

FCC TEST REPORT

Product : POP Display
Trade mark : N/A
Model/Type reference : 850-074027
Serial Number : N/A
Report Number : EED32L001336
FCC ID : 2ABMA-850-074029
Date of Issue : Jun. 20, 2019
Test Standards : 47 CFR Part 15 Subpart C
Test result : PASS

Prepared for:

Lynx Innovation Limited
Unit 8A, 331 Rosedale Road Albany, 0632 North Shore City
Auckland, New Zealand

Prepared by:

Centre Testing International Group Co., Ltd.
Hongwei Industrial Zone, Bao'an 70 District,
Shenzhen, Guangdong, China

TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Kevin lan

Reviewed by:

Ware Xin

Approved by:

Kevin yang

Date:

Jun. 20, 2019

Check No.:3915677614

Report No. : EED32L001336

Page 2 of 33

2 Version

Version No.	Date	Description
00	Jun. 20, 2019	Original

3 Test Summary

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Radiated Emission	47 CFR Part 15 Subpart C Section 15.209;15.225(a)(b)(c)(d)	ANSI C63.10-2013	PASS
Frequency Tolerance	47 CFR Part 15 Subpart C Section 15.225(e)	ANSI C63.10-2013	PASS
Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.215	ANSI C63.10-2013	PASS

Remark:

The tested sample and the sample information are provided by the client.

4 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENTS	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF EUT	5
5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
5.4 TEST ENVIRONMENT AND MODE	5
5.5 DESCRIPTION OF SUPPORT UNITS	6
5.6 TEST LOCATION	6
5.7 DEVIATION FROM STANDARDS	6
5.8 ABNORMALITIES FROM STANDARD CONDITIONS	6
5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
5.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	6
6 EQUIPMENT LIST	7
7 TEST RESULT & MEASUREMENT DATA	9
7.1 CONDUCTED EMISSIONS	9
7.2 RADIATED EMISSIONS	12
7.3 FREQUENCY TOLERANCE	19
7.4 OCCUPIED BANDWIDTH	21
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	23
APPENDIX 2 PHOTOGRAPHS OF EUT	25

Report No. : EED32L001336

Page 5 of 33

5 General Information

5.1 Client Information

Applicant:	Lynx Innovation Limited
Address of Applicant:	Unit 8A, 331 Rosedale Road Albany, 0632 North Shore City Auckland, New Zealand
Manufacturer:	Jiaxing Lynx Displays Limited
Address of Manufacturer:	Bldg#7, No. 3288, Zhongshan Road(W), Xiuzhou Industrial Park, Jiaxing, Zhejiang, China

5.2 General Description of EUT

Product Name:	POP Display
Model No.(EUT):	850-074027
Trade Mark:	N/A
EUT Supports Radios application:	NFC: 13.56MHz
Power Supply:	Adapter: Model: EA1012AVRU-050 Input: 100-240Vac, 1.0A, 50/60Hz Output: 5V---2.4A

5.3 Product Specification subjective to this standard

Carrier Frequency:	13.56MHz
Modulation Type:	ASK
Antenna Type:	Internal antenna
Antenna Gain:	1 dBi
Test voltage:	AC 120V, 60Hz
Sample Received Date:	Jun. 10, 2019
Sample tested Date:	Jun. 10, 2019 to Jun. 17, 2019

5.4 Test Environment and Mode

Operating Environment:	
Temperature:	22°C
Humidity:	53% RH
Atmospheric Pressure:	101kPa
Test mode:	
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).

Report No. : EED32L001336

Page 6 of 33

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9×10^{-8}
2	RF power, conducted	0.46dB (30MHz-1GHz)
		0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
		3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	/	07-02-2018	07-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	07-02-2018	07-01-2019

Conducted RF test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Signal Generator	Agilent	E4438C	MY45095744	03-01-2019	02-29-2020
Attenuator	HuaXiang	SHX370	15040701	03-01-2019	02-29-2020
high-low temperature test chamber	DongGuangQ inZhuo	LK-80GA	QZ20150611 879	03-01-2019	02-28-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	---	05-24-2019	05-22-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938-003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	---	01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12-0398-002	---	01-09-2019	01-08-2020
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395-001	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393-001	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396-002	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394-001	---	01-09-2019	01-08-2020

7 Test Result & Measurement Data

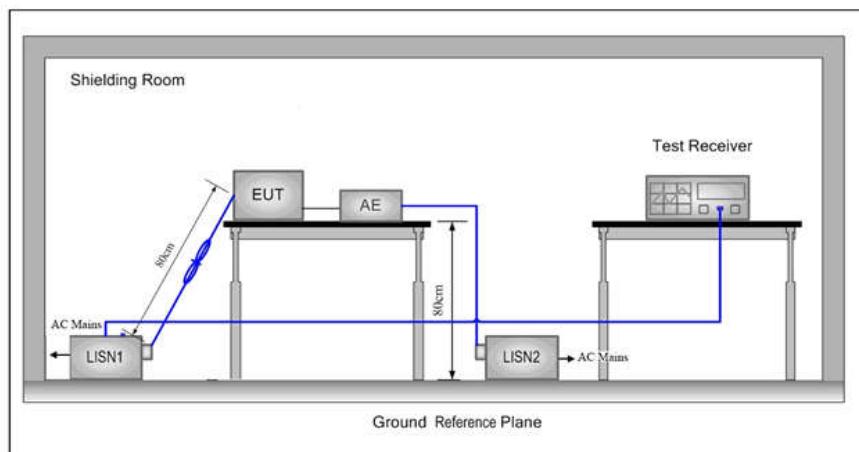
7.1 Conducted Emissions

Test Requirement: 47 CFR Part 15C Section 15.207

Test Method: ANSI C63.10-2013

Test Frequency Range: 150kHz to 30MHz

Limit:


Frequency range (MHz)	Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement.

Test Procedure:

Test Setup:

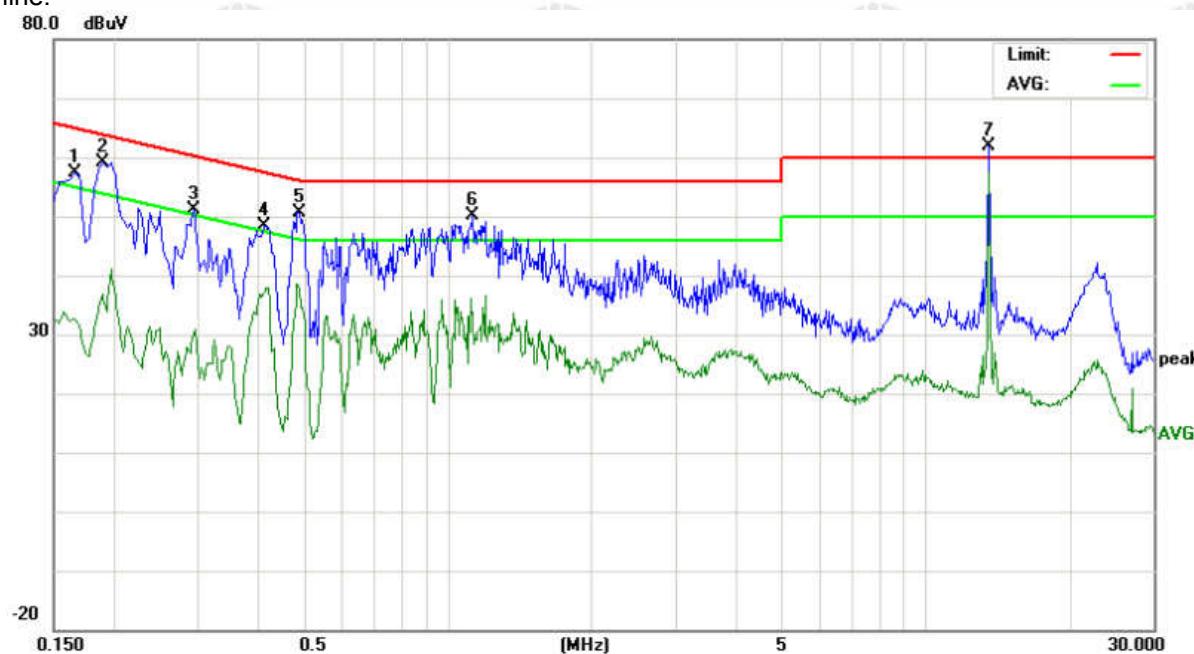
Test Mode:

Transmitting mode

Instruments Used:

Refer to section 6 for details

Test Results:

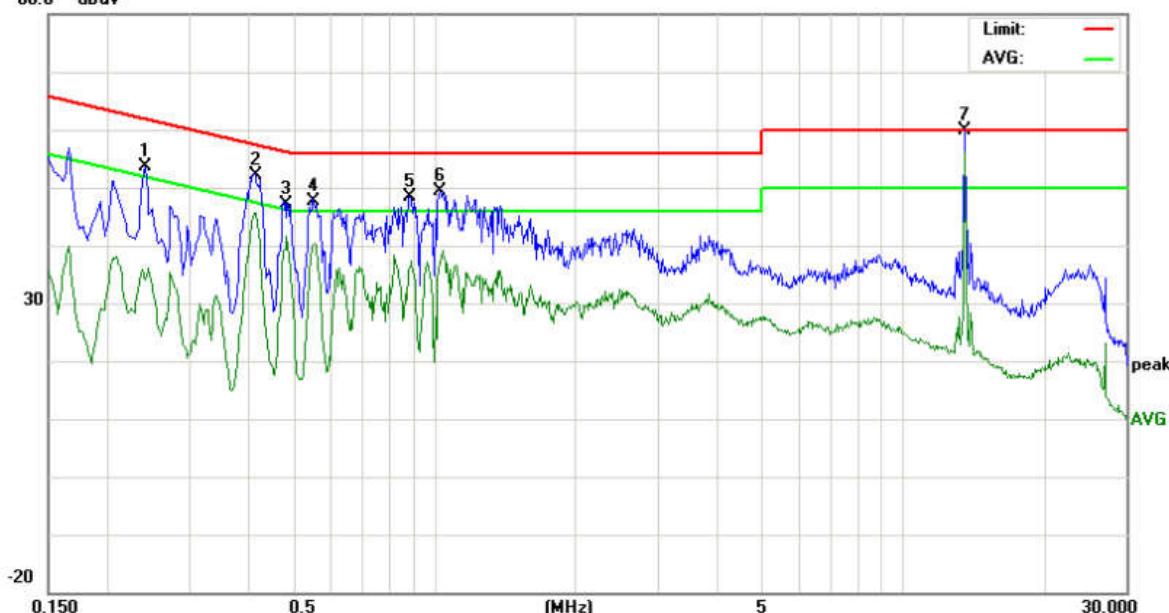

Pass

Test Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)			Margin (dB)		
		MHz	Peak	QP	Avg	Peak	QP	Avg	QP	Avg	QP	Avg	P/F	Comment
1	0.1660	47.52		22.78	9.91	57.43		32.69	65.15	55.15	-7.72	-22.46	P	
2	0.1900	49.19		26.93	9.91	59.10		36.84	64.03	54.03	-4.93	-17.19	P	
3	0.2940	41.09		20.25	9.99	51.08		30.24	60.41	50.41	-9.33	-20.17	P	
4	0.4140	38.41		27.14	9.89	48.30		37.03	57.57	47.57	-9.27	-10.54	P	
5	0.4900	40.78		28.05	9.89	50.67		37.94	56.17	46.17	-5.50	-8.23	P	
6	1.1340	40.41		22.49	9.80	50.21		32.29	56.00	46.00	-5.79	-13.71	P	
7	13.5617	51.98		47.42	9.94	61.92		57.36	60.00	50.00	1.92	7.36	F	

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
3. 13.56MHz is the Fundamental field strength of NFC. According to the 15.207, the limit is not apply.

Neutral line:

80.0 dBuV

No.	Freq. MHz	Reading Level (dBuV)			Correct Factor			Measurement (dBuV)			Limit (dBuV)			Margin (dB)		
		Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment		
1	0.2420	43.65		24.10	9.95	53.60		34.05	62.02	52.02	-8.42	-17.97	P			
2	0.4176	41.20	38.77	35.41	9.89	51.09	48.66	45.30	57.49	47.49	-8.83	-2.19	P			
3	0.4860	37.31		31.64	9.89	47.20		41.53	56.24	46.24	-9.04	-4.71	P			
4	0.5580	36.65		30.38	9.98	46.63		40.36	56.00	46.00	-9.37	-5.64	P			
5	0.8860	38.59		26.62	9.82	48.41		36.44	56.00	46.00	-7.59	-9.56	P			
6	1.0300	39.46		27.12	9.81	49.27		36.93	56.00	46.00	-6.73	-9.07	P			
7	13.5579	50.06		46.22	9.94	60.00		56.16	60.00	50.00	0.00	6.16	F			

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
3. 13.56MHz is the Fundamental field strength of NFC. According to the 15.207, the limit is not apply.

7.2 Radiated Emissions

Test Requirement: 47 CFR Part 15 Subpart C Section 15.209; 15.225(a)(b)(c)(d)

Test Method: ANSI C63.10-2013

Test Site: 3m (Semi-Anechoic Chamber)

Requirements:

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Quasi-peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Quasi-peak	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Quasi-peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Quasi-peak	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

Test Setup:

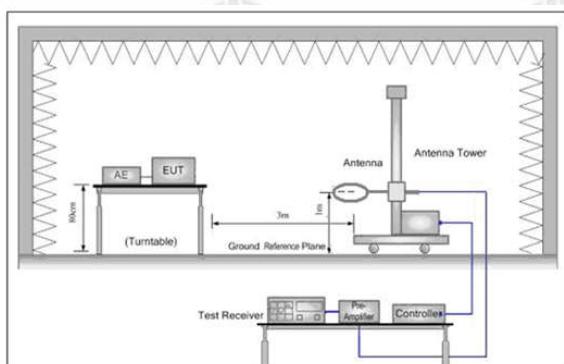


Figure 1. Below 30MHz

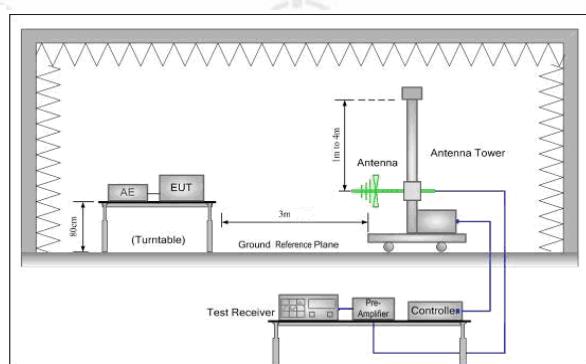


Figure 2. 30MHz to 1GHz

Report No. : EED32L001336

Page 13 of 33

Test Procedure:

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The limit 1.705MHz to 30MHz in clause 4.3 are specified at 30 meters, and measurements were made at 3 meters, the limit is translated to 3 meters by using a formula as follows:
$$\text{Limit3m} = \text{Limit30m} + 40\log(30m/3)$$
8. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode:

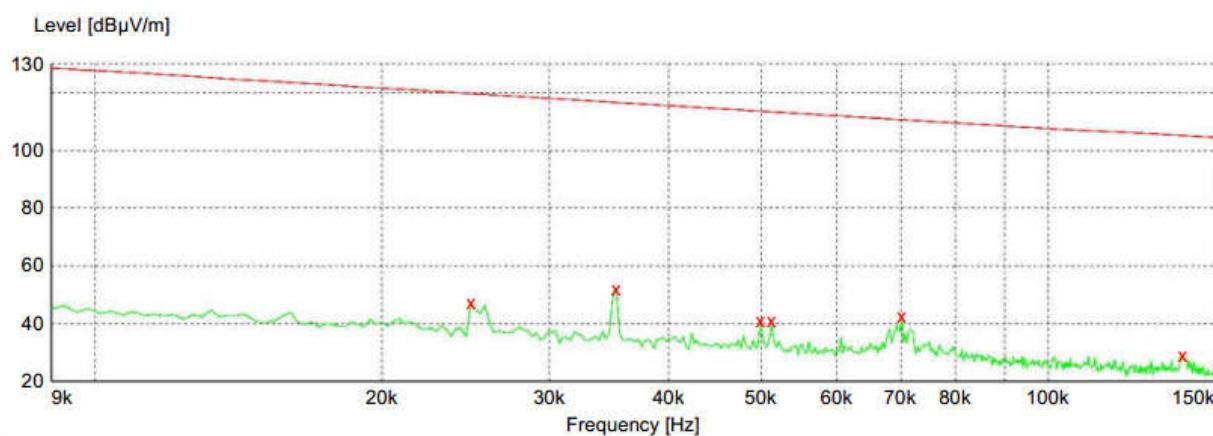
Transmitting mode

Instruments Used:

Refer to section 6 for details

Test Result:

Pass

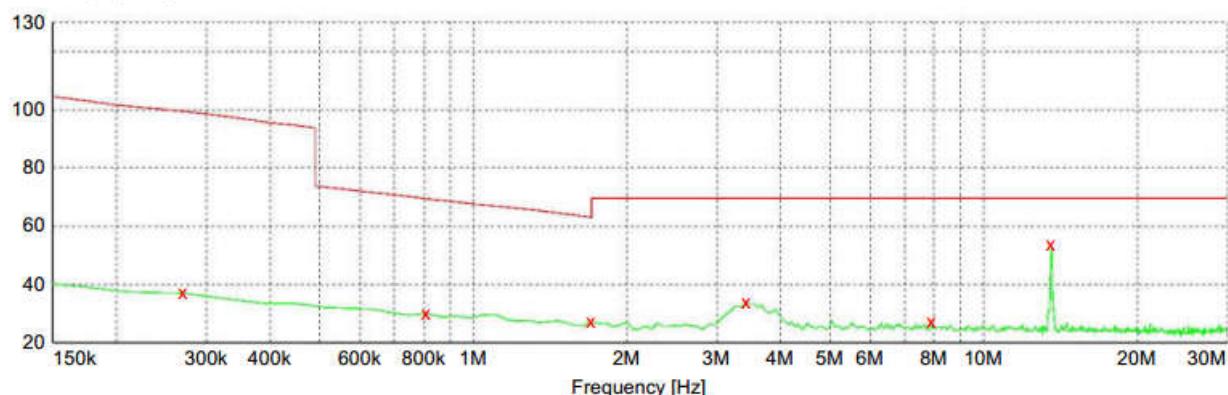

1.705-30MHz

Mode

Test Procedure: For testing performed with the loop antenna, testing was performed in accordance to ANSI C63.4: 2014, section 8.2.1. The center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Test data:

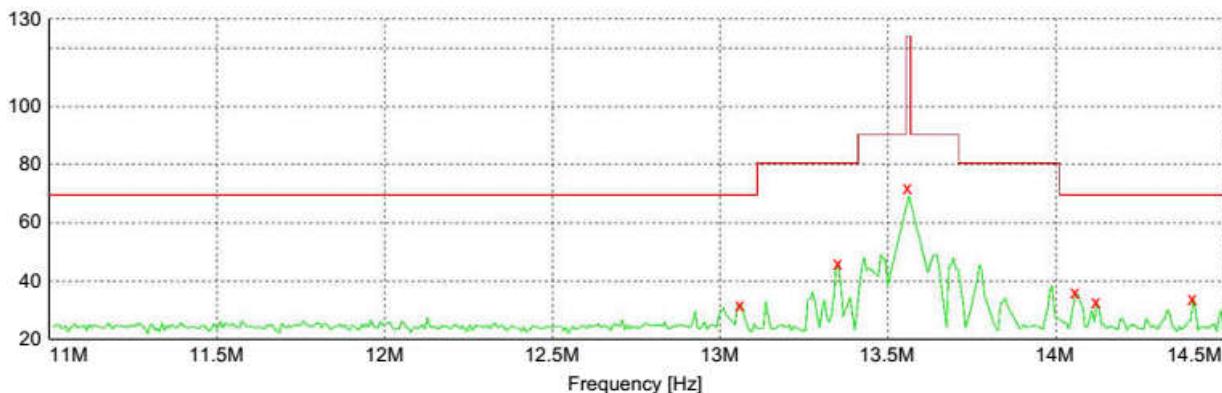
9 kHz-150kHz



xxx MES CTI190616034_red

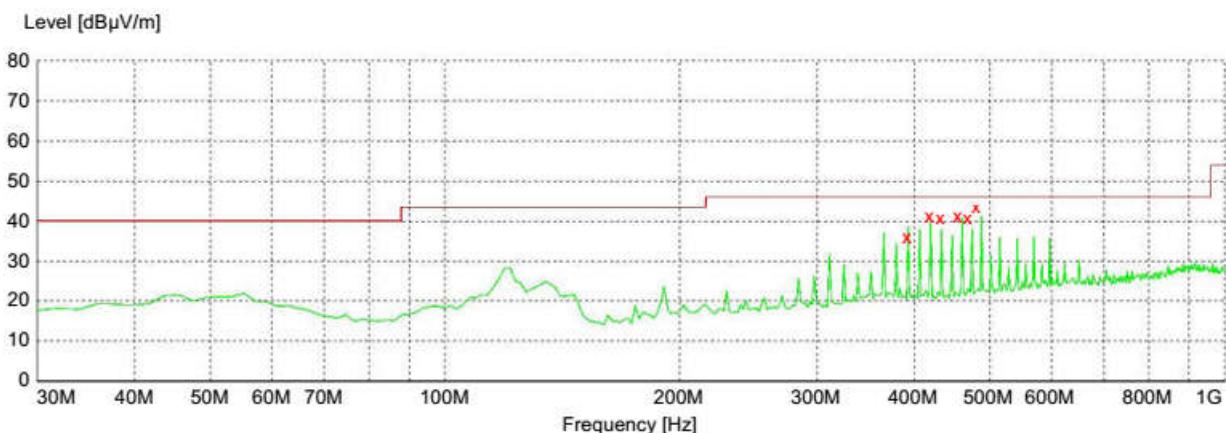
Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
0.024792	46.90	20.4	119.7	72.8	PK	100.0	360.00	X
0.035226	52.00	20.4	116.7	64.7	PK	100.0	360.00	X
0.049890	40.70	20.4	113.7	73.0	PK	100.0	360.00	X
0.051300	40.10	20.5	113.4	73.3	PK	100.0	360.00	X
0.070194	42.10	20.5	110.7	68.6	PK	100.0	360.00	X
0.138438	28.80	20.5	105.2	76.4	PK	100.0	360.00	X

150kHz-30MHz

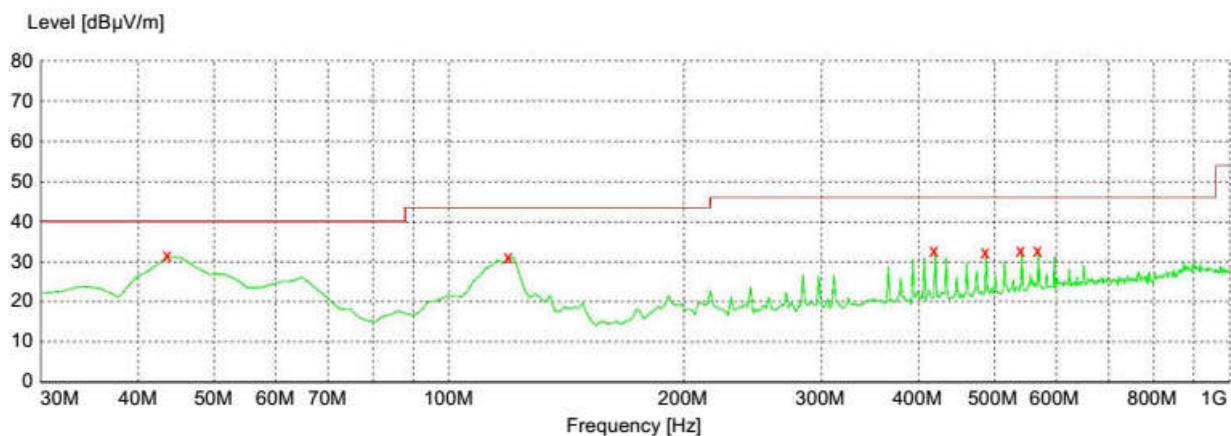

Level [dB μ V/m]

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
0.269400	36.90	20.5	99.5	62.6	PK	100.0	320.00	X
0.806700	30.00	20.4	69.5	39.5	PK	100.0	312.00	X
1.702200	27.00	20.6	63.0	36.0	PK	100.0	255.00	X
3.433500	33.90	20.7	69.5	35.6	PK	100.0	320.00	X
7.911000	26.90	20.5	69.5	42.6	PK	100.0	117.00	X
13.582500	53.40	20.4	69.5	16.1	PK	100.0	265.00	X

11MHz~14.5MHz


Level [dB μ V/m]

xx MES CTI190616039_red


Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
13.058000	31.80	20.4	69.5	37.7	QP	100.0	360.00	X
13.352000	45.90	20.4	80.5	34.6	QP	100.0	360.00	X
13.561000	71.40	20.4	124.0	52.6	QP	100.0	360.00	X
14.059000	35.70	20.4	69.5	33.8	QP	100.0	180.00	X
14.122000	32.40	20.4	69.5	37.1	QP	100.0	360.00	X
14.409000	33.90	20.4	69.5	35.6	QP	100.0	360.00	X

Remark: The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case X axis is shown in the report.

xxx MES CTI190612010_red

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
392.780000	38.60	16.3	46.0	7.4	QP	100.0	258.00	HORIZONTAL
419.940000	39.40	16.8	46.0	6.6	QP	100.0	196.00	HORIZONTAL
433.520000	38.00	17.0	46.0	8.0	QP	100.0	184.00	HORIZONTAL
460.680000	40.60	17.5	46.0	5.4	QP	100.0	196.00	HORIZONTAL
474.260000	37.90	17.7	46.0	8.1	QP	100.0	162.00	HORIZONTAL
487.840000	41.20	18.0	46.0	4.8	QP	100.0	162.00	HORIZONTAL

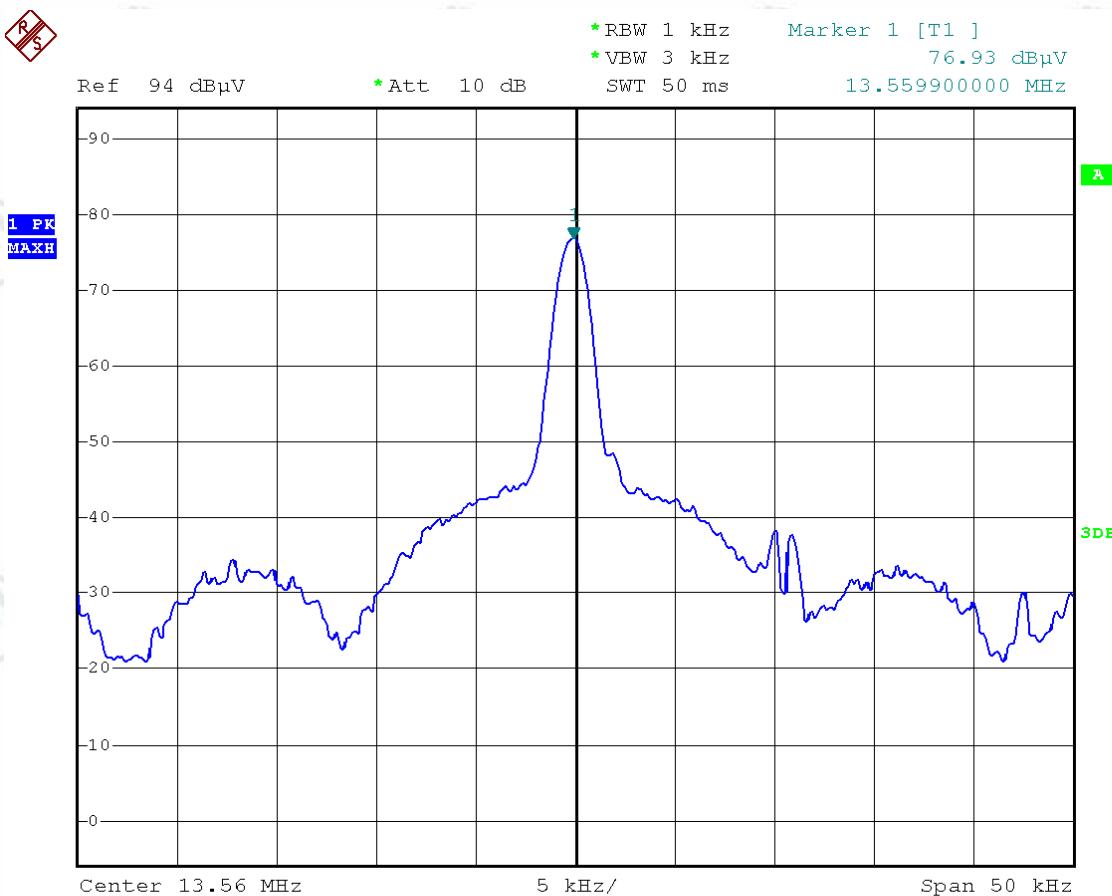
xxx MES CTI190612009_red

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
43.580000	31.30	14.3	40.0	8.7	QP	100.0	360.00	VERTICAL
119.240000	31.00	11.9	43.5	12.5	QP	100.0	10.00	VERTICAL
419.940000	32.70	16.8	46.0	13.3	QP	200.0	157.00	VERTICAL
487.840000	32.30	18.0	46.0	13.7	QP	200.0	72.00	VERTICAL
542.160000	32.90	18.7	46.0	13.1	QP	100.0	340.00	VERTICAL
569.320000	32.90	19.1	46.0	13.1	QP	100.0	330.00	VERTICAL

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


7.3 Frequency Tolerance

Test Requirement:	47 CFR Part 15 Subpart C Section 15.225(e)
Test Method:	ANSI C63.10-2013
Frequency range:	Operation within the band 13.110-14.010 MHz
Requirement :	The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.
Test Mode:	Transmitter mode
Method of measurement:	The EUT was placed in an environmental test chamber and powered such that control element received normal voltage and the transmitter provided maximum RF output.
Instruments Used:	Refer to section 6 for details
Test Result:	Pass

Test Frequency: 13.56MHz			Temperature:22°C	
Supply Voltage (V)	Test Result (MHz)	Deviation (kHz)	Limit (kHz)	Result
5.0	13.55990	0.10	1.356	Pass

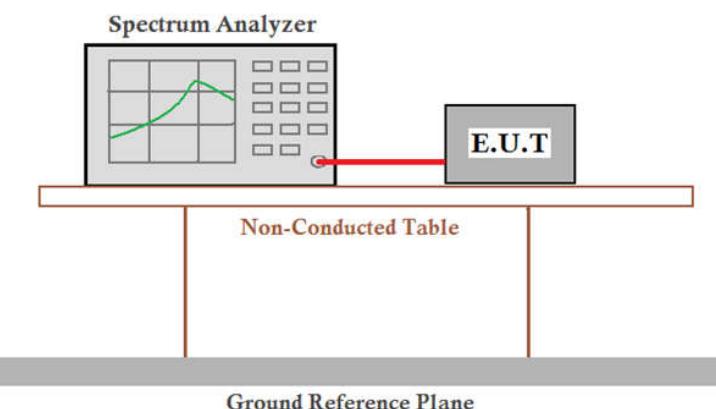
Test Frequency: 13.56MHz			Temperature:20°C	
Supply Voltage (V)	Test Result (MHz)	Deviation (kHz)	Limit (kHz)	Result
4.25	13.55988	0.12	1.356	Pass
5.0	13.55991	0.09	1.356	Pass
5.75	13.55988	0.12	1.356	Pass

Test Frequency: 13.56MHz			Voltage: 5.0V	
Temperature (°C)	Test Result (MHz)	Deviation (kHz)	Limit (kHz)	Result
-20	13.55989	0.11	1.356	Pass
-10	13.55989	0.11	1.356	
0	13.55988	0.12	1.356	
10	13.55988	0.12	1.356	
20	13.55990	0.10	1.356	
30	13.55989	0.11	1.356	
40	13.55988	0.12	1.356	
50	13.55988	0.12	1.356	

Date: 14.JUN.2019 15:30:43

7.4 Occupied Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.215 (C)


Test Method: ANSI C63.10-2013

Frequency range: Operation within the band 13.110 – 14.010 MHz

Requirement :

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be demonstrated by measuring the radiated emissions.

Test Setup:

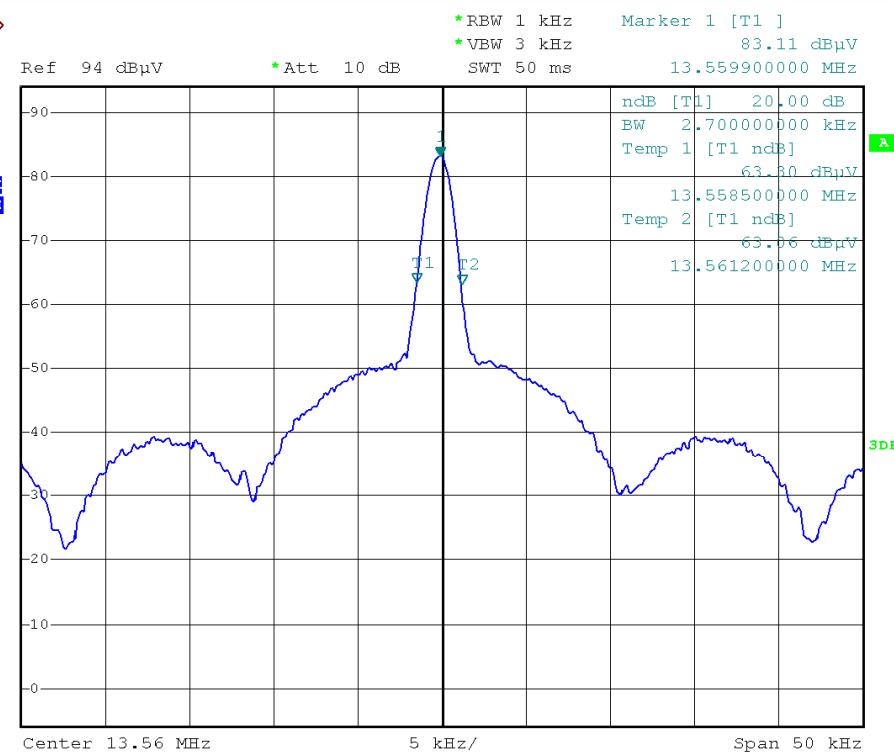
Test Mode:

Transmitter mode

Instruments Used:

Refer to section 6 for details

Test Result:

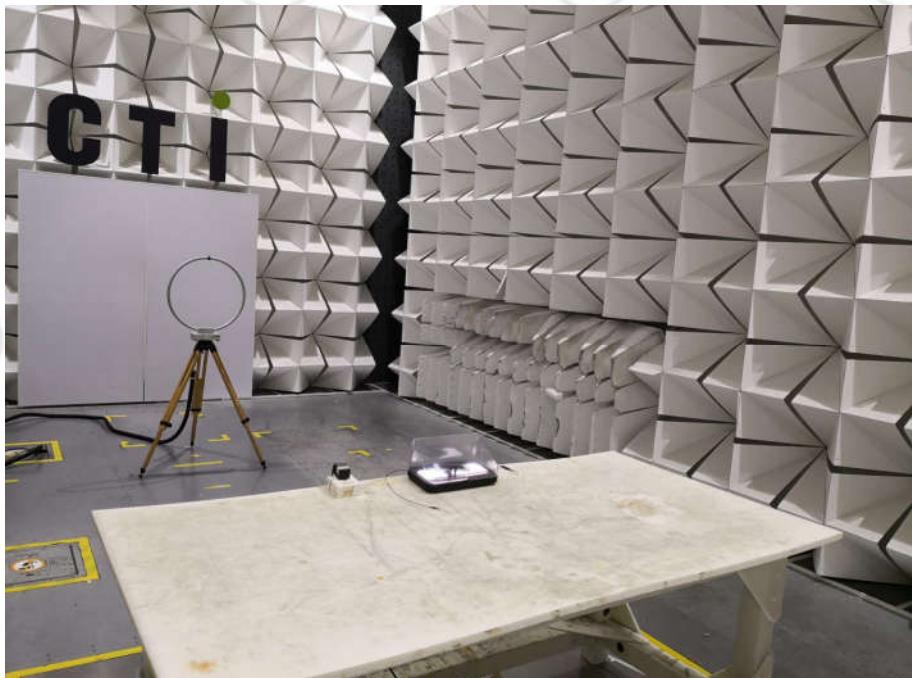

Pass

The graph as below: represents the emissions take for this device.

Report No. : EED32L001336

Page 22 of 33

RS


Date: 14.JUN.2019 15:32:37

Report No. : EED32L001336


Page 23 of 33

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

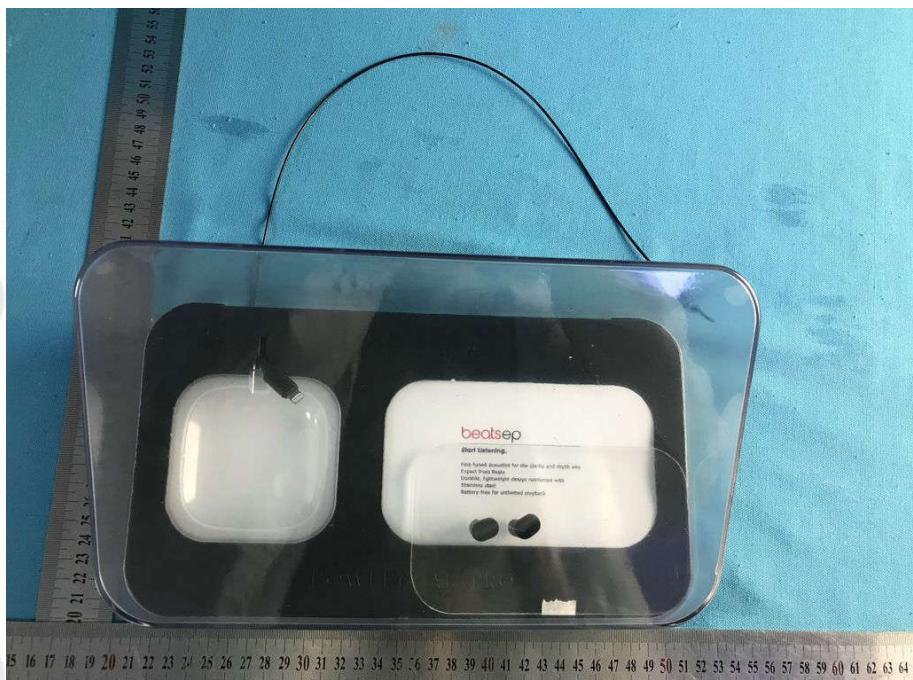
Test Model No.: 850-074027

Radiated emission Test Setup (Below 30MHz)

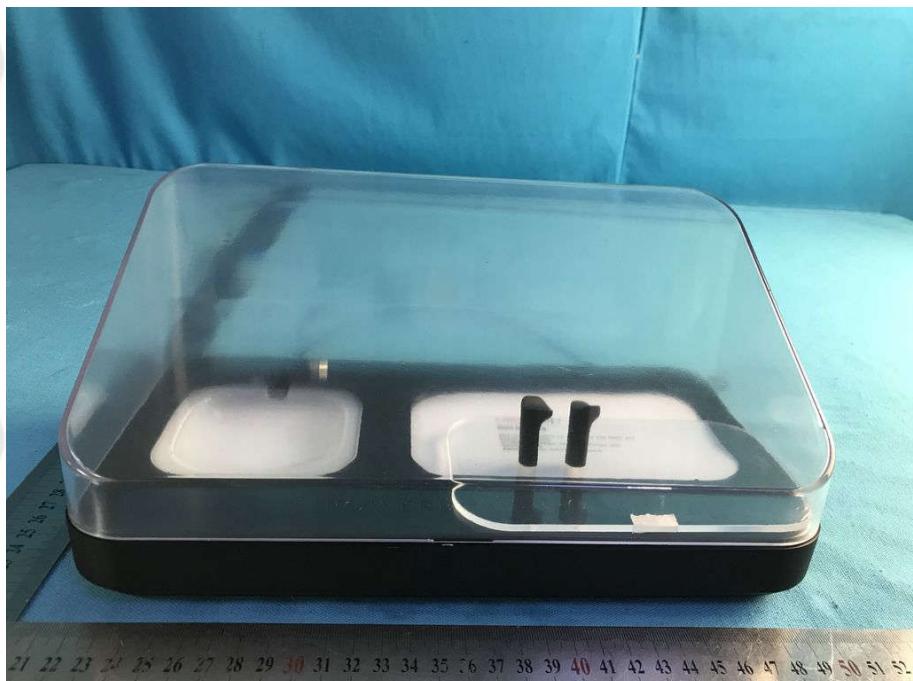
Radiated emission Test Setup (30MHz-1000MHz)

Conducted Emissions Test Setup

Report No. : EED32L001336

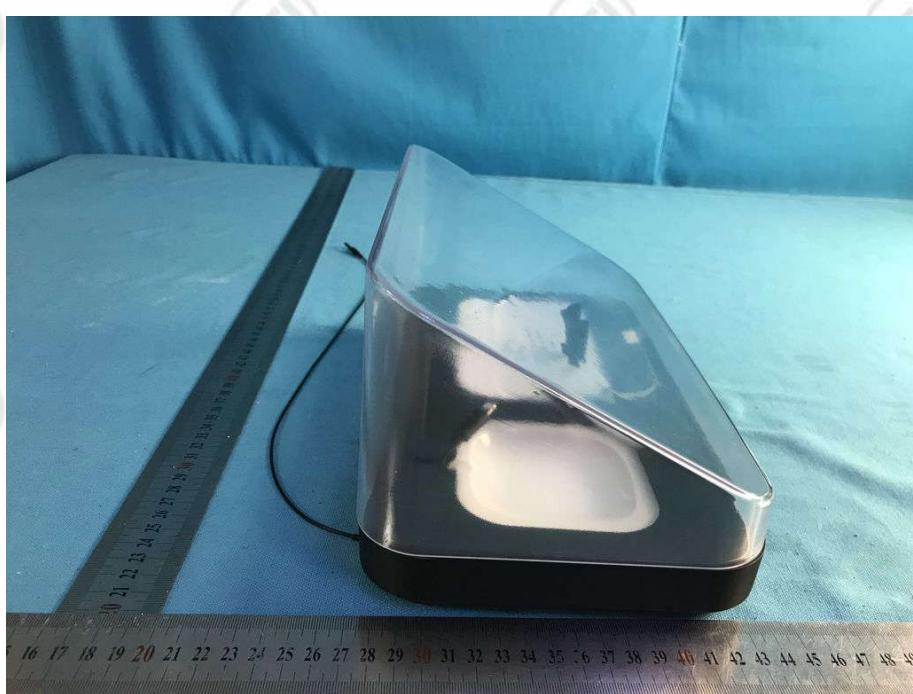

Page 25 of 33

APPENDIX 2 PHOTOGRAPHS OF EUT


Test model No.: 850-074027

View of Product-1

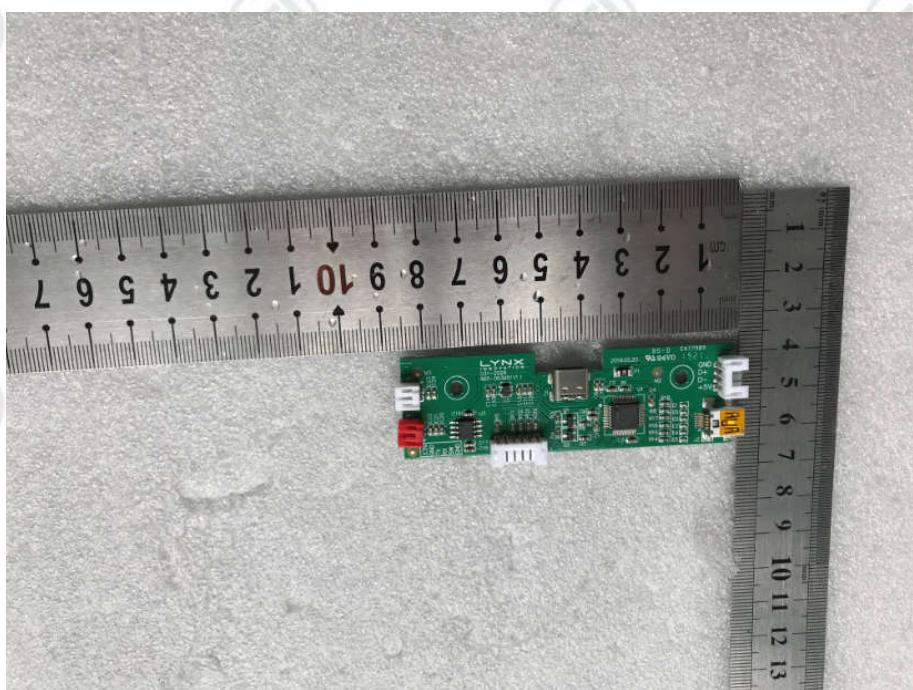
View of Product-2

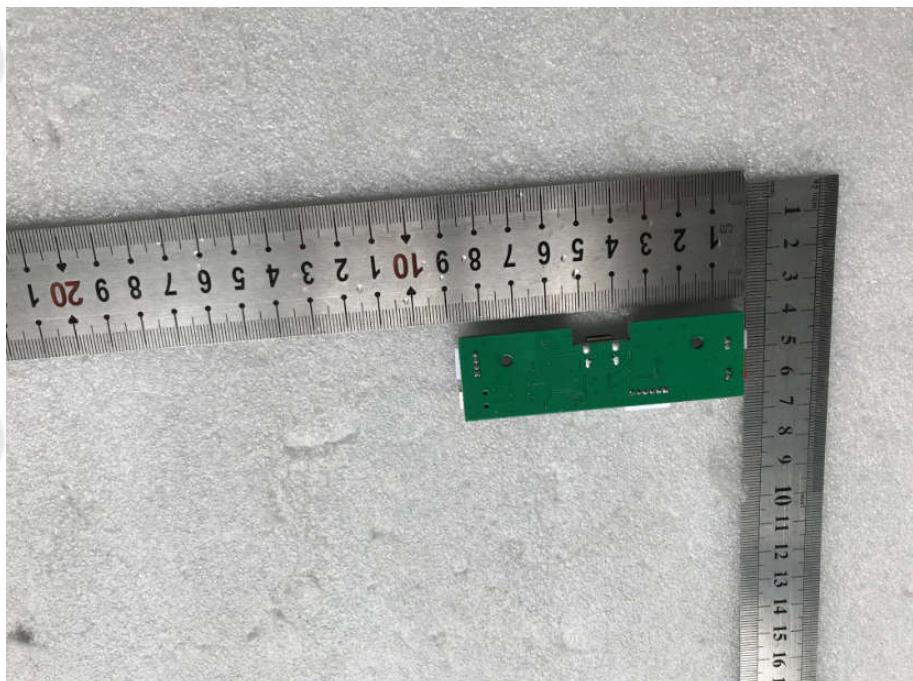

View of Product-3

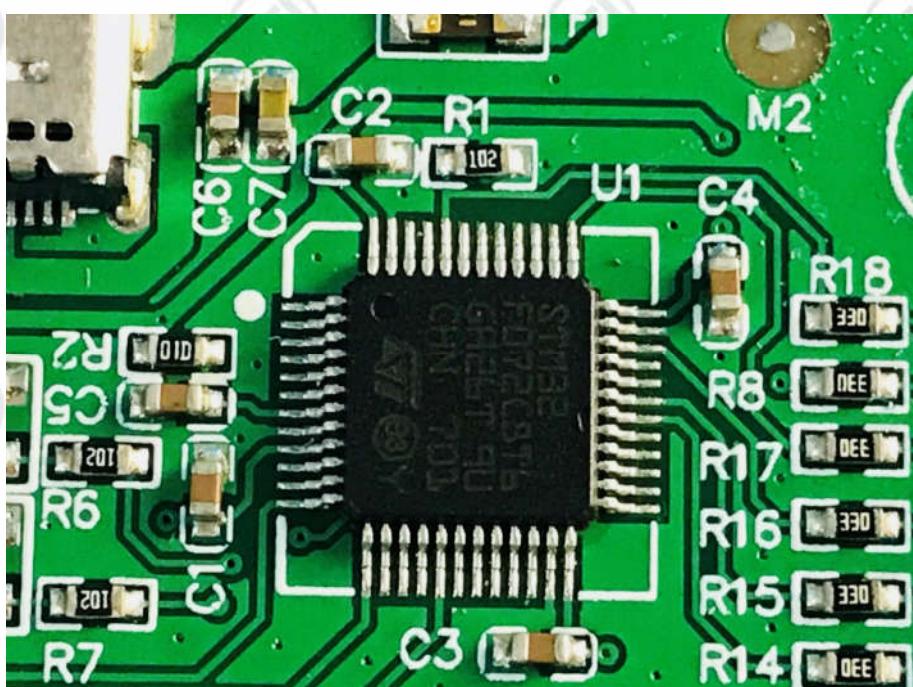
View of Product-4

View of Product-5

View of Product-6


View of Product-7

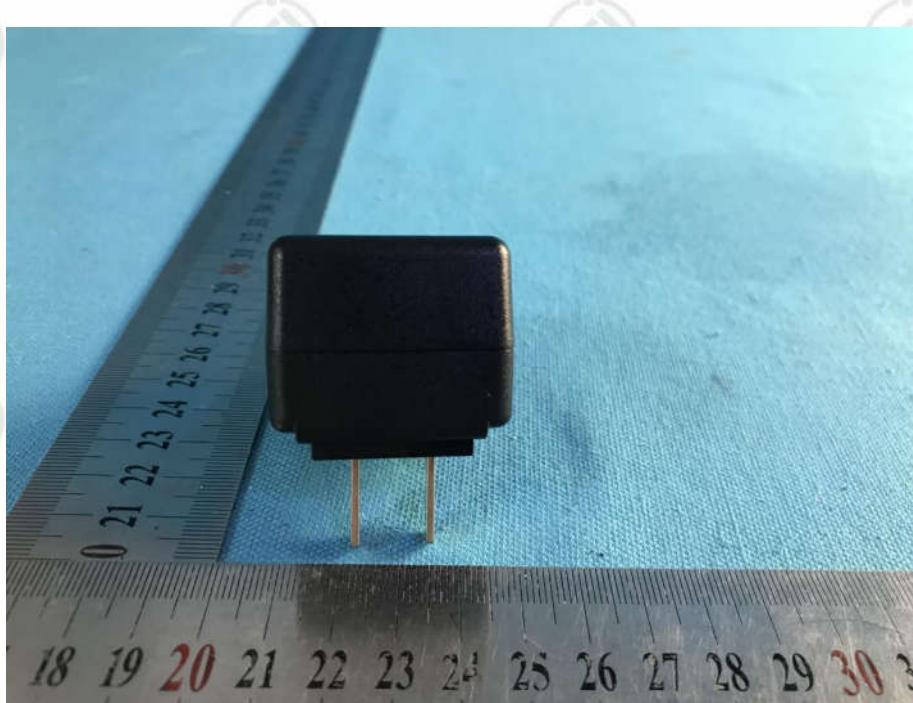

View of Product-8


View of Product-9

View of Product-10

View of Product-11

View of Product-12


View of Product-13

View of Product-14

View of Product-15

View of Product-16

View of Product-17

View of Product-18

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.