

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC139316 Page: 1 of 33

FCC ID: 2ABLR-SYMTX

Report No. : TB-FCC139316

Applicant: GamePop, Inc.

Equipment Under Test (EUT)

EUT Name : GAME REMOTE CONTROL

Model No. : SYM13015

Serial No. : N/A

Brand Name : GAMEPOP

Receipt Date : 2014-08-25

Test Date : 2014-08-26 to 2014-09-10

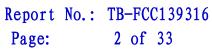
Issue Date : 2014-09-11

Standards : FCC Part 15, Subpart C (15.249: 2013)

Test Method : ANSI C63.4:2003

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,


The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page:

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	3
	1.1 Client Information	3
	1.2 General Description of EUT (Equipment Under Test)	3
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	4
	1.6 Description of Test Software Setting	5
	1.7 Test Facility	<i>6</i>
2.	TEST SUMMARY	
3.	CONDUCTED EMISSION TEST	
	3.1 Test Standard and Limit	8
	3.2 Test Setup	
	3.3 Test Procedure	8
	3.4 Test Equipment Used	
	3.5 EUT Operating Mode	9
	3.6 Test Data	9
4.	RADIATED EMISSION TEST	10
	4.1 Test Standard and Limit	10
	4.2 Test Setup	11
	4.3 Test Procedure	12
	4.4 EUT Operating Condition	12
	4.5 Test Equipment	13
	4.6 Test Data	13
5 .	BANDWIDTH TEST	29
	5.1 Test Setup	29
	5.2 Test Procedure	29
	5.3 EUT Operating Condition	29
	5.4 Test Equipment	29
	5.5 Test Data	29
6.	ANTENNA REQUIREMENT	33
	6.1 Standard Requirement	33
	6.2 Antenna Connected Construction	
	6.3 Result	33

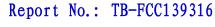
Page: 3 of 33

1. General Information About EUT

1.1 Client Information

Applicant : GamePop, Inc.		GamePop, Inc.
Address : 2105S.Bascom Ave. #380, Campbell, CA 95008, United State		2105S.Bascom Ave. #380, Campbell, CA 95008, United States
Manufacturer :		GamePop, Inc.
Address		2105S.Bascom Ave. #380, Campbell, CA 95008, United States

1.2 General Description of EUT (Equipment Under Test)

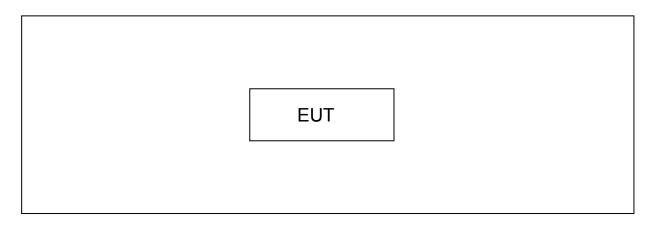

EUT Name	:	GAME REMOTE CONTROL			
Models No.	:	SYM13015			
Model Difference	:	N/A			
		Operation Frequency:2402	Operation Frequency:2402~2480 MHz		
Product	:	Number of Channels:	79 channels		
Description		Out Power:	98.01 dBuV/m@3m Peak		
2000.150.01			74.04 dBuV/m@3m Avg		
		Antenna Gain:	0 dBi		
		Modulation Type:	GFSK		
Power Supply	:	DC Voltage supplied by AAA battery.			
Power Rating	:	DC 3.0V (2*AAA battery).			
Connecting I/O Port(S)	:	Please refer to the User's Manual			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Channel List						
Low Channel (MHz)	HIGH Channel (MHz)					
2402	2441	2480				



Page: 4 of 33

1.3 Block Diagram Showing the Configuration of System Tested

Mode 1: TX Mode

1.4 Description of Support Units

The EUT has been tested as an independent unit.

Name	e Model S/N		Manufacturer	Used "√"

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
N/A	N/A			

For Radiated Test				
Final Test Mode Description				
Mode 1	TX Mode			

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

(1)According to ANSI C63.4 standards, the measurements are performed at the highest,

Page: 5 of 33

middle, lowest available channels.

(2)During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

(3) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

Page: 6 of 33

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 7 of 33

2. Test Summary

FCC Part 15 Subpart C(15.249)						
Standard Section Test Item Judgment F						
15.203	Antenna Requirement	PASS	N/A			
15.205	Restricted Bands	PASS	N/A			
15.207	AC Power Conducted Emission	N/A	N/A			
15.249 &15.209	Radiated Spurious Emission	PASS	N/A			
15.215(C)	15.215(C) 20dB Bandwidth PASS N/A					
Note: N/A is an abbreviation for Not Applicable.						

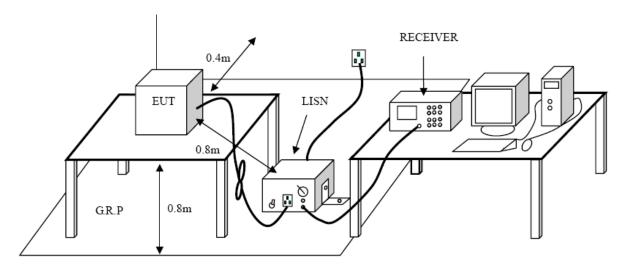
Page: 8 of 33

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit


Conducted Emission Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 9 of 33

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		400004	Aug. 08, 2014	Aug. 07, 2015
Receiver	SCHWARZ	ESCI	100321	Aug. 00, 2014	Aug. 07, 2015
50ΩCoaxial	Anritsu	MP59B	X10321	Aug. 08, 2014	Aug. 07, 2015
Switch	Aiiiisu	MESSE	X10321	Aug. 08, 2014	Aug. 07, 2013
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 08, 2014	Aug. 07, 2015
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 08, 2014	Aug. 07, 2015

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

The EUT is powered by battery, so no requirement for this test item.

TOBY

Report No.: TB-FCC139316

Page: 10 of 33

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limit (9kHz~1000MHz)

Radiated Linission Linit (SKI12 1000M112)					
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

Radiated Emission Limit (Above 1000MHz)

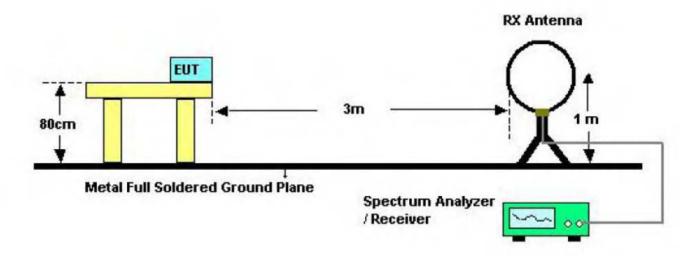
Frequency Class A (dBuV		/m)(at 3 M)	Class B (dBuV	//m)(at 3 M)
(MHz)	Peak	Average	Peak	Average
Above 1000	80	60	74	54

Note:

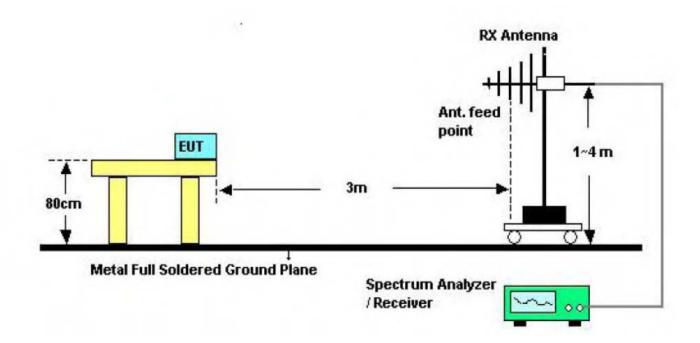
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(Uv/m)

Limits of radiated emission measurement (15.249)


FCC Part 15 (15.249), Subpart C									
Limit Frequency Range (MHz)									
Field strength of fundamental	2400~2483.5								
50000 μV/m (94 dBμV/m) @ 3 m	2400~2463.5								
Field strength of fundamental	Above 2492 F								
500 μV/m (94 dBμV/m) @ 3 m	Above 2483.5								

Restricted bands requirement for equipment operating in 2400MHz to 2483.5 MHz (15.249)



Restricted Frequency Band (MHz)	(dBuV/m)(at 3 M)
2310~2390	Attenuated by at least 50 dB below the level of the fundamental or to the general radiated
2483.5~2500	emission limits in 15.209, whichever is the lesser attenuation


4.2 Test Setup

Bellow 30MHz Test Setup

Bellow 1000MHz Test Setup

Turntable

EUT

O.8 m lm to 4m

Coaxial Cable

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

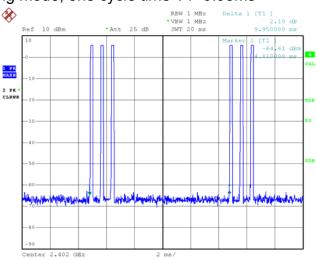
The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.

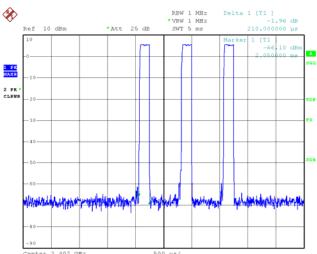
Page: 13 of 33

4.5 Test Equipment

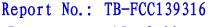
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug. 07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.6 Test Data

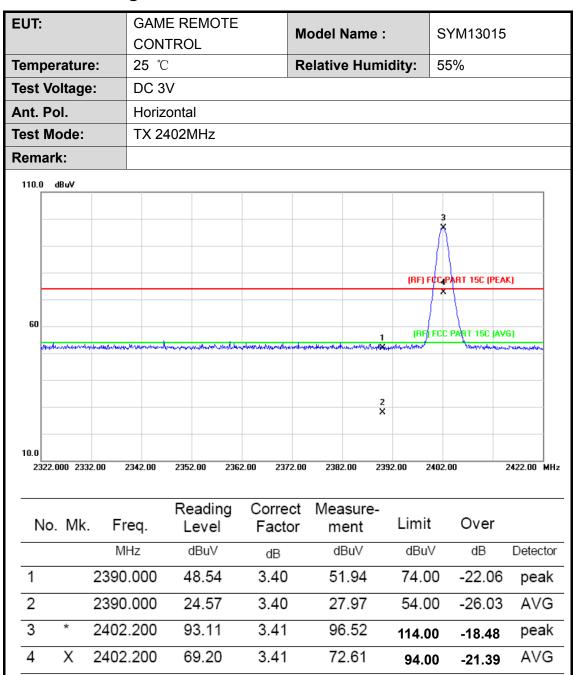

Please see the next page.

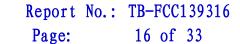

Page: 14 of 33

4.6.1 Duty Cycle


(1) During transmitting mode, one cycle time T1=9.95ms

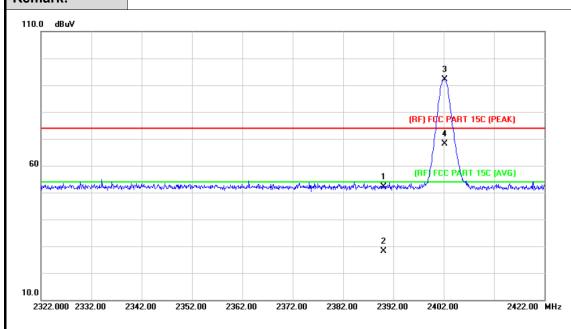
(2)One pulse time T2= 0.21ms


- (3) Duty Cycle= T2*3/T1*100%= 6.33%
- (4)Avg=Peak+20log(Duty Cycle)=Peak-23.97

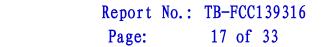


Page: 15 of 33

4.6.2 Field Strength of the Fundamental



Emission Level= Read Level+ Correct Factor



EUT: GAME REMOTE Model Name: SYM13015 CONTROL 25 ℃ **Relative Humidity:** 55% Temperature: **Test Voltage:** DC 3V Ant. Pol. Vertical **Test Mode:** TX 2402MHz Remark:

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1		2390.000	48.68	3.40	52.08	74.00	-21.92	peak
2		2390.000	24.71	3.40	28.11	54.00	-25.89	AVG
3	*	2402.200	88.67	3.41	92.08	114.00	-21.92	peak
4	Χ	2402.200	64.77	3.41	68.18	94.00	-25.82	AVG

Emission Level= Read Level+ Correct Factor



EUT:GAME REMOTE
CONTROLModel Name :SYM13015Temperature:25 °CRelative Humidity:55%Test Voltage:DC 3V

Ant. Pol. Horizontal

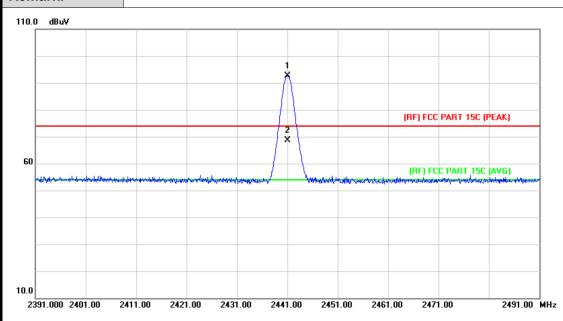
Test Mode: TX 2441MHz

Remark:

N	lo.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1		*	2441.100	93.61	3.46	97.07	114.00	-16.93	peak
2		X	2441.100	69.64	3.46	73.10	94.00	-20.90	AVG

Emission Level= Read Level+ Correct Factor

EUT: GAME REMOTE CONTROL Model Name : SYM13015


Temperature: 25 °C Relative Humidity: 55%

Test Voltage: DC 3V

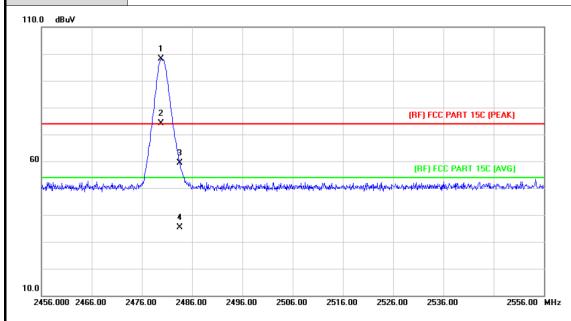
Ant. Pol. Vertical

Test Mode: TX 2441MHz

Remark:

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV	dBuV	dB	Detector
1	*	2441.100	89.06	3.46	92.52	114.00	-21.48	peak
2	Χ	2441.100	65.09	3.46	68.55	94.00	-25.45	AVG

Emission Level= Read Level+ Correct Factor

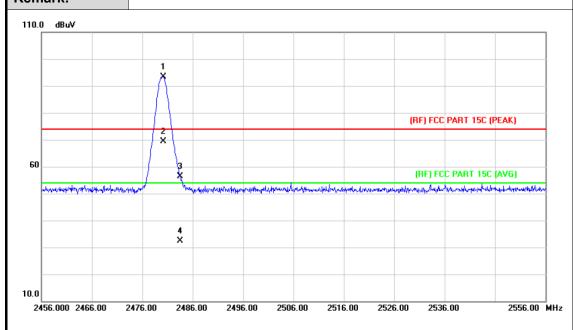


19 of 33 Page:

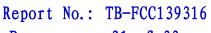
EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Horizontal		

Test Mode: TX 2480MHz

Remark:


No	. Mk	κ. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	2479.800	94.51	3.50	98.01	114.00	-15.99	peak
2	Χ	2479.800	70.54	3.50	74.04	94.00	-19.96	AVG
3		2483.500	55.95	3.51	59.46	74.00	-14.54	peak
4		2483.500	31.98	3.51	35.49	54.00	-18.51	AVG

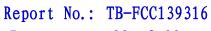
Emission Level= Read Level+ Correct Factor


Page: 20 of 33

EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Vertical		
Test Mode:	TX 2480MHz		
Remark:			

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV	dBu∀	dB	Detector
1	*	2480.200	89.90	3.50	93.40	114.00	-20.60	peak
2	Χ	2480.200	65.93	3.50	69.43	94.00	-24.57	AVG
3		2483.500	52.96	3.51	56.47	74.00	-17.53	peak
4		2483.500	28.99	3.51	32.50	54.00	-21.50	AVG

Emission Level= Read Level+ Correct Factor



Page: 21 of 33

4.6.3 Radiated Spurious Emission (Below 1 GHz)

EUT	:			ME REM	1OTE		Model Na	ame :		SYM	13015			
Tem	peratu	ıre:	25 °	С		1	Relative	Humi	dity:	55%				
Test	t Volta	ge:	DC 3	3V										
Ant.	Pol.		Hori	zontal										
Test	t Mode):	TX 2	2402MH	lz									
Ren	nark:		Only	worse	case	is reporte	ed							
80.	0 dBuV													
									(BF)F	CC 15C 3N				
											Margin -	6 dB	\pm	
30														
											6 X		11.1	
	1							5		John Mary Holl	Anthropological	Mulp	MAHA	
	\\ _{\\\} \\\\\ _{\\\\}	, 1, 14 A. L.	2 X	3 X	An academ		many his properties and the second	warloolyy/v ^{aligh}	MANIPAGNANIA	w ·				
		Care Mediately of North	alimenty filminamplakity	with the high to state of the	vikovalani MV	ogo og blandelska sa skilos								
-20														
	D. 000	40 50	60 7	70 80		(MHz)		300	400	500	600 700	1	000.00	10
				Page	المما	Carrag	Maga							
Ν	lo. Mł	к. F	req.	Read Lev	-	Correct Factor			Limit		Over			
		N	ИHz	dBu	V	dB	dBu	IV	dBu\	V	dB	De	tecto	or
1		35.6	6240	24.3	35	-17.45	6.9	0	40.0	0 -3	33.10	p	eak	(
2		66.4	4989	24.7	78	-23.94	0.8	4	40.0	0 -	39.16	p	eak	(
3		83.2	2298	25.6	31	-23.09	2.5	2	40.0	0 -	37.48	p	eak	(
4		160.	9089	25.3	34	-20.57	4.7	7	43.5	0 -	38.73	p	eak	(
5		329.	.0390	24.4	19	-15.89	8.6	0	46.0	0 -	37.40	р	eak	(
6	*	694.	4174	25.6	39	-7.01	18.6	38	46.0	0 -2	27.32	p	eak	(
														_
Emi	ssion	Level=	Read	Level+	Corr	ect Facto	or							



Page: 22 of 33

EU	Γ:			_	ME NTF		MOTI	E	Mode	el Nan	ne :		SYN	M130)15		
Ten	npera	ture		25	$^{\circ}\!\mathbb{C}$				Rela	tive H	umi	dity:	55%	6			
Tes	t Volt	age:		DC	3V												
Ant	. Pol.			Vei	rtica	l											
Tes	t Mod	e:		TX	240	2M	Hz										
Ren	nark:			On	ly w	ors	e case	e is report	ed								
80.	0 dBuV																_
												(RF)FC	C 15C :				7
														Mar	gin -6	dB	Ħ
					+									+			4
30																6	_
														5		X	A
	1							3		4 ×			har feel block	Medicard	and a photo line	Mariles	
	mphrailing	dulha.		, Juli	water who is	2 X	والمراجع والمتعادية	3 Navadagandhardah	nity day had ya	Man Jacket	h Nation	NAME OF THE PROPERTY OF THE PR					
			(I-Parteroxxx)	aled plants	Marayan a	urlihadiii	30 17 17	Mean H									
-20																	
	0.000	40	50	60	70 8	80		(MHz)			300	400	500	600	700	100	00.000
					F	Rea	ading	Correc	t M	easur	e-						
1	No. N	۱k.	Fre	eq.	·		vel	Facto		ment		Limit		Ove	er		
_			MH	Ηz		dE	Bu∨	dB		dBuV		dBu∖	/	dB		Det	ector
1		(35.6	240		25	5.81	-17.45		8.36		40.0	0	-31.	64	ре	eak
2		8	37.7	248		25	.36	-22.82		2.54		40.0	0	-37.	46	ре	eak
3		1	69.0	054	ļ	27	.48	-21.11		6.37		43.5	0	-37.	13	ре	eak
4		2	59.2	2338	}	27	'.85	-17.92		9.93		46.0	0	-36.	07	ре	eak
5		6	14.2	2142	2	25	.88	-8.93		16.95	5	46.0	0	-29.	05	ре	eak

Emission Level= Read Level+ Correct Factor

Page: 23 of 33

4.6.4 Radiated Spurious Emission (Above 1 GHz)

EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	DC 3V			
Ant. Pol.	Horizontal			
Test Mode:	TX 2402MHz			
Remark:				
110.0 dBuV				
		(RF) I	FCC PART 15C (PEAK)	
60 1		(RF)	FCC PART 15C (AVG)	
×				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	4804.140	45.18	8.18	53.36	74.00	-20.64	peak
2		4804.140	21.21	8.18	29.39	54.00	-24.61	AVG

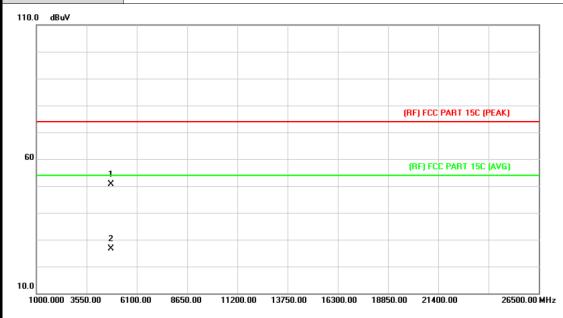
11200.00 13750.00 16300.00 18850.00

Emission Level= Read Level+ Correct Factor

Note: Avg=Peak-23.97

1000.000 3550.00

6100.00


8650.00

26500.00 MHz

Page: 24 of 33

EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Vertical		
Test Mode:	TX 2402MHz		
Remark:			

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV	dBu∀	dB	Detector
1	*	4804.140	42.44	8.18	50.62	74.00	-23.38	peak
2		4804.140	18.47	8.18	26.65	54.00	-27.35	AVG

Emission Level= Read Level+ Correct Factor

Page: 25 of 33

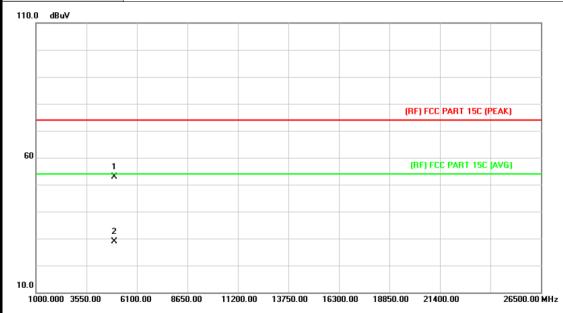
EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Horizontal		
Test Mode:	TX 2441MHz		
Remark:			

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1		*	4881.120	45.89	8.21	54.10	74.00	-19.90	peak
2			4881.120	21.92	8.21	30.13	54.00	-23.87	AVG

Emission Level= Read Level+ Correct Factor

Page: 26 of 33

EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Vertical		
Test Mode:	TX 2441MHz		
Remark:			


No	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	4881.120	43.94	8.21	52.15	74.00	-21.85	peak
2		4881.120	19.97	8.21	28.18	54.00	-25.82	AVG

Emission Level= Read Level+ Correct Factor

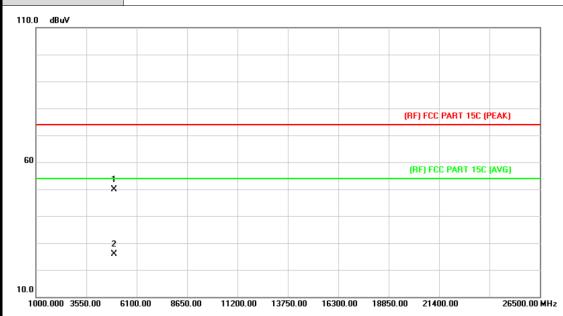
Page: 27 of 33

EUT:	GAME REMOTE CONTROL	Model Name :	SYM13015
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Horizontal		
Test Mode:	TX 2480MHz		
Remark:			

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1	*	4960.150	44.54	8.23	52.77	74.00	-21.23	peak
2		4960.150	20.57	8.23	28.80	54.00	-25.20	AVG

Emission Level= Read Level+ Correct Factor

EUT: GAME REMOTE CONTROL Model Name : SYM13015


Temperature: 25 ℃ Relative Humidity: 55%

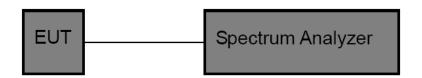
Test Voltage: DC 3V

Ant. Pol. Vertical

Test Mode: TX 2480MHz

Remark:

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1	1	*	4960.150	41.55	8.23	49.78	74.00	-24.22	peak
2	2		4960.150	17.58	8.23	25.81	54.00	-28.19	AVG


Emission Level= Read Level+ Correct Factor

Page: 29 of 33

5. Bandwidth Test

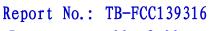
5.1 Test Setup

5.2 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Bandwidth: RBW=100 kHz, VBW=300kHz.

(3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.

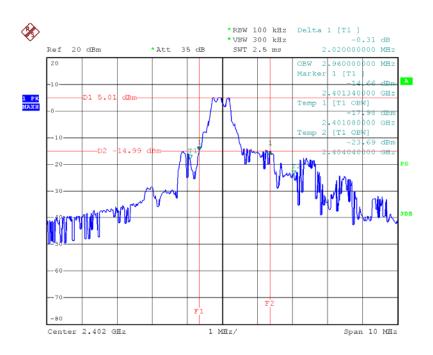

5.3 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

5.4 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug. 07, 2015

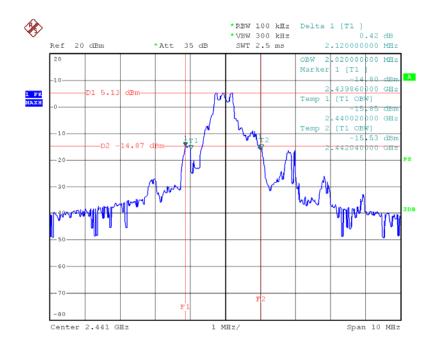
5.5 Test Data



Page: 30 of 33

Low Channel Frequency (MHz)	20dB Bandwidth (MHz)
2402	2.020

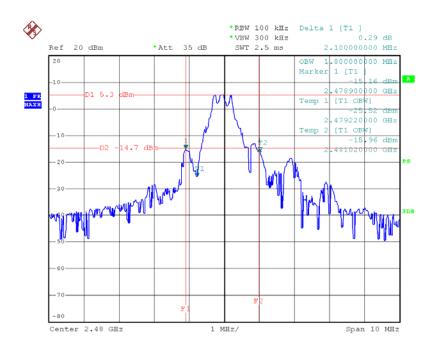
2402 MHz



Page: 31 of 33

MID Channel Frequency (MHz)	20dB Bandwidth (MHz)
2441	2.120

2441 MHz



Page: 32 of 33

HIGH Channel Frequency (MHz)	20dB Bandwidth (MHz)
2480	2.100

2480 MHz

Page: 33 of 33

6. Antenna Requirement

6.1 Standard Requirement

6.1.1 Standard FCC Part 15.203

6.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

6.3 Result

The EUT antenna is a Printed Antenna. It complies with the standard requirement.