/Insulation plane Remark: EU.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	er — AC power
Test Uncertainty:	±3.28 dB
Test Instruments: Refer to section 5.7 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Measurement Data

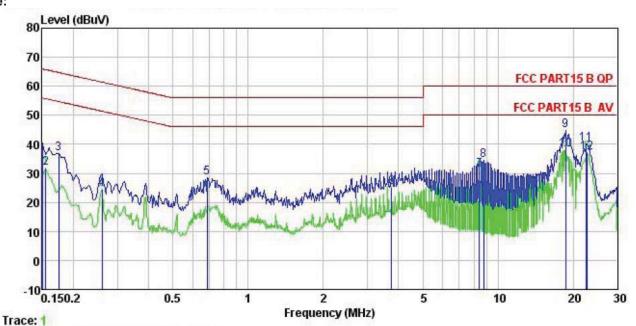
Neutral:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Bluetooth Modulecon EUT


Test Mode : TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Winner
Remark

Kemark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB	₫B	dBu∜	dBu∜		
1	0.155	28.85	0.25	10.78	39.88	65.74	-25.86	QP
2	0.155	22.61	0.25	10.78	33.64	55.74	-22.10	Average
3	0.260	13.13	0.26	10.75	24.14	51.42	-27.28	Average
4	0.724	16.05	0.18	10.78	27.01	56.00	-28.99	QP
1 2 3 4 5 6 7	1.680	13.56	0.27	10.94	24.77	46.00	-21.23	Average
6	1.810	18.25	0.28	10.95	29.48	56.00	-26.52	QP
7	8.412	16.53	0.25	10.87	27.65	50.00	-22.35	Average
8	8.546	21.34	0.25	10.88	32.47	60.00	-27.53	QP
9	17.944	25.50	0.26	10.90	36.66	50.00	-13.34	Average
10	18.622	31.93	0.26	10.91	43.10	60.00	-16.90	QP
11	22.775	25.84	0.39	10.89	37.12	60.00	-22.88	QP
12	23, 263	22.11	0.43	10.89	33.43	50.00	-16.57	Average

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Bluetooth Modulecon EUT : RF-BM-S02A

Test Mode : TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Winner
Remark

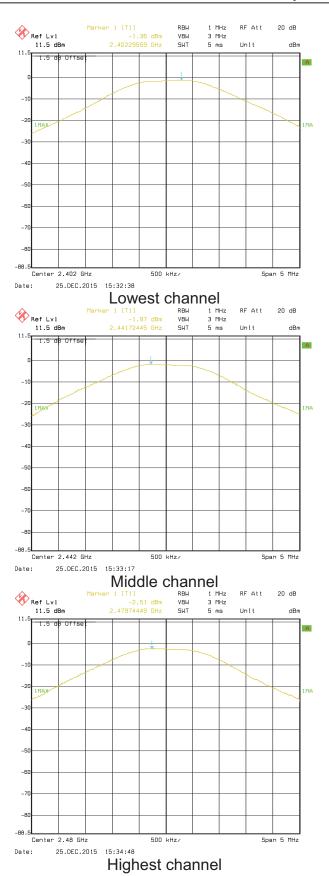
Remark

emark	:							
	1000	Read	LISN	Cable		Limit	Over	legitir all
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.150	29.27	0.27	10.78	40.32	66.00	-25.68	QP
2	0.155	20.71	0.27	10.78	31.76	55.74	-23.98	Average
2 3 4 5 6 7 8 9	0.175	25.83	0.27	10.77	36.87	64.72	-27.85	QP
4	0.260	13.66	0.27	10.75	24.68	51.42	-26.74	Average
5	0.686	17.59	0.22	10.77	28.58	56.00	-27.42	QP
6	3.759	14.05	0.28	10.90	25.23	46.00	-20.77	Average
7	8.412	19.92	0.31	10.87	31.10	50.00	-18.90	Average
8	8.776	23.26	0.31	10.89	34.46	60.00	-25.54	QP
9	18.622	33.61	0.33	10.91	44.85	60.00	-15.15	QP
10	18.622	26.92	0.33	10.91	38.16	50.00	-11.84	Average
11	22.535	28.85	0.44	10.89	40.18	60.00	-19.82	QP
12	22.775	25.73	0.44	10.89	37.06	50.00	-12.94	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted PK Output Power


_	,					
Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

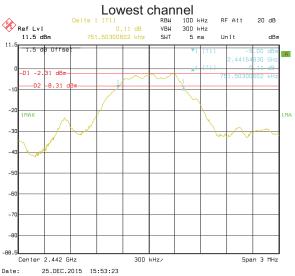
Test CH	Maximum PK Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.36		
Middle	-1.97	30.00	Pass
Highest	-2.51		

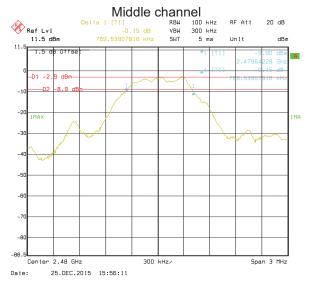
Test plot as follows:

6.4 Occupy Bandwidth

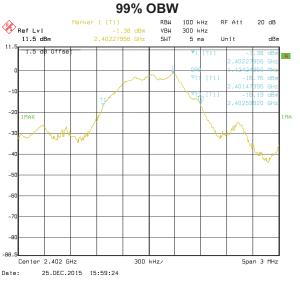
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

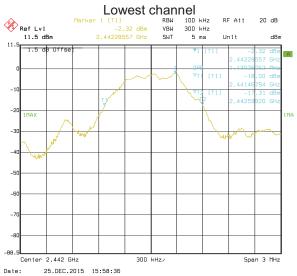
Measurement Data

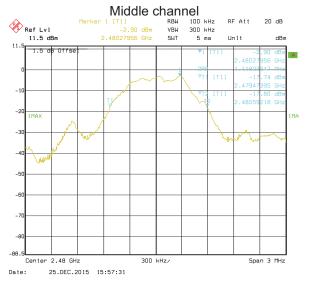

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.758			
Middle	0.752	>500	Pass	
Highest	0.770			


Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.124		
Middle	1.130	N/A	N/A
Highest	1.118		

Test plot as follows:



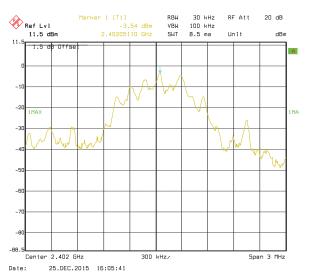


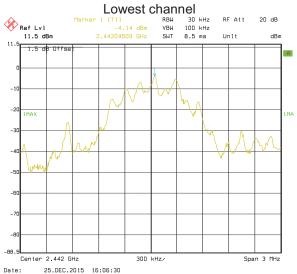


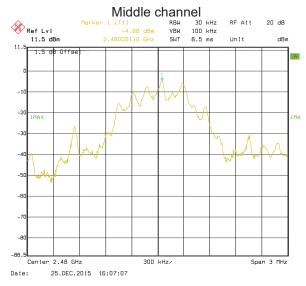
Highest channel

Highest channel

6.5 Power Spectral Density

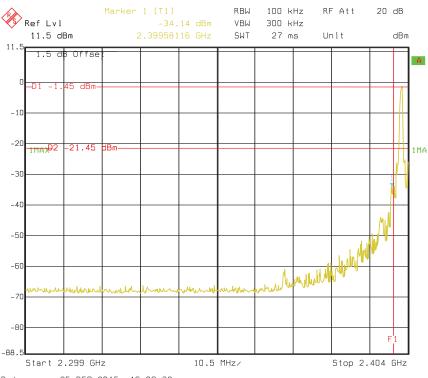

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					


Measurement Data

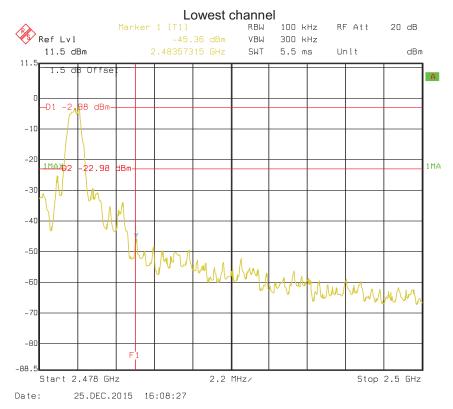

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-3.54		
Middle	-4.14	8.00	Pass
Highest	-4.68		

Test plots as follow:

Highest channel


6.6 Band Edge

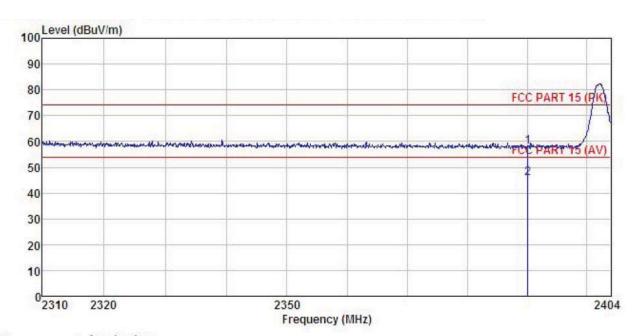
6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method


Т	est Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Т	est Method:	ANSI C63.10: 2	009 and KDI	B 55807	'4v03r(03 section 1	12.1		
Т	est Frequency Range:	2.3GHz to 2.5G	Hz						
Т	est site:	Measurement D	Distance: 3m						
F	Receiver setup:	Frequency	Detector		BW	VBW	Remark		
		Above 1GHz	Peak		/IHz	3MHz	Peak Value		
1	.imit:	Freque	RMS		//Hz /dBu\//	3MHz m @3m)	Average Value Remark		
	.IIIIIC.		-		54.0		Average Value		
		Above 1			74.0	_	Peak Value		
	est Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Т	est setup:	SOCM (TO	Test Receive	3m 3m Person Pla	Horn Ante	Antenna Tor	wer		
Т	est Instruments:	Refer to section 5.7 for details							
Т	est mode:	Refer to section	5.3 for detail	ls					
	est results:	Passed							

Test channel: Lowest

Horizontal:

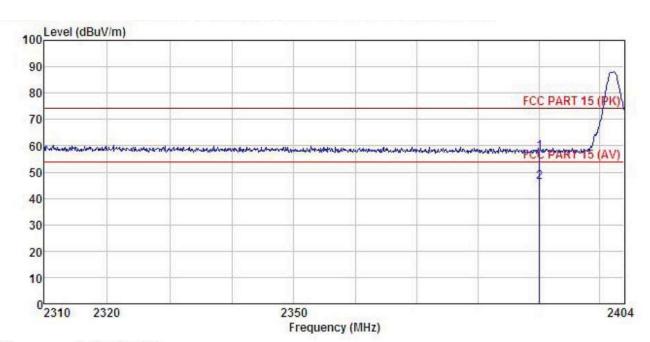
Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Bluetooth Module Model : RF-BM-S02A

: TX-L mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Winner REMARK :


EMAN	v :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	dB	dB	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>dB</u>	
1	2390.000	23.61	27.58	6.63	0.00	57.82	74.00	-16.18	Peak
2	2390.000	11.73	27.58	6.63	0.00	45.94	54.00	-8.06	Average

Test channel: Lowest

Vertical:

Site : 3m chamber

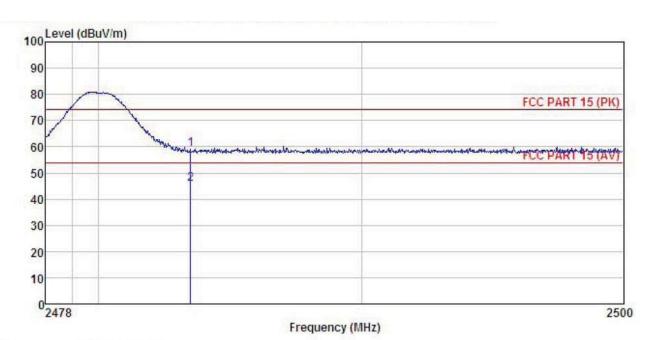
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Bluetooth Module EUT

Model : RF-BM-S02A Test mode : TX-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

REMARK

1 2


	9500		Antenna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
	2390.000 2390.000							-16.45 -8.05	

Test channel: Highest

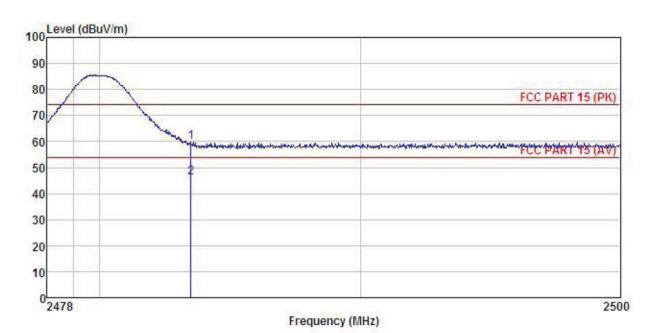
Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Bluetooth Module EUT : RF-BM-S02A Model Test mode : TX-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Winner REMARK


LIMILO			Antenna Factor						
	MHz	dBuV	$-\overline{dB/m}$	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

Site : 3m chamber

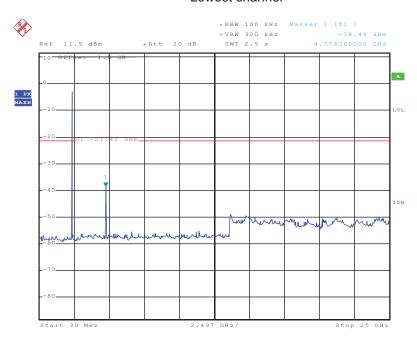
Condition EUT : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Bluetooth Module

Test mode: TX-H mode
Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Winner
REMARK:

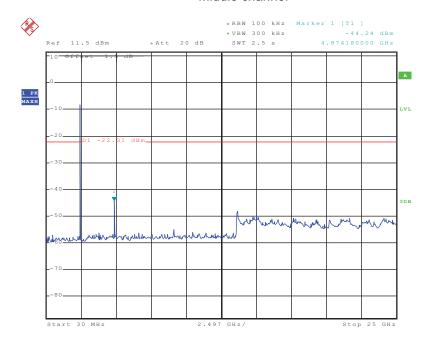
EMAR	r :	Pood	Antenna	Cabla	Droomn		Limit	Over	
	Freq		Factor						Remark
e.	MHz	dBu₹	$-\frac{dB}{m}$	₫B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2483.500	25. 29	27.52	6.85	0.00	59.66	74.00	-14.34	Peak
2	2483.500	11.87	27.52	6.85	0.00	46.24	54.00	-7.76	Average

6.7 Spurious Emission


6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

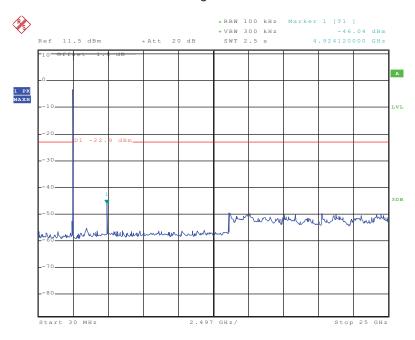
Test plot as follows:


Lowest channel

Date: 27.DEC.2015 18:42:24

30MHz~25GHz

Middle channel



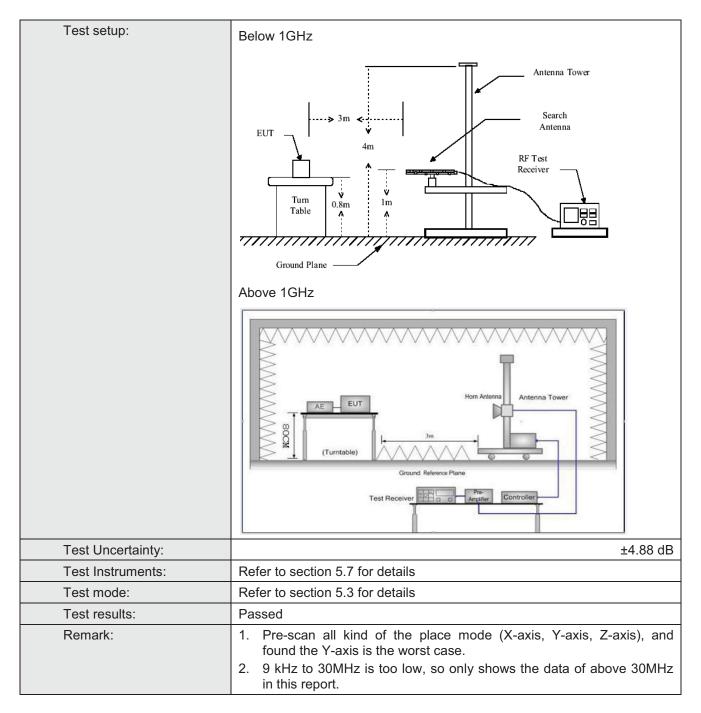
Date: 27.DEC.2015 18:44:49

30MHz~25GHz

Highest channel

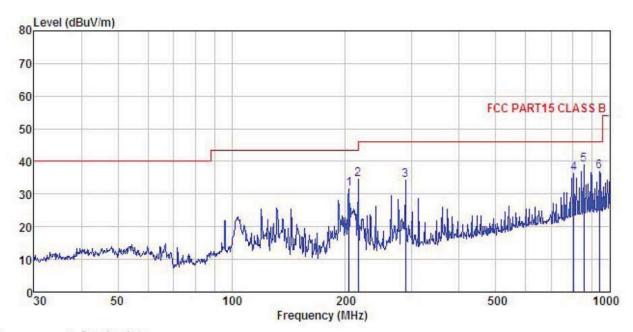
Date: 27.DEC.2015 18:45:54

30MHz~25GHz



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205					
Test Method:	ANSI C63.10:2009							
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency Detector RBW VBW Remark							
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960MHz 46.0 Quasi-peak Value							
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz	-	54.0		Average Value			
			74.0		Peak Value			
Test Procedure:	the ground to determin 2. The EUT vantenna, was tower. 3. The antenrathe ground Both horizon make the make the make the make the make so case and the meters and to find the make the limit specified Base of the EUT have 10 dB	at a 3 meter the the position was set 3 meter the position was set 3 meter the highest to determine the anterest the rotatable maximum read the rotatable read the r	camber. The nof the highest neters away funted on the twaried from ore the maximutical polarizat. Inission, the Enna was tuned was turned iding. It was set the maximum Hamma was set the EUT in peatesting could be ported. Otherwald be re-tested.	table was a st radiation. The meter to the m	le 0.8 meters above rotated 360 degrees terference-receiving able-height antenna of four meters above of the field strength, antenna are set to tranged to its worst is from 1 meter to 4 rees to 360 degrees etect. Function and as 10 dB lower than and the peak values hissions that did not e using peak, quasing reported in a data.			



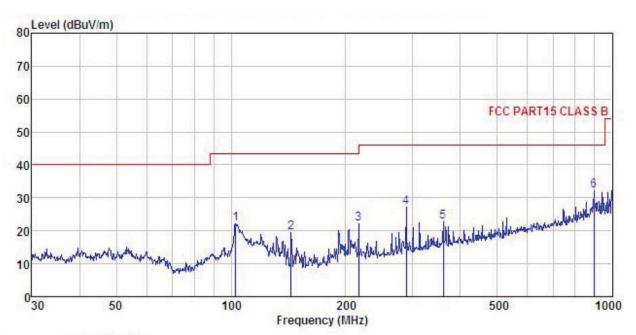
Below 1GHz

Horizontal:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: Bluetooth Module EUT


: RF-BM-S02A Model Test mode : TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

MARK	: Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	204.238	48.19	10.70	1.40	28.80	31.49	43.50	-12.01	QP
2	216.024	50.61	11.07	1.46	28.73	34.41	46.00	-11.59	QP
3	287.990	48.16	12.84	1.74	28.47	34.27	46.00	-11.73	QP
4	804.603	41.35	20.10	3.18	28.18	36.45	46.00	-9.55	QP
1 2 3 4 5	854.025	43.10	20.64	3.26	27.99	39.01	46.00	-6.99	QP
6	938 833	39 76	21 34	3 43	27.76	36 77	46.00	-9 23	OP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Bluetooth Module Model : RF-BM-S02A
Test mode : TX mode
Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% Test Engineer: Winner

MARK	:								
	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu₹	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	102.719	37.63	12.92	0.98	29.51	22.02	43.50	-21.48	QP
2	143.830	39.31	8.22	1.28	29.25	19.56	43.50	-23.94	QP
3	216.024	38.45	11.07	1.46	28.73	22.25	46.00	-23.75	QP
2 3 4 5	287.990	41.00	12.84	1.74	28.47	27.11	46.00	-18.89	QP
5	360.448	34.85	14.43	1.98	28.61	22.65	46.00	-23.35	QP
6	896.997	35.61	21.05	3.34	27.89	32.11	46.00	-13.89	QP

Above 1GHz

Т	Test channel:			Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.85	31.53	10.57	40.24	47.71	74.00	-26.29	Vertical
4804.00	45.62	31.53	10.57	40.24	47.48	74.00	-26.52	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.21	31.53	10.57	40.24	37.07	54.00	-16.93	Vertical
4804.00	35.36	31.53	10.57	40.24	37.22	54.00	-16.78	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	46.35	31.58	10.66	40.15	48.44	74.00	-25.56	Vertical
4884.00	47.25	31.58	10.66	40.15	49.34	74.00	-24.66	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	35.32	31.58	10.66	40.15	37.41	54.00	-16.59	Vertical
4884.00	36.65	31.58	10.66	40.15	38.74	54.00	-15.26	Horizontal

Test channel:			Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.52	31.69	10.73	40.03	49.91	74.00	-24.09	Vertical
4960.00	47.98	31.69	10.73	40.03	50.37	74.00	-23.63	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.98	31.69	10.73	40.03	39.37	54.00	-14.63	Vertical
4960.00	37.02	31.69	10.73	40.03	39.41	54.00	-14.59	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366