

Page 1 of 19

Test Report

Test Report No.:	KTI14EF01003					
Registration No.:	KR0023					
Applicant:	BYROBOT Co., Ltd.					
Applicant Address:	#417, Human Sky Valley, 33, O	mokcheon-ro 132beo	n-gil, Gweonseon-gu,			
Applicant Address.	Suwon-si, Gyeonggi-do, Korea	441-813				
Product:	Drone Fighter					
FCC ID:	2ABMZ-DF-R01 Model No. DF-R01					
Receipt No.:	14-01003	14-01003 Date of receipt: January 21, 2014				
Date of Issue:	January 24, 2014					
Testing location	Korea Technology Institute Co., Ltd.					
Testing location	51-19, Sanglim3-Ri, Docheok-Myeon, Gwangju-Shi, Gyeonggi-Do, Korea					
Test Standards:	FCC/ANSI. C63.4: 2003					
Rule Parts: FCC	Part 15.247 Subpart C, ANSI C 63.4-2003					
Method of Measurement	FCC Public Notice KDB 558074					
Test Result:	The above-mentioned product	has been tested with	compliance.			

Tested by: M. G. Ji
/ Engineer

Approved by: S. H. Song /Technical Manager

Signature Date January 21, 2014

Signature Date January 23, 2014

Other Aspects:				
Abbreviations:	* OK, Pass=passed	* Fail=failed	* N/A=not applicable	

- This test report is not permitted to copy partly without our permission.
 - This test result is dependent on only equipment to be used.
 - This test result is based on a single evaluation of one sample of the above mentioned.
 - This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.
 - We certify this test report has been based on the measurement standards that is traceable to the national or international standards.

Korea Technology Institute Co., Ltd. Page 2 of 19

>>> Contents ««

1.	Verification of compliance	3
2.	General Information	4
	2.1 Product Description	4
3.	EUT MODIFICATION	4
4	Test Summary	5
	4.1 Test Items and results	5
	4.2 Additions, deviations, exclusions from standard	5
	4.3 Related Submittal(s) / Grant(s)	5
	4.4 Purpose of the test	5
	4.5 Test Methodology	5
	4.6 Test Facility	5
5.	System Test Configuration	6
	5.1 Characteristics of equipment	6
	5.2 Used Peripherals list	6
	5.3 Mode of operation during the test	6
	5.4 Uncertainty	6
	5.5 Test setup of EUT	6
6.	Measurement results	7
	6.1 6dB Bandwidth	8
	6.2 Peak Output Power	9
	6.3 Power Spectral Density	12
	6.4 Test data for radiated emission	14
	6.5 Antenna Requirement	19

Page 3 of 19

1. Verification of compliance

Applicant: BYROBOT CO.,LTD

Address: #417, Human Sky Valley, 33, Omokcheon-ro 132beon-gil, Gweonseon-gu, Suwon-si, Gyeonggi-do,

Korea 441-813

FCC ID: 2ABMZ-DF-R01

Model Name: DF-R01

Brand Name : **SYROBOT**

Serial Number : N/A

Date : January 24, 2014

Equipment Class	DTS – PART 15 Digital Transmission System
Kind of Equipment	ZigBee
Measurement Procedures	FCC Public Notice KDB 558074, ANSI C63.4-2003,
Type of Equipment Tested	Pre-Production
Kind of Equipment Authorization	Certification
Requested	Certification
Equipment Will Be Operated Under	FCC PART 15 SUBPART C Section 15.247
FCC Rules Part(s)	FCC FART 13 SUBFART C Section 13.247
Modifications On The Equipment To	None
Achieve Compliance	NOIC
Final Test was Conducted On	10m Open area test site

⁻ The above equipment was tested by Korea Technology Institute Co., Ltd. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanation from equipment are within the compliance requirements.

Page 4 of 19

2. General Information

2.1 Product Description

The BYROBOT CO.,LTD Model DF-R01 (referred to as the EUT in this report) is used to remote controller which has a function of zigbee. The product specification described herein was obtained from product data sheet or user's manual.

Equipment Name	Drone Fighter
Operating Frequency	2405 MHz ~ 2480 MHz
RF Output Power	-7.33 dBm
Number of Channel	16 Channels
Mode of Operation	Duplex
Modulation Type	QPSK
Antenna Type / Gain	PCB Pattern Antenna / 5.3 dBi (Max)
List of Each OSC. Or Crystal. Freq.	26 MHz
Rated Supply Voltage	DC 3.7 V

3. EUT MODIFICATION

- NONE.

Page 5 of 19

4. Test Summary

4.1 Test Items and results

SECTION	TEST ITEMS	RESULT
15.203	Antenna Requirement	-
15.207	Conducted Emission	-
15.247(b)(1)	Maximum Peak Conducted Output Power	Compliance
15.247(a)	6dB BandWidth	Compliance
15.247(b)	RF Output Power	Compliance
	(Maximum Peak Conducted Output Power)	Comprision
15.247(d)	Power Spectral Density	Compliance
15.247(c)	Transmitter Radiated Bandedge Emissioins	Compliance
15.247(c)	Transmitter Radiated Unwanted Emissioins	Compliance

Notes: Compliance/pass: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

4.2 Additions, deviations, exclusions from standard

No additions, deviations or exclusions have been made from standard.

4.3 Related Submittal(s) / Grant(s)

Original submittal only

4.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 2.1.

4.5 Test Methodology

The radiated testing was performed according to the procedures in ANSI C63.4:2003 at a distance of 3 m from EUT to the antenna

4.6 Test Facility

The open area test site and conducted measurement facilities are located on at 51-19, Sanglim3-Ri, Docheok-Myeon, Gwangju-Shi, Gyeonggi-Do, Korea

Page 6 of 19

5. System test Configuration

5.1 Characteristics of equipment

This equipment is Wireless Remote Helicopter. The DF-R01 is an wireless remote implementing s ZIGBEE communication standards, DSSS used frequency band is 2 405 MHz - 2 480 MHz Power source is supplied 3.7 Vdc.

5.2 Used Peripherals list

DEVICE TYPE	Manufacturer	Model	S/N
Notebook PC	SAMSUNG	NT-RV511-S16R	HHA793QB600206F

5.3 Mode of operation during the test

For zigbee function testing, software used to control the EUT for staying in continuous transmitting and receiving mode is programmed. The EUT was set at Low Channel (2 405 MHz), Middle Channel (2 440 MHz), and High Channel (2 480 MHz) with each data transfer rate. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and rotated. The worst data was recorded in this test report.

5.4 Uncertainty

1) Radiated disturbance

Uc (Combined standard Uncertainty) = ± 2.61 dB

Expanded uncertainty U=KUc

$$K = 2$$

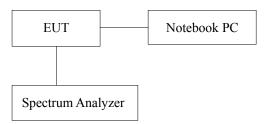
$$\therefore$$
 U = \pm 5.22dB

2) Conducted disturbance

$$Uc = \pm 1.40dB$$

$$U = KUc=2 \times Uc = \pm 2.8dB$$

$$\therefore$$
 U = ± 2.8 dB


Page 7 of 19

5.5 Test setup of EUT

6.5.1 Except Radiated Emissions and AC Conducted Emissions measurement, all measurements were taken in continuous transmit / receive mode using the TEST MODE.

For controlling the EUT as TEST MODE, the test program was provided by the applicant.

The controlled EUT by Notebook PC in TEST MODE.

6.5.2 Radiated Emission and AC Conducted Emissions measurement setup

Page 8 of 19

6. Measurement results

6.1 6 dB Bandwidth

Temperature : 22 ℃

Relative Humidity: (44 - 45) % R.H.

Procedure

KDB 558074 D01 v01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) Operating Under 15.247"

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 2 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

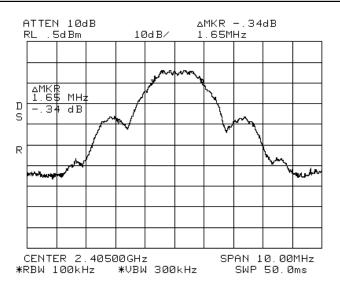
RBW = 10 kHz (1% of the 20dB bandwidth or more) Sweep = auto

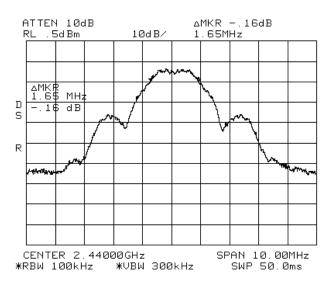
 $VBW = 30 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

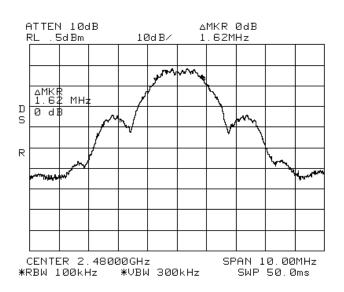
Trace = max hold

Test equipment used

Model NO.	Mannufacturer	Description	S/N	Cal. Date	Due to Cal. Date
8564E	H.P	Spectrum Analyzer	3745A01024	2013.04.03	2014.04.03


Measurement Data:


Europe on (MII-)	maguanay(MHz) Channal Na	Test Results	Test Results
Frequency(MHz)	Channel No.	99% Bandwidth (MHz)	6dB Bandwidth (MHz)
2405	1	2.717	1.65
2440	8	2.683	1.65
2480	16	2.683	1.62


- See next pages for actual measured spectrum plots.

Page 9 of 19

Page 10 of 19

6.2 Peak Output Power

Temperature : 22 ℃

Relative Humidity: (44 - 45) % R.H

Procedure:

KDB 558074 D01 v01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) Operating Under 15.247"

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 5 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)

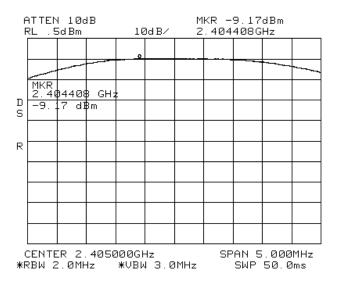
 $VBW = 1 MHz (VBW \ge RBW)$ Detector function = peak

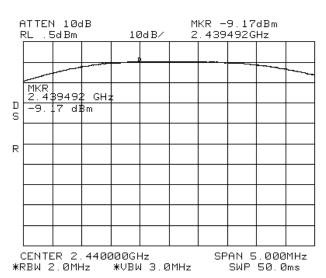
Trace = \max hold Sweep = auto

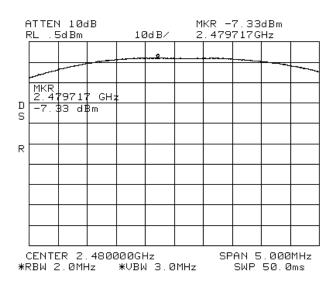
Test equipment used

Model NO.	Mannufacturer	Description	S/N	Cal. Date	Due to Cal. Date
8564E	H.P	Spectrum Analyzer	3745A01024	2013.04.03	2014.04.03

Measurement Data:


Frequency	Ch.	Test Results			
(MHz)		dBm	W	Result	
2405	1	-9.17	0.000121	Compliance	
2440	8	-9.17	0.000121	Compliance	
2480	16	-7.33	0.000185	Compliance	


- See next pages of actual measured spectrum plots.


۷

Page 11 of 19

Page 12 of 19

6.3 Power Spectral Density

Temperature : 22 ℃

Relative Humidity: (44 - 45) % R.H

Procedure:

Power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the power spectral density. In addition, the use of a peak PSD procedure will always result in a "worst-case" measured level for comparison to the limit. Therefore, whenever the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to demonstrate compliance to the PSD limit, regardless of how the fundamental output power was measured.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

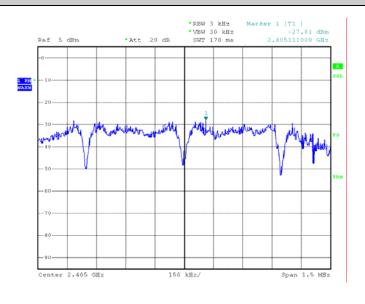
RBW = 3 kHz $VBW \ge RBW$

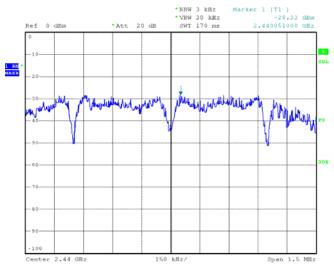
Span = 1.5 MHz Detector function = peak

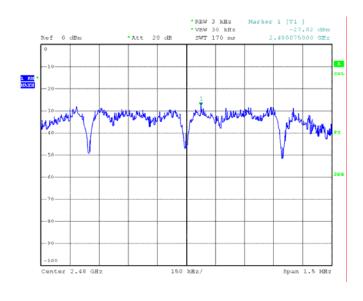
Trace = \max hold Sweep = auto

Test equipment used

Model NO.	Mannufacturer	Description	S/N	Cal. Date	Due to Cal. Date
ESCI	R&S	RECEIVER	100025	2013.09.23	2014.09.23


Measurement Data:


Frequency	Setting Channel	Test Results			
(MHz)	(CH)	Measured value (dBm)	Result		
2405	1	-27.81	Compliance		
2440	8	-28.33	Compliance		
2480	16	-27.82	Compliance		


Limit (dBm)	> 8 dBm
· /	

Page 13 of 19

Page 14 of 19

6.4 Test data for radiated emission

Above 1 GHz Electric Field strength was measured in accordance with ANSI C 63.4 (2003). The test setup was made according to ANSI C 63.4 (2003) on an Anechoic chamber, which allows a 3m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated.

6.4.1 Radiated Emission which fall in the Restricted Band

Temperature : 3 ℃

Relative Humidity: (55 - 56) % R.H

Center frequency = the highest and the lowest channels

RBW = 1 MHz for Peak and Average Mode

VBW = 1 MHz for Peak Mode, 10 Hz for Average Mode

Sweep = auto

Result: PASSED

Test equipment used

Model NO.	Mannufacturer	Description	S/N	Cal. Date	Due to Cal. Date
ESIB40	R&S	RECEIVER	100093	2013.05.13	2014.05.13
3115	ETS	HORN ANTENNA	6443	2012.10.21	2014.10.21
KTI-HD-1080	KTI	HORN ANTENNA	130001	2013.04.10	2015.04.10
6502	EMCO	LOOP ANTENNA	3434	2012.03.15	2014.03.15
VULB9163	S/B	BI-LOG ANTENNA	281	2012.10.28	2014.10.28

Measuremnet Data

Frequency (MHz)	Reading.	Detector Mode	Ant. Pol.	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBμV/m)	Margin (dB)
			Tes	st Data for	Low Cha	nnel			
	41.94	Peak	Н				52.2	74.00	21.8
1024.40	16.74	Average	Н	27.18	6.54	23.46	27.0	54.00	27.0
1924.40	28.24	Peak	V				38.5	74.00	35.5
	14.84	Average	V				25.1	54.00	28.9
			Tes	st Data for	High Cha	nnel			
	28.79	Peak	Н				42.7	74.00	31.3
2460.40	15.99	Average	Н	40.50		22.11	29.9	54.00	24.1
2460.40	29.59	Peak	V	28.79	7.56	22.44	43.5	74.00	30.5
	16.09	Average	V				30.0	54.00	24.0

Korea Technology Institute Co., Ltd. Page 15 of 19

Notes: "H": Horizontal, "V": Vertical

Each data transfer rate, but the worst data was recorded.

6.4.2 Spurious Radiated Emission above 1 GHz

Temperature : 3 ℃

Relative Humidity: (55 - 56) % R.H

Center frequency = the highest, middle and the lowest channels

RBW = 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

VBW = 1 MHz

z for Peak Mode, 10 Hz for Average Mode

Measurement distance: 3m

Frequency Range: 1 GHz ~ 25 GHz

Result: PASSED

Frequency (MHz)	Reading.	Detector Mode	Ant. Pol.	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBμV/m)	Margin (dB)
			Tes	st Data for	Low Cha	nnel			
2405.00	66.79	Peak	Н	20.71	7.45	22.55	80.3	-	80.3
2405.00	58.29	Peak	V	28.61	7.45	22.55	71.8	-	71.8
	19.61	Peak	Н				43.9	74.00	30.1
4040.004	6.51	Average	Н	33.59	10.35	10.35 19.65	30.8	54.00	23.2
4810.00*	19.61	Peak	V				43.9	74.00	30.1
	6.61	Average	V				30.9	54.00	23.1
			Test	Data for N	Middle Ch	annel			
2440.00	65.73	Peak	Н	20.52	5.5 2	22.48	79.5	-	79.5
2440.00	59.83	Peak	V	28.73	7.52		73.6	-	73.6
	18.21	Peak	Н				42.6	74.00	31.4
4000 00:	5.61	Average	Н	22.45	10.26	19.64	30.0	54.00	24.0
4880.00*	20.91	Peak	V	33.67	10.36		45.3	74.00	28.7
	6.81	Average	V				31.2	54.00	22.8

Korea Technology Institute Co., Ltd. Page 16 of 19

Frequency (MHz)	Reading. (dBμV)	Detector Mode	Ant. Pol.	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)			
	Test Data for high Channel											
	64.55	Peak	Н	28.85	7.60	22.40	78.6	-	78.6			
2 480.00	56.35	Peak	V				70.4	-	70.4			
	16.11	Peak	Н			19.63	40.6	74.00	33.4			
4.060.004	4.11	Average	Н	33.75	10.25		28.6	54.00	25.4			
4 960.00*	18.31	Peak	V		10.37		42.8	74.00	31.2			
	5.31	Average	V				29.8	54.00	24.2			

Notes: 1.All modes of operation were investigated.

And the worst-case emission are reported.

- 2.All other emission is non-significant.
- 3.All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR peak mode.
- 5. Correction Factor(dB)= Cable Factor(dB) + Amp. Factor (dB)
- 6. H = Horizontal, V = Vertical Polarization
- 7."*" Frequency fall in restricted band

Korea Technology Institute Co., Ltd. Page 17 of 19

6.4.3 Spurious Radiated Emission below 1 GHz

Temperature : 3 $^{\circ}$ C

Relative Humidity: (55 - 56) % R.H

RBW = 120 kHz

Measurement distance : 3m

Frequency Range : $30 \text{ MHz} \sim 1 \text{ GHz}$

Result: PASSED

Frequency (MHz)	Reading. (dBμV)	Ant. Pol.	Ant. Height (m)	Angle (°)	Ant. Factor (dB/m)	Cable Loss (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)
42.44	1.17	V	1.04	180	14.42	0.51	16.1	30.00	13.9
48.28	5.52	V	1.05	320	14.49	0.59	20.6	30.00	9.4
125.28	15.2	V	1.15	180	10.31	0.89	26.4	30.00	3.6
350.84	3.63	V	2.88	195	15.78	1.89	21.3	37.00	15.7
515.08	0.1	Н	2.43	260	18.35	2.35	20.8	37.00	16.2
720.04	3.19	Н	1.98	170	20.51	2.80	26.5	37.00	10.5

Notes: "H": Horizontal, "V": Vertical,

Page 18 of 19

6.4.4 Spurious Radiated Emission below 30 MHz

Temperature : 3 $\,^{\circ}$ C

Relative Humidity: (55 - 56) % R.H

RBW = 200 Hz(from 9 kHz to 0.15 MHz), 9 kHz(from 0.15 MHz to 30 MHz)

Measurement distance : 3m

Frequency Range : $9 \text{ kHz} \sim 30 \text{ MHz}$

Result: PASSED

Frequency (MHz)	Reading. (dBμV)	Ant. Pol.	Ant. Height (m)	Angle	Ant. Factor (dB/m)	Cable Loss (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)
0.02	20.56	V	1.30	186	14.4	0.34	35.3	121.71	86.41
0.06	18.06	V	1.85	180	10.8	0.34	29.2	109.14	79.94
0.20	8.06	V	1.30	0	10.2	0.34	18.6	71.89	53.29

Notes : "H" : Horizontal, "V" : Vertical,

Korea Technology Institute Co., Ltd. Page 19 of 19

6.5 Antenna Requirement

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit So that broken antenna can be replaced by the user, but the Use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(4)(1), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi

According to above requirement standard's This product's antenna type is an PCB type and it's gain is 5.3 dBi, So radiated emission field strength from EUT is below requirement standard limit

Frequency Band	Gain (dBi)	Limit (dBi)	Results
2400 ~ 2484 MHz	5.30	≤6	Compliance